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Abstract

Purpose—Use Compressed Sensing (CS) for three dimensional (3D) biexponential spin-lattice 

relaxation time in the rotating frame (T1ρ) mapping of knee cartilage, reducing the total scan time 

and maintaining the quality of estimated biexponential T1ρ parameters (short and long relaxation 

times and corresponding fractions) comparable to fully-sampled scans.

Methods—Fully-sampled 3D-T1ρ-weighted datasets were retrospectively undersampled by 

factors 2–10. CS reconstruction using twelve different sparsifying transforms were compared for 

biexponential T1ρ-mapping of knee cartilage, including temporal and spatial wavelets and finite 

differences, dictionary from Principal Component Analysis (PCA), K-means Singular Value 

Decomposition (K-SVD), and exponential decay models, and also low rank and low rank plus 

sparse models. Synthetic phantom (n=6) and in vivo human knee cartilage datasets (n=7) were 

included in the experiments. Spatial filtering prior to biexponential T1ρ parameter estimation was 

also tested.

Results—Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with 

relative median normalized absolute deviation (MNAD) around 10%. Some sparsifying 

transforms, such as low rank with spatial finite difference (L+S SFD), spatiotemporal finite 

difference (STFD), and exponential dictionaries (EXP) significantly improved this performance, 

reaching MNAD below 15% with AF up to 10, when spatial filtering was used.

Conclusion—Accelerating biexponential 3D-T1ρ mapping of knee cartilage with CS is feasible. 

The best results were obtained by STFD, EXP and L+S SFD regularizers combined with spatial 

pre-filtering. These three CS methods performed satisfactorily on synthetic phantom as well as in 
vivo knee cartilage for AFs up to 10, with median error below 15%.

Keywords

T1ρ relaxation; biexponential model; compressed sensing; sparse reconstruction; low rank

Corresponding Author: Marcelo V W Zibetti, Center for Biomedical Imaging, Department of Radiology, New York University School 
of Medicine, 650 1st Avenue, 2nd floor. New York, NY, 10016, USA, marcelo.zibetti@nyumc.org, tel: +1-646-501-9638, fax: + 1. 

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2020 February 01.

Published in final edited form as:
Magn Reson Med. 2019 February ; 81(2): 863–880. doi:10.1002/mrm.27416.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of chronic 

disability in the elderly population (1,2). Currently, OA affects more than 27 million people 

in the United States alone, generating high expenses to the healthcare system (3,4). OA is 

connected with the degradation of components of the extracellular matrix (ECM) of articular 

cartilage (5), mainly composed by proteoglycan (PG), collagen fibers and water (6). Early 

diagnosis of cartilage degeneration requires detection of changes in PG concentration and 

collagen integrity, preferably noninvasively and before morphological changes occur (7,8).

The spin–lattice relaxation rate in the rotating frame (R1ρ) has been shown to decrease 

linearly with the decreasing PG content of articular cartilage (9). Several researchers (10,11) 

have demonstrated that the spin–lattice relaxation time in the rotating frame (T1ρ) is more 

sensitive to proteoglycan content of the cartilage, while spin–spin relaxation time (T2) is 

more sensitive to collagen orientation and integrity of network and hydration. Most of the 

previous studies (7,8,11) have utilized the monoexponential models to characterize the T1ρ 
relaxation mapping of articular cartilage in the knee joint. However, the monoexponential 

estimation of T1ρ alone is not able to provide information on short and long components and 

their fractions.

Recent studies (12–14) have shown that T1ρ relaxation may have multiexponential 

components, following the hypothesis of multicompartmental structure. In (13), it was 

shown that biexponential models for T1ρ can bring more information about the ECM 

composition in human knee cartilage.

The quantitative 3D-T1ρ mapping usually requires the use of four or five T1ρ-weighted 

images with different spin-lock lengths (TSLs) to obtain the monoexponential T1ρ maps 

(15). However, biexponential analysis of cartilage typically requires a larger number of TSLs 

in order to maintain accuracy and the precision of biexponential T1ρ quantification (13), 

resulting in a long scan time. High spatial resolution is also needed in order to visualize the 

thin and curved cartilage and fine structures in the knee joint. As a result, in vivo application 

of biexponential 3D-T1ρ mapping techniques is still very limited.

An effective alternative is compressed sensing (CS) (16) to reduce the total scan time in 

quantitative T1ρ mapping. This fast magnetic resonance imaging (MRI) uses pseudo-random 

k-space undersampling (17) that generates (intentionally) noise-like artifacts in standard 

reconstruction. However, exploiting the compressibility, or sparsity, of magnetic resonance 

(MR) image representation in transformed domains, CS effectively removes these artifacts, 

recovering most of the original image (18). Moreover, CS can make use of multicoil, or 

parallel, imaging for further increases in speed (19). Recently, several CS methods have been 

applied to high-dimensional MR imaging such as dynamic imaging (20,21). Moreover, 

parametric relaxation mapping (22–25) is particularly suitable for CS due to increased 

compressibility in the parameter direction, which turns into higher accelerations.

Studies such as (25–29) and (30) have demonstrated that a reduction in acquisition time 

using CS is possible for monoexponential T1ρ mapping of cartilage, brain and intervertebral 
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disc. Nevertheless, the feasibility of CS for biexponential T1ρ mapping has not been 

demonstrated yet.

In this paper, we extend our previous experiments of CS for monoexponential mapping (30) 

to biexponential mapping. The feasibility of using CS to accelerate biexponential 3D-T1ρ 
mapping is evaluated for knee cartilage by comparing twelve different types of sparsity 

promoting functions on synthetic phantoms (with and without noise) and in vivo knee 

cartilage datasets. Our main aim is to answer the question of what are the best regularization 

penalties and suitable acceleration factors for CS reconstruction with least components error 

when the final objective is to reduce image acquisition time of biexponential 3D-T1ρ 
mapping of human articular cartilage.

METHODS

MRI Data Acquisition and Standard Reconstruction

Seven in vivo human knee 3D-T1ρ-weighted datasets were acquired with 10 different TSLs 

using a modified 3D Cartesian turbo-Flash sequence (13). The MRI scans were performed 

using a 3T clinical MRI scanner (Prisma, Siemens Healthcare, Erlangen, Germany) with a 

15-channel Tx/Rx knee coil (QED, Cleveland OH). The 3D-T1ρ acquisition parameters 

were: TR/TE=7.5ms/4ms, flip angle=8°, matrix size 256×128×64, longitudinal 

magnetization restoration delay=1020ms, 64 k-space lines captured per preparation pulse, 

spin-lock frequency=500Hz, slice thickness=2mm, field of view (FOV)=120mm×120mm, 

and receiver bandwidth=515 Hz/pixel.

The T1ρ-weighted scans of the knee were acquired in sagittal plane from seven healthy 

volunteers (age=29.6±7.5 years), with 10 TSLs including 2/4/6/8/10/15/25/35/45/55ms, and 

total acquisition time of 32 minutes. The T1ρ-protocol was repeated on three volunteers on 

the same day for repeatability evaluation. This study was approved by the institutional 

review board (IRB) and all the volunteers consented before scanning.

SENSE reconstruction (31,32) of the fully-sampled data was utilized as reference. The coil 

maps, required by SENSE, were estimated using ESPIRiT (33) from the central k-space 

area.

Synthetic Phantom

The utilized synthetic phantom is described in (30) and illustrated in Figure 1(a). It is 

composed of three T1ρ relaxation areas with times: 1–25ms (blue), 30–50ms (green) and 50–

110ms (red). Two areas partially intersect, generating a biexponential model (13). Other 

areas are purely monoexponential. As described in (30), the magnitudes in some areas are 

randomly selected, generating intersection areas with 10% dispersion from 50/50 in the 

fractions of short and long components of the biexponential.

The k-space dataset was created by multiplying the phantom images by coil sensitivities, 4-

coils were utilized, followed by 2D Fourier transform. White Gaussian noise was added to 

the data in k-space for the noisy experiment, with its standard deviation set to 17% of the 

mean signal amplitude, resulting in an acquisition SNR of 15dB (5.62 in linear scale). The 

Zibetti et al. Page 3

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acquisition SNR is defined as SNR = 10 log ||FCx||2/||η||2, from the model: y = FCx + η with 

F and C described in equation [1] (not to be confused with image SNR, which is the visually 

observed noise in the reconstructed images and depends on the type of reconstruction).

Retrospective Undersampling

3D k-space data were retrospectively undersampled along the two-phase encoding 

dimensions (ky and kz) after applying 1D Fourier transform along the frequency encoding 

direction (kx). As shown in Figure 1(b), the ky-kz data were undersampled following a 2D 

Poisson disk random pattern (34). The acceleration factor (AF) is defined as the ratio of total 

k-space samples by the number of measured k-space samples. A central rectangular k-space 

area was not undersampled and also used for coil sensitivity map estimation (31×15 for 

AF=2, 21×9 for AF ≥ 4, on a 128×64 fully-sampled captured datasets, and 63×63 for AF=2, 

and 41×41 for AF ≥ 4, on a 256×256 fully-sampled synthetic dataset).

CS Reconstruction Algorithms

Following (30), twelve different regularization functions are compared for CS. All the 

compared regularization functions are found in the image reconstruction literature, even 

though not tested for this specific problem, and are good candidates for this problem, as 

detailed below. The regularization penalties, described in Table 1, use l1-norm with different 

sparsifying transforms, nuclear-norm (35,36) of the Casorati matrix representation of the 

image, i.e. low rank (LR) model, and the low rank plus sparse (L+S) model, where the 

nuclear-norm and the l1-norm are combined (37). In the Casorati matrix, each row contains 

the magnetization signal of one particular voxel over TSL.

The l1-norm (16) regularized CS problems are posed as:

x = argmin
x

‖y − SFCx‖2
2 + λ‖Tx‖1, [1]

or

x = D argmin
u

‖y − SFCDu‖2
2 + λ‖u‖1, [2]

where x is a vector that represents the reconstructed image sequence, originally of size Ny × 

Nz × Nt, with Ny being the image size in the y-axis and Nz the size in the z-axis, Nt is the 

number of TSLs. y is a vector that represents the captured k-space, with original size of Ny × 

Nz × Nt × Nc, where Nc is the number of coils. The matrix C contains the coil sensitivities 

and F the Fourier transforms of each sensitivity-weighted image. The undersampling matrix 

S is a diagonal matrix, where the non-sampled k-space points have zeros in their diagonal 

positions; the respective elements in y are replaced by zeros as well. The squared l2-norm or 

Euclidean norm, ‖e‖2
2, is the sum of the squared magnitudes, the l1-norm, ||u||1, is the sum of 

Zibetti et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the magnitudes, and λ is the regularization parameter. The transform T and dictionary D in 

the regularization term are chosen as described in Table 1.

In Table 1, transform T contains the temporal finite differences (FD) of order 1, 2, and 3 for 

TFD1, TFD2, or TFD3. Those are temporal only high-order total variation (TV) (38–40). 

Also, T may contain the spatiotemporal FD (STFD) (40–42) set to order 1 spatially and 

order 2 temporally.

Fixed dictionary models for D are utilized for 3D wavelet transform (43), WAV in Table 1, 

or for overcomplete multiexponential dictionary D, EXP in Table 1 (44,45), with much more 

columns than rows. Learned dictionary models for D can be created using temporal principal 

component analysis (PCA) (46), using singular value decomposition (SVD) on the Casorati 

representation (23), or the K-SVD (47). In the case of the K-SVD, an overcomplete 

dictionary D is computed, instead of an orthogonal transform, as in PCA.

The LR reconstruction is defined as:

x = argmin
x

‖y − SFCx‖2
2 + λ‖x‖∗ . [3]

In [3], ||x||* represents the matrix nuclear-norm (35) where x is reshaped as a NyNz × Nt 

Casorati matrix, and the SVD is utilized at each iteration using the currently available 

reconstruction (48).

The L+S reconstruction (37) is given by:

l , s = argmin
x

‖y − SFC(l + s)‖2
2 + λl‖l‖∗ + λs‖Ts‖1, [4]

where x is decomposed into a sparse part s and a low rank part l, recombined by x = l + s. 

The low rank part uses of the nuclear-norm ||l||*, while the sparse part uses of the l1-norm 

with a specific sparsifying transform T, as listed in Table 1 for L+S reconstructions. This is 

also an overcomplete description of the images to be reconstructed (49). The highly 

correlated temporal part is represented by the LR component, while the temporally varying 

part, usually sparse in some spatially transformed domain, is represented by the sparse part. 

In (50), a similar combination of low rank and wavelet sparsity was studied for T2 mapping.

Also following (30), and its supplemental material, the regularization parameters, λ or λl 

and λs, were adjusted in order to minimize ||x̂λ − xref||2 where x̂λ is the CS reconstruction 

and xref the fully-sampled data SENSE reconstruction. The CS reconstruction was 

performed using fast iterative shrinkage-thresholding algorithms (FISTA) (51) and its 

modification coupled with fast gradient projection (FGP) (52) as the proximal operator. For 

L+S problems, the same algorithm can be used for s and l vectors. A modified FISTA for 

nuclear-norm is in (53). All methods stopped when ||xi+1 − xi||2/||xi+1||2 < 10−5, or when i > 

400, being i the iteration index. The methods K-SVD and EXP stopped by the maximum 
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number of iterations, but their normalized update values, i.e. ||xi+1 − xi||2/||xi+1||2, were close 

to the stopping tolerance.

Exponential Models and Fitting Algorithms

The T1ρ relaxation is usually considered an exponential decay process. Typically, the model 

is described as:

x(t, n) = a(n) exp − t
τ(n) , [5]

where x(t,n) is one particular voxel at 3D position n over TSL time t, ā(n) is a complex-

valued magnetization, and τ(n) is the T1ρ relaxation time at position n. However, magnitude-

only models with positive real-valued a(n) and a constant component b, included due to 

residual noise, can also be considered, changing [5] to:

∣ x(t, n) ∣ = a(n) exp − t
τ(n) + b . [6]

The biexponential model can be written as:

∣ x(t, n) ∣ = a(n) f s(n) exp − t
τs(n) + f l(n) exp − t

τl(n) + b, [7]

Where 0 ≤ fs (n) ≤ 1 and fl (n) = 1 − fs (n) are the fractions of short and long components at 

position n, respectively. Also, τs(n) and τl(n) are the T1ρ relaxation times of the short and 

long components, respectively.

The biexponential T1ρ parameters estimation, or simply fitting process, was done using non-

linear least squares, using model [7], where the minimization was done using conjugate 

gradient Steihaug’s trust-region (CGSTR) algorithm (54). The CGSTR algorithm stopped at 

a maximum of 2000 iterations or normalized parameter update lower than 10−4. 

Biexponential estimation started with monoexponential fitting results, using model [6], 

classifying them as short (1–25ms) or long (25–300ms), depending on its estimated 

monoexponential T1ρ relaxation time. Similar to (12), F-test was utilized for detecting 

mono/biexponential voxels. We follow the F-test method from (55), voxels were assumed to 

have biexponential behavior if F-ratio>5.14 (p-value=0.05) related to monoexponential. This 

means the sum of the squares (SS) of the biexponential fitting process is reduced 

significantly compared to monoexponential fitting. Also, both fractions (fs (n) and fl (n)) 

need to be higher than 10% in order to be a valid biexponential in these experiments. Figure 

1(c) illustrates the process. The choice of 10% comes from tests with synthetic experiments 

(noisy). Together with F-test, it achieved the most correct detection of mono and 

biexponential voxels. More information about this is found in the online supporting material, 

and also within Supporting Figures S8 and S9, and Supporting Table S2.
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Spatial filtering, used as a denoising over the regions of interest (ROIs), prior to the 

parameter estimation is sometimes helpful (56) to improve the quality of the estimated 

parameters. In this paper, we compare the non-filtered results with standard linear filter of 

spatially averaging of a 3×3 square of voxels (57).

Analysis of the CS Reconstruction and Fitting

The performance of the CS methods was evaluated according to the quality of the 

reconstructed images and the quality of the estimated biexponential T1ρ parameters. Image 

reconstruction quality was assessed using normalized root mean squared error (nRMSE) 

against SENSE reconstruction of the fully-sampled data or the ground truth (for the 

synthetic phantom). The nRMSE is defined as:

nRMSE(x, xref) = ‖x − xref‖2/‖xref‖2 . [6]

The fitting process was applied only on each specific ROI. For in vivo knee cartilage, 5 ROIs 

were employed, following (13): medial femoral and tibial cartilages, lateral femoral and 

tibial cartilages and patellar cartilage. In those regions, the biexponential T1ρ parameters, 

including T1ρ times and fractions for short and long components, from CS reconstructions 

were compared against the parameters obtained from the reference reconstruction (and 

ground truth, when available).

The quality was assessed using normalized absolute deviation (NAD) of the parameters 

obtained in each voxel position n, given by:

NAD(n) =
∣ p(n) − pref (n) ∣
(p(n) + pref (n))/2 , [7]

where p(n) is one of the four biexponential parameters (fs (n), fl (n), τs (n), τl (n)). Voxels in 

which any of the fractions were lower than 10% were excluded from the evaluation. As 

observed here and in (13), small fractions had inaccurate estimated T1ρ parameters, even for 

fully-sampled images, leading to unrealistic NADs.

The errors in an ROI or sets of ROIs were quantized by the median of NADs (MNAD):

MNAD(ROI) = median
n ∈ ROI

∣ p(n) − pref (n) ∣
(p(n) + pref (n))/2 , [8]

An MNAD of 0.1 corresponds to a median deviation of 10% on the estimated parameters 

compared to the reference, and it is more robust than the mean to measure the errors due to 

the instability of the non-linear least squares. Box plots are used for complete statistics about 

the NADs (median shows central tendency and quartiles shows the variability of the NADs).
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Intra-subject repeatability is assessed using the coefficient of variation (CV), defined as 

CV=SD/M, being SD the standard deviation and M the mean of the median parameters of an 

ROI of two scans for the same volunteer. Bland-Altman plots were also used for selected 

methods.

RESULTS

Synthetic Phantom

The synthetic phantom results tell us how undersampling and noise affect the reconstruction 

quality and the biexponential fitting of the tested methods. This is only possible because the 

ground truth is available. It is important to state that fully-sampled SENSE reconstruction is 

not necessary the ground truth because it is corrupted by noise.

Figure 2(a) shows the reconstruction errors (nRMSE), and 2(c) shows the parameters error 

(MNAD) for the noiseless case when compared with the ground truth and 2(b) and 2(d) 

when comparing with the reference. When no specific biexponential parameter is 

mentioned, then all four parameters are being evaluated together. The Supporting Figure S1 

provides individual MNAD for each parameter (fs (n), fl (n), τs (n), τl (n)). From Figure 2, 

we can infer that fully-sampled SENSE (coil combination of the fully-sampled data) is 

reliable to be used as reference when no noise is present, since its error is negligible. 

Comparing figures 2(a) and 2(c), as well as 2(b) and 2(d), it is observable that best 

reconstruction does not necessarily translate into best biexponential parameters. The MNAD 

for biexponential fitting is primarily affected by size of the reconstruction error, measured by 

nRMSE. However, the temporal shape of the reconstruction error is also important. One 

particular regularization function can, for example, reduce voxel magnitude for small TSL 

more than for large TSL, which will, consequently, affect the estimated relaxation 

parameters. More details on this, with an example, are included in the online supplemental 

information of this paper, with Supporting Figure S12. Some differences are also because 

nRMSE assesses the entire image, while MNAD assesses only a region of interest. A 

comparison of nRMSE at the entire image and only at ROI’s is included in the online 

supplemental information of this paper, with Supporting Figures S10 and S11.

In this experiment, methods L+S SFD and STFD were the best regarding biexponential 

parameters (providing good reconstruction quality too). Figures 2(e)–(j) show some visual 

results of L+S SFD.

Figures 3(a) and 3(c) show the resulting reconstruction (nRMSE) and biexponential fitting 

errors (MNAD) for the synthetic noisy case when compared with ground truth, and 3(b) 

nRMSE and 3(d) MNAD when comparing with reference. Supporting Figure S2 details 

MNAD for each biexponential parameter. The results from Figure 3 show that fully-sampled 

SENSE reconstruction performed worse than some CS methods, such as L+S SFD, STFD, 

and EXP.

Comparing the results from Figure 2, with noiseless data, with the results from Figure 3, 

with noisy data, we can clearly observe that this level of noise can cause more errors in the 

fully-sampled reconstructed image (and its estimated relaxation parameters) than 
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undersampling alone, with AF up to 10, in any noiseless CS reconstruction (and its 

estimated relaxation parameters).

Following the same observation of the noiseless case, good reconstruction not necessarily 

translates into good biexponential fitting. A clear example is the results with KSVD 

(compare figures 3(a) and 3(c)).

A common alternative to reduce noise and artifacts, improving the fitting results, is filtering 

prior to fitting. Figure 4(a) shows the biexponential fitting error (MNAD) after 3×3 

averaging filter when compared with ground truth, and 4(b) when compared with reference. 

Supporting Figure S3 details the biexponential fitting error. Note that all methods have their 

MNAD reduced when filtering was utilized, including the reference. In general, the filtering 

reduces noise, but at the cost of reducing details of the biexponential maps (compare figures 

3(e)–(j) and figures 4(c)–(h)). Another negative effect of filtering is the mixture of 

information of two different regions, especially at the boundaries. In Figure 4(j), for 

example, the filtering process artificially created biexponential voxels on the boundaries of 

regions with different monoexponential T1ρ values. Nevertheless, methods such as L+S SFD 

and STFD performed better than the reference in terms of fitting results with 3×3 averaging 

filter in the synthetic experiments.

In Vivo Knee Cartilage Data

Our goal is to find suitable CS regularizations that perform well with in vivo knee cartilage. 

This region is challenging since it usually has small motion-related artifacts. Moreover, 

cartilage is curved and very thin. For this experiment, no ground truth is available. So, CS 

results were only compared with the reference (fully-sampled SENSE, possibly corrupted by 

noise and other artifacts).

Figure 5(a) shows the resulting reconstruction error (nRMSE) and 5(b) shows the resulting 

biexponential parameters error (MNAD). The detailed biexponential fitting errors are 

available in the Supporting Figure S4. Similar to the synthetic case, not all good CS 

reconstructions produced good biexponential parameters, KSVD is an example. Here, many 

CS methods had good results, with similar error levels, such as L+S SFD, STFD, L+S WAV, 

L+S, LR, PCA, and EXP. From synthetic noisy experiments, shown in figure 3(d), one can 

note that the best methods have similar MNAD when compared with the reference. Figures 

5(c)–(h) show some visual results for L+S SFD at AF=4.

Figure 6(b) shows the MNAD for biexponential when 3×3 averaging filter is utilized. 

Supporting Figure S5 details this error for each parameter. As observed in the synthetic 

experiments, all the biexponential errors were reduced with pre-filtering. The use of pre-

filtering gave some small advantage for L+S SFD, making it slightly better than the other 

methods: STFD, L+S WAV, L+S, LR, PCA, and EXP, which were all very good.

Figures 6(c)–(h) shows some visual results for L+S SFD at AF=4 when 3×3 averaging filter 

is used. We can clearly observe that biexponential maps look much less noisy than in figures 

5(c)–(h), and perhaps more useful for further medical evaluation. Visual comparison with 

the reference can be seen in Supporting Figure S7.
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Figure 7 shows box plots for some specific AFs (2, 6 and 10) for the biexponential fitting 

results when filtering is utilized. The box plot shows much more information about the 

statistics of the NADs than only the median. Nevertheless, these results show that 

distributions of the NADs are very similar for all the best CS methods. It gives us support to 

exclude methods that did not perform satisfactorily: KSVD, TFD1, TFD2, and TFD3.

Figure 8 shows some intra-subject repeatability by the coefficient of variation and Bland-

Altman plots for the method considered best so far, the L+S SFD, more details in Supporting 

Figure S6. Almost all CS methods achieved lower or similar CV than the reference, with 

some exceptions. This interesting result supports the use of CS for biexponential T1ρ 
mapping.

Overall Classification

In order to have an overall quantification of the results, we compute MNAD for all the 

results with synthetic noisy and in vivo datasets together, all compared to the reference. The 

first score, in Table 2A, is simply the MNAD of all biexponential errors (NADs), among 3 

noisy synthetic datasets and 7 in vivo datasets, when no-filter is utilized. The resulting 

number provides us a median (normalized) parameter error of a particular method for the 

desired AF. The second score, in Table 2B, the MNAD was obtained when 3×3 averaging 

pre-filter was utilized.

From Table 2A, one can notice that a median error below 20% (bold marked) is expected 

when using AFs up to 6 with the methods STFD and L+S SFD. According to Table 2B, one 

can expect an MNAD below 15% up to AF of 10 when 3×3 averaging pre-filter is utilized 

with the methods STFD, L+S SFD, and EXP. In the literature (58), 5% error is considered 

acceptable for reproducibility for the monoexponential case. There are no similar error 

bounds for biexponential models. According to our experiments, the best results are for L+S 

SFD, which achieved 5.6% error at AF=2.

DISCUSSION

Recommended CS Methods

For AF=2, almost all CS methods produced good results, with low MNAD (0.109~0.159 

without filtering, 0.056~0.120 with 3×3 averaging filter). As AF increases, fewer methods 

can provide low MNAD. We marked in bold letters, in tables 2A, 2B some suggested 

methods for each AF.

Our experimental results indicated that the use of 3×3 averaging filter provided the lowest 

MNAD for almost all CS methods. However, no matter if pre-filter is used or not, we 

observed that the CS methods STFD, L+S SFD, and EXP appeared among the best methods 

most of the time. This indicates that these three are the most suitable CS methods for 

accelerating biexponential T1ρ mapping of the cartilage in the knee joint. This result is 

consistent with our previews experiments with monoexponential T1ρ mapping in (30). On 

the other hand, methods L+S WAV, L+S, LR, PCA, and WAV also produced satisfactory 

results and could be considered.
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Performance of the Regularization Penalties for Biexponential Fitting

Biexponential fitting is much more difficult and unstable than monoexponential fitting. In 

this case, the temporal shape of the reconstructed signal is extremely important (see more 

about this in the online supporting material of this paper, in Supporting Figure S12). Thus, 

the choice of regularizing penalty is important, since it affects how the signal will look like. 

Since noise strongly perturbs the fitting process, imposing spatial smoothness through 

regularization and/or spatial filtering prior to fitting produce positive effects. In this sense, 

the simple temporal finite differences, such as TFD1, TFD2, TFD3 did not perform well and 

their results were unstable.

The KSVD disappointed in some sense, even though it provided excellent reconstruction 

results, this did not translate into appropriate biexponential mapping. PCA performed better 

in this sense.

The STFD and WAV are both spatiotemporal models, imposing spatiotemporal correlation. 

The STFD performed very well, standing among the best methods in many tests. On the 

other hand, WAV did perform moderately well.

The EXP, which utilize a fixed overcomplete exponential dictionary, produced good results. 

It does not generate spatial correlation, so it was clearly benefited from the use of spatial 

pre-filters.

Some interesting positive results came from the LR and L+S penalties (L+S WAV and L+S 

SFD included). They all provided considerable results, especially with in vivo knee cartilage 

data. Moreover, the combination of low rank plus sparsity in the spatial finite difference 

domain (L+S SFD) provided the best results. Supporting Table S1 shows general 

qualification regarding the performance of the regularization functions for different aspects 

of the reconstruction and fitting.

We clearly observed that pre-filtering reduced mapping error. In part, because it reduced 

noise in the reference and in CS reconstructions, resulting in stable fitting and low MNAD. 

Even though there are better denoising filters (56) than standard 3×3 averaging, it still does a 

good job of reducing the errors. The drawback of filtering is the reduction of fine details in 

the biexponential mapping and possibly mixture of different regions.

Comparison with Previous Studies

As far as we know, this is the first study on the use of CS to accelerate biexponential T1ρ 
mapping. In (13), reduced number of TSLs and GRAPPA (59) were tested for accelerated 

acquisition, up to AF=3. Most studies on accelerating general biexponential mapping apply 

to T2 relaxation, where optimal or reduced time samples is searched (60,61), but no precise 

error per AF is given.

CS has been successfully utilized for monoexponential T1ρ mapping. In (29) a combination 

of CS and autocalibration reconstruction (ARC) was utilized for knee cartilage T1ρ 
monoexponential mapping errors close to 5%, or lower, for AFs around 2. In (25), three 

specific CS-like methods: integrating PCA and dictionary learning (PANDA), focal 
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underdetermined system solver with PCA (k-t FOCUSS-PCA) and model-based dictionary 

learning (MBDL) were compared to accelerate brain and spine T1ρ mapping up to AF of 4. 

T1ρ relaxation errors between 8.9% and 12% were reported. In (26), a combined 

reconstruction with locally adaptive iterative support detection (k-t LAISD) and joint image 

reconstruction and sensitivity estimation in SENSE (JSENSE) method was proposed for 

knee cartilage T1ρ mapping, with acceleration up to 3 and 3.5. In (27) blind compressed 

sensing (BCS) was applied to monoexponential T2 and T1ρ mapping of the brain.

Here, we provide a broad evaluation, using AF from 2, up to 10, comparing twelve CS 

methods, with and without pre-filtering, on 6 synthetic datasets and 7 in vivo human knee 

cartilage datasets for biexponential T1ρ mapping. These results complement our previous 

results in (30) for monoexponential T1ρ mapping. In order to keep all evaluations completely 

unbiased, we are not proposing or claiming any method of our own. All penalties appeared 

elsewhere in the literature for different applications, in the exact or similar form used here. 

The important novelty here is the evaluation of their performance for biexponential T1ρ 
mapping.

Limitations of This Study and Future Directions

In our tests, the regularization parameters were selected to minimize l2-norm of the 

difference between CS and the fully-sampled SENSE, essentially minimizing nRMSE. 

However, the ideal parameter would be the one that makes the reconstruction closer to the 

ground truth (unknown in practical cases). Therefore, how to choose the regularization 

parameter is still an open question. See more details on the criterion and procedure to choose 

the regularization parameters in the online supplemental information of (30).

In this study, we did not evaluate prospective undersampling. We hope to address this in the 

future, together with an automatic choice of the regularization parameter, when a fully 

sampled reference is not available.

It is also known that the ratio between short and long component/fraction affects the stability 

of the biexponential fitting (13,45). In the synthetic phantom study, the ratios are randomly 

dispersed by at most 10% around a 50/50 ratio and are free in real data sets. Performance of 

the methods with different components/fractions, especially for small fractions, and the 

stability of biexponential model will be addressed in future work.

The number of TSLs and their distribution are also relevant. Our choice was based on 

previous study (13) showing the best tradeoff between T1ρ quality and scan time, but 

different distributions are possible. The use of different AFs in each TSL should also be 

investigated in the future.

Model-based reconstructions are promising approaches for monoexponential relaxation 

(62,63). It is not clear yet if they can be successful with biexponential models due to the 

instability and non-unicity of this inverse problem.
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CONCLUSION

This study shows that CS can accelerate biexponential T1ρ mapping of cartilage in the knee 

joint. Twelve different CS methods were compared, being the most indicated methods: L+S 

SFD, STFD, and EXP. In addition, the use of pre-filtering prior to T1ρ fitting is 

recommended at the expense of spatial smoothing. These best CS methods performed 

satisfactorily for AFs up to 10, with error below 15%. The use of CS is a good alternative to 

make clinical studies with the biexponential model a viable approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Synthetic phantom utilized in the experiments, composed of three areas with different 

T1ρ time ranges. The T1ρ relaxation times were randomly selected from the ranges 1–25ms, 

30–50ms, and 50–110ms, intersections generate a biexponential signal. (b) MRI acquisition 

model used for CS reconstructions, including coil sensitivities C, Fourier transform F, and 

k-space undersampling pattern S using Poisson disk with fully-sampled central area, also 

additive white Gaussian noise η̄. (c) Diagram of the process, including reconstruction, 

fitting, mono/biexponential detection, reconstruction and fitting error analysis and intra-

subject analysis.
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Figure 2. 
Results for synthetic phantom with no noise in the acquisition, including (a) reconstruction 

error (nRMSE) and (c) biexponential parameters error (MNAD) compared with ground 

truth, (b) reconstruction error (nRMSE) and (d) biexponential parameters error (MNAD) 

compared with reference for different acceleration factors (AF). Representative image and 

maps for L+S SFD using AF=6 are shown in (e)–(j).
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Figure 3. 
Results for synthetic phantom with 15dB of noise in the acquisition, including (a) 

reconstruction error (nRMSE) and (c) biexponential parameters error (MNAD) compared 

with ground truth, (b) reconstruction error (nRMSE) and (d) biexponential parameters error 

(MNAD) compared with reference, for different acceleration factors. Representative image 

and maps for L+S SFD using AF=6 are shown in (e)–(j).
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Figure 4. 
Results for synthetic phantom with 15dB of noise in the acquisition, including (a) 

parameters error (MNAD) compared with ground and (b) compared with the reference, 

when 3×3 averaging filter is utilized, for different acceleration factors. Representative image 

and maps for L+S SFD using AF=6 are shown in (c)–(h).
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Figure 5. 
Results for human knee cartilage, including (a) reconstruction error (nRMSE), and (b) 

parameters error (MNAD) compared with reference (SENSE), for different acceleration 

factors. Representative image and maps for L+S SFD using AF=4 are shown in (c)–(h).
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Figure 6. 
Results for human knee cartilage, (a) reconstruction error (nRMSE), and (b) parameters 

error (MNAD) compared with reference (SENSE), for different acceleration factors, when 

3×3 averaging filter is utilized. Representative image and maps for L+S SFD using AF=4 are 

shown in (c)–(h).

Zibetti et al. Page 22

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Box plot of the NAD for all human knee cartilage datasets with 3×3 averaging filter for 

AF=2 (a) fraction-short, (b) fraction-long, (c) T1ρ-short, (d) T1ρ-long, (e)–(h) AF=6 and (i)–

(l) AF=10. The box plot shows more information about the NADs than only the MNAD. The 

horizontal red bars represent the median of NAD (or NMAD), the blue box represent the 

central interquartile, where MAD values from percentile 25% to 75% are placed. The dashed 

dark lines represent the range of the data.
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Figure 8. 
Coefficient of variation (CV), shown in percentage, of the different methods and 

acceleration factors with 3×3 averaging filter for (a) fractions, (b) times, considering two 

repetitions with each of the three volunteers. Bland-Altman plots for the L+S SFD method 

with 3×3 averaging filter for (c) fraction-short, (d) fraction-long, (e) T1ρ-short, (f) T1ρ-long 

considered the best in the previous experiment.

Zibetti et al. Page 24

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zibetti et al. Page 25

Ta
b

le
 1

D
if

fe
re

nt
 c

om
pr

es
se

d 
se

ns
in

g 
m

et
ho

ds
, t

he
ir

 c
or

re
sp

on
di

ng
 e

qu
at

io
n 

pr
ob

le
m

 a
nd

 m
in

im
iz

at
io

n 
al

go
ri

th
m

, a
 b

ri
ef

 d
es

cr
ip

tio
n,

 a
ve

ra
ge

 n
um

be
r 

of
 

ite
ra

tio
ns

 to
 c

on
ve

rg
e 

an
d 

th
e 

av
er

ag
e 

pr
oc

es
si

ng
 ti

m
e 

to
 c

on
ve

rg
e.

C
S 

M
et

ho
d

E
qu

at
io

n
M

in
im

iz
at

io
n 

al
go

ri
th

m
T

ra
ns

fo
rm

/D
ic

ti
on

ar
y

A
vg

. i
te

ra
ti

on
s

A
vg

. T
im

e

T
FD

 1
[1

]
FI

ST
A

 -
FG

P
Te

m
po

ra
l f

in
ite

 d
if

fe
re

nc
e 

of
 o

rd
er

 1
40

51
4 

se
c

T
FD

2
[1

]
FI

ST
A

 -
FG

P
Te

m
po

ra
l f

in
ite

 d
if

fe
re

nc
e 

of
 o

rd
er

 2
60

68
4 

se
c

T
FD

3
[1

]
FI

ST
A

 -
FG

P
Te

m
po

ra
l f

in
ite

 d
if

fe
re

nc
e 

of
 o

rd
er

 3
80

69
1s

ec

ST
FD

[1
]

FI
ST

A
-F

G
P

Sp
at

ia
l a

nd
 te

m
po

ra
l f

in
ite

 d
if

fe
re

nc
e,

 s
pa

tia
l o

rd
er

 1
 a

nd
 te

m
po

ra
l o

rd
er

 2
12

0
12

98
 s

ec

W
A

V
[2

]
FI

ST
A

3D
 W

av
el

et
 tr

an
sf

or
m

 (
2D

+
tim

e)
 D

au
be

ch
ie

s 
4,

 w
ith

 4
 le

ve
ls

 o
f 

de
co

m
po

si
tio

n.
43

10
05

 s
ec

PC
A

[2
]

FI
ST

A
U

ni
ta

ry
 tr

an
sf

or
m

 f
ro

m
 te

m
po

ra
l P

C
A

 o
f 

fu
lly

-s
am

pl
ed

 d
at

a
43

12
1 

se
c

K
SV

D
[2

]
FI

ST
A

O
ve

rc
om

pl
et

e 
te

m
po

ra
l d

ic
tio

na
ry

 c
om

pu
te

d 
fr

om
 f

ul
ly

-s
am

pl
ed

 d
at

a 
us

in
g 

K
SV

D
40

0
24

9 
se

c

E
X

P
[2

]
FI

ST
A

O
ve

rc
om

pl
et

e 
te

m
po

ra
l d

ic
tio

na
ry

 o
f 

ex
po

ne
nt

ia
ls

 w
ith

 1
00

 r
el

ax
at

io
n 

tim
es

 b
et

w
ee

n 
1 

an
d 

30
0 

m
s

40
0

12
90

 s
ec

L
R

[3
]

M
od

if
ie

d 
FI

ST
A

A
pp

lie
d 

to
 a

 N
yN

z 
×

 N
t m

at
ri

x 
fo

rm
ed

 w
ith

 th
e 

re
sh

ap
ed

 N
yN

zN
t ×

 1
 v

ec
to

r.
38

19
4 

se
c

L
+

S
[4

]
M

od
if

ie
d 

FI
ST

A
Sa

m
e 

as
 L

R
, p

lu
s 

id
en

tit
y 

fo
r 

l 1
-n

or
m

80
21

8 
se

c

L
+

S 
SF

D
[4

]
M

od
if

ie
d 

FI
ST

A
-F

G
P

Sa
m

e 
as

 L
R

, p
lu

s 
sp

at
ia

l f
in

ite
 d

if
fe

re
nc

e 
fo

r 
l 1

-n
or

m
12

0
83

7 
se

c

L
+

S 
W

A
V

[4
]

M
od

if
ie

d 
FI

ST
A

Sa
m

e 
as

 L
R

, p
lu

s 
2D

 s
pa

tia
l w

av
el

et
 f

or
 l 1

-n
or

m
, a

ls
o 

D
au

be
ch

ie
s 

4,
 w

ith
 4

 le
ve

ls
.

55
10

52
 s

ec

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zibetti et al. Page 26

Ta
b

le
 2

A
) 

R
an

ki
ng

 th
e 

m
et

ho
ds

 u
si

ng
 it

s 
M

N
A

D
 u

p 
to

 c
er

ta
in

 a
cc

el
er

at
io

n 
fa

ct
or

, f
or

 s
yn

th
et

ic
 a

nd
 in

 v
iv

o 
da

ta
se

ts
. V

al
ue

s 
lo

w
er

 th
an

 0
.2

 (
er

ro
r 

of
 2

0%
) 

ar
e 

bo
ld

-m
ar

ke
d.

 B
) 

R
an

ki
ng

 th
e 

m
et

ho
ds

 b
y 

its
 M

N
A

D
, w

he
n 

3×
3 

av
er

ag
in

g 
pr

e-
fi

lte
r 

is
 u

til
iz

ed
, u

p 
to

 c
er

ta
in

 a
cc

el
er

at
io

n 
fa

ct
or

, f
or

 s
yn

th
et

ic
 a

nd
 in

 v
iv

o 
da

ta
se

ts
. V

al
ue

s 
lo

w
er

 th
an

 0
.1

5 
(e

rr
or

 o
f 

15
%

) 
ar

e 
bo

ld
-m

ar
ke

d.

A
. M

ed
ia

n 
of

 n
or

m
al

iz
ed

 a
bs

ol
ut

e 
de

vi
at

io
n 

w
it

h 
no

 p
re

-f
ilt

er
s

A
F

 2
A

F
4

A
F

 6
A

F
8

A
F

 1
0

L
+S

 S
F

D
0.

10
9

ST
F

D
0.

16
5

ST
F

D
0.

19
0

L
+

S 
SF

D
0.

20
7

L
+

S 
SF

D
0.

21
6

ST
F

D
0.

11
4

L
+S

 S
F

D
0.

16
6

L
+S

 S
F

D
0.

19
5

ST
FD

0.
20

8
ST

FD
0.

22
2

W
A

V
0.

11
8

E
X

P
0.

17
4

E
X

P
0.

20
8

L
+

S 
W

A
V

0.
23

1
L

+
S 

W
A

V
0.

23
9

E
X

P
0.

11
9

W
A

V
0.

18
8

L
+

S 
W

A
V

0.
22

2
E

X
P

0.
23

4
L

R
0.

24
1

L
R

0.
13

1
L

+S
 W

A
V

0.
18

9
L

R
0.

22
6

L
R

0.
23

6
L

+
S

0.
25

0

L
+S

 W
A

V
0.

13
2

L
+S

0.
19

2
L

+
S

0.
22

8
L

+
S

0.
24

1
E

X
P

0.
25

1

L
+S

0.
13

3
L

R
0.

19
6

W
A

V
0.

23
1

W
A

V
0.

25
9

W
A

V
0.

28
2

P
C

A
0.

13
4

PC
A

0.
21

1
PC

A
0.

24
6

PC
A

0.
26

7
PC

A
0.

28
6

T
F

D
1

0.
14

1
T

FD
1

0.
23

6
T

FD
2

0.
30

3
T

FD
2

0.
32

9
K

SV
D

0.
35

2

T
F

D
2

0.
14

3
T

FD
2

0.
26

2
T

FD
1

0.
31

5
K

SV
D

0.
34

2
T

FD
2

0.
37

2

T
F

D
3

0.
15

5
T

FD
3

0.
29

4
K

SV
D

0.
31

6
T

FD
1

0.
36

4
T

FD
3

0.
40

3

K
SV

D
0.

15
9

K
SV

D
0.

29
5

T
FD

3
0.

37
0

T
FD

3
0.

42
8

T
FD

1
0.

42
8

B
. M

ed
ia

n 
of

 n
or

m
al

iz
ed

 a
bs

ol
ut

e 
de

vi
at

io
n 

w
he

n 
3×

3 
av

er
ag

in
g 

pr
e-

fi
lt

er
 is

 u
ti

liz
ed

A
F

 2
A

F
 4

A
F

 6
A

F
 8

A
F

 1
0

L
+S

 S
F

D
0.

05
6

L
+S

 S
F

D
0.

09
8

L
+S

 S
F

D
0.

11
4

L
+S

 S
F

D
0.

12
5

L
+S

 S
F

D
0.

13
1

W
A

V
0.

06
2

ST
F

D
0.

10
3

ST
F

D
0.

12
3

ST
F

D
0.

13
6

ST
F

D
0.

14
7

ST
F

D
0.

06
5

E
X

P
0.

11
1

E
X

P
0.

12
7

E
X

P
0.

13
7

E
X

P
0.

14
8

P
C

A
0.

07
8

W
A

V
0.

11
3

W
A

V
0.

14
5

L
+

S 
W

A
V

0.
16

6
L

+
S 

W
A

V
0.

17
2

E
X

P
0.

07
9

L
+S

 W
A

V
0.

12
8

PC
A

0.
15

7
W

A
V

0.
17

1
L

R
0.

17
3

L
R

0.
08

8
P

C
A

0.
12

9
L

+
S 

W
A

V
0.

15
9

L
R

0.
17

2
L

+
S

0.
18

4

L
+S

 W
A

V
0.

09
0

L
+S

0.
13

0
L

R
0.

16
0

PC
A

0.
17

6
W

A
V

0.
18

8

L
+S

0.
09

3
L

R
0.

14
0

L
+

S
0.

16
5

L
+

S
0.

17
7

PC
A

0.
19

8

T
F

D
1

0.
09

4
T

FD
1

0.
17

9
T

FD
2

0.
24

1
T

FD
2

0.
26

0
K

SV
D

0.
30

5

T
F

D
2

0.
09

6
T

FD
2

0.
21

5
T

FD
1

0.
26

1
K

SV
D

0.
29

5
T

FD
2

0.
31

7

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zibetti et al. Page 27

T
F

D
3

0.
11

1
K

SV
D

0.
25

6
K

SV
D

0.
26

8
T

FD
1

0.
31

7
T

FD
3

0.
34

0

K
SV

D
0.

12
0

T
FD

3
0.

27
8

T
FD

3
0.

32
8

T
FD

3
0.

39
3

T
FD

1
0.

40
9

Magn Reson Med. Author manuscript; available in PMC 2020 February 01.


	Abstract
	INTRODUCTION
	METHODS
	MRI Data Acquisition and Standard Reconstruction
	Synthetic Phantom
	Retrospective Undersampling
	CS Reconstruction Algorithms
	Exponential Models and Fitting Algorithms
	Analysis of the CS Reconstruction and Fitting

	RESULTS
	Synthetic Phantom
	In Vivo Knee Cartilage Data
	Overall Classification

	DISCUSSION
	Recommended CS Methods
	Performance of the Regularization Penalties for Biexponential Fitting
	Comparison with Previous Studies
	Limitations of This Study and Future Directions

	CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	Table 2

