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Abstract

While actin was discovered in the nucleus over 50 years ago, research lagged for decades due to 

strong skepticism. The revitalization of research into nuclear actin occurred after it was found that 

cellular stresses induce the nuclear localization and alter the structure of actin. These studies 

provided the first hints that actin has a nuclear function. Subsequently, it was established that the 

nuclear import and export of actin is highly regulated. While the structures of nuclear actin remain 

unclear, it can function as monomers, polymers, and even rods. Furthermore, even within a given 

structure, distinct pools of nuclear actin that can be differentially labeled have been identified. 

Numerous mechanistic studies have uncovered an array of functions for nuclear actin. It regulates 

the activity of RNA polymerases, as well as specific transcription factors. Actin also modulates the 

activity of several chromatin remodeling complexes and histone deacetylases, to ultimately 

impinge on transcriptional programing and DNA damage repair. Further, nuclear actin mediates 

chromatin movement and organization. It has roles in meiosis and mitosis, and these functions 

may be functionally conserved from ancient bacterial actin homologs. The structure and integrity 

of the nuclear envelope and sub-nuclear compartments are also regulated by nuclear actin. 

Furthermore, nuclear actin contributes to human diseases like cancer, neurodegeneration, and 

myopathies. Here, we explore the early discovery of actin in the nucleus and discuss the forms and 

functions of nuclear actin in both normal and disease contexts
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INTRODUCTION

Actin is one of the most abundant and highly conserved proteins in eukaryotes (Dominguez 

and Holmes, 2011; Pollard, 2017). Actin was initially discovered in rabbit skeletal muscle 

(Straub, 1943) and is required for muscle contraction (Huxley, 1969). Later studies 

determined that actin is also an essential component of nonmuscle cells, where it contributes 

to cell shape, motility, and cytokinesis (Pollard, 2017). We now know of three actin isoforms 

in vertebrates: skeletal or α-actin, and the nonmuscle β- and γ-actins (Dominguez and 

Holmes, 2011). Actin monomers, also known as globular-actin (G-actin), can polymerize 
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into filamentous actin (F-actin) (Dominguez and Holmes, 2011). This process is tightly 

regulated by a vast number of actin binding proteins (Pollard, 2016). Thus, actin 

polymerization is highly dynamic and this dynamic nature is critical for cellular functions. 

Because of actin’s abundance, conservation, and essential functions, actin has been 

extensively studied. While research has primarily focused on understanding the cytoplasmic 

and cytoskeletal activities of actin, it also localizes and functions within the nucleus (de 

Lanerolle, 2012; Viita and Vartiainen, 2017; Venit et al., 2018). While early studies reported 

the presence of actin in the nucleus, this research was not well accepted. Thus, mechanistic 

study of nuclear actin has lagged behind, as we gained a rich understanding of cytoplasmic 

actin. Here we explore the discovery of actin in the nucleus, the mechanisms that control 

actin localization, the structures of nuclear actin, nuclear functions of actin, and how nuclear 

actin contributes to a number of disease states. We aim to present all of the historical 

findings on nuclear actin and put them in context with more recent research to give insight 

into why actin localizes to the nucleus.

EARLY OBSERVATIONS OF ACTIN IN THE NUCLEUS

Coinciding with the finding that actin is not restricted to muscle cells (Ishikawa et al., 1969), 

actin was reported to be in the nucleus (Ohnishi et al., 1963; Ishikawa et al., 1969; Jockusch 

et al., 1971). The original studies were largely observational. The first ones described actin 

in the nuclear subcellular fraction of calf thymus cells (Ohnishi et al., 1963; Ohnishi et al., 

1964). Soon after, nuclear actin was described by Nancy Lane (1969), who initially 

demonstrated using electron microscopy that fibrillar bodies form in the nucleoplasm of 

Triturus viridescens (newt) oocytes in response to actinomycin D treatment, which inhibits 

global transcription. These fibrillar bodies, or nuclear bundles (subsequently referred to in 

the literature as rods), were composed of many individual 5–7 nm filaments – similar in 

diameter to that of F-actin – suggesting that these rods may be composed of actin (Huxley, 

1957; Lane, 1969). Nuclear rods were later observed in chicken sympathetic neurons 

(Masurovsky et al., 1970), rabbit hypothalamus neurons (Clattenburg et al., 1972), mouse 

muscle (Miranda and Godman, 1973), and slime mold (Ryser, 1970; Lestourgeon et al., 

1975). Thus, these historic studies reveal that nuclear actin is observed across many cell 

types and species.

While nuclear rods were well characterized by electron microscopy, their molecular 

composition remained unknown. Subsequent electron microscopy and subcellular 

fractionation studies indicated the rods were indeed composed of actin (Jockusch et al., 

1971; Somosy et al., 1976; Fukui, 1978). Furthermore, nuclear actin rods were observed to 

form in response to cellular stress. Indeed, dimethyl sulfoxide (DMSO) treatment in 

Dictyostelium, protists, and cultured mammalian cells (Fukui, 1978; Fukui and Katsumaru, 

1979, 1980; Osborn and Weber, 1980; Sanger et al., 1980a) results in nuclear actin rods. 

Nuclear rods were also observed in cultured cells in response to the ionophore A23187 and 

magnesium treatment (Osborn and Weber, 1980), heat shock (Welch and Suhan, 1985; Iida 

et al., 1986), and ATP depletion (Pendleton et al., 2003). Further studies in Dictyostelium 
demonstrated that these rods formed quickly in response to cellular stress (Fukui and 

Katsumaru, 1980). Interestingly, these rods were resistant to high concentrations of the actin 

depolymerizing agent cytochalasin B; this resistance was proposed to be due to interactions 
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with other proteins (Fukui and Katsumaru, 1980). While rods were repeatedly observed 

under treated conditions they were rarely observed in untreated cells (Lane, 1969). It 

remains to be determined whether nuclear actin rod formation is an artifact of treatment to 

various cellular stressors, or a coordinated response to them. Because of the prevalence of 

nuclear actin rods across many systems and cell types, and the recent observation that rods 

form in mammalian cells in response to physiologically-relevant stimuli (Plessner et al., 

2015), we favor the latter hypothesis.

Soon after the discovery of stress-induced nuclear actin rods, actin was observed in the 

nucleus under basal conditions by subcellular fractionation in many different cell types 

including: isolated nuclei of Physarum polycephalum (P. polycephalum) (Jockusch et al., 

1974), extracted rat liver nuclei (Douvas et al., 1975), fractionated nuclei of Dictyostelium 
amoebae (Pederson, 1977), and hand-isolated nuclei of Xenopus laevis (X. laevis) oocytes 

(Clark and Merriam, 1977). At the time, these findings were met with criticism (Goldstein et 

al., 1977) and attributed to contamination from actin-rich cytoplasmic fractions. However, 

recent studies, discussed in the subsequent sections, validate these historical findings and 

demonstrate that actin, indeed, localizes and functions within the nucleus across organisms 

and cell types.

NUCLEOCYTOPLASMIC TRANSPORT OF ACTIN

For a long time, it was argued whether an active or passive process controlled the 

localization of actin to the nucleus. For example, one study contended that the nuclear 

envelope was not a barrier to actin due to equilibrium of the protein between the cytoplasm 

and nucleus (Goldstein et al., 1977). Meanwhile, it was observed that the formation of 

nuclear actin rods in DMSO-treated PtK2 cells coincided with disappearance of cytoplasmic 

stress fibers, suggesting that actin translocated to the nucleus (Sanger et al., 1980a). It was 

later found that heat shock led to both the translocation of actin to the nucleus and rod 

formation in a number of mammalian cell lines (Iida et al., 1986). Together, these findings 

suggested that actin indeed localizes to the nucleus in response to cellular stress, and the 

majority hypothesized via an active mechanism.

Subsequently, numerous studies began to uncover the active mechanisms controlling the 

nuclear localization of actin. Protein sequence analysis revealed that actin does not contain a 

nuclear localization sequence (NLS) (Vandekerckhove and Weber, 1978; Iida et al., 1992). 

However, the actin binding protein Cofilin contains a classical bipartite SV40-type NLS that 

is conserved among higher eukaryotes (Nishida et al., 1984; Matsuzaki et al., 1988; 

Gunsalus et al., 1995; Munsie et al., 2012). Cofilin is best known for its activity as an actin 

depolymerizing factor (Bamburg, 1999), where it cooperatively binds regions of F-actin, 

alters filament rotation, and destabilizes the filament (Hayden et al., 1993; McGough et al., 

1997). However, Cofilin also binds G-actin at a 1:1 stoichiometry (Matsuzaki et al., 1988). 

Additionally, Cofilin, like actin, localizes to the nucleus upon heat shock or DMSO 

treatment, is a component of nuclear actin rods, and its NLS is required for nuclear actin rod 

formation (Nishida et al., 1987; Iida et al., 1992; Abe et al., 1993). Further, anti-Cofilin 

antibodies block the nuclear localization of actin in mast cells (Pendleton et al., 2003). 

Considering that Cofilin’s NLS is located on the opposite side compared to its actin-binding 
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site and that actin lacks a putative NLS, it was hypothesized that actin localization to the 

nucleus was dependent on Cofilin (Lappalainen et al., 1997; Pendleton et al., 2003).

More recent studies uncovered that, indeed, actin/Cofilin complexes are transported to the 

nucleus by a particular import factor (Fig. 1). Fluorescent Recovery After Photobleaching 

(FRAP) studies and an RNAi screen of a subset of import factors identified Importin 9 as the 

nuclear importer of actin (Dopie et al., 2012). Importin 9 is a member of the Importin β 
superfamily, and is highly conserved among higher eukaryotes (Jakel et al., 2002). The 

Saccharomyces cerevisiae (S. cerevisiae) homolog of Importin 9, Karyopherin 114, is non-

essential (Morehouse et al., 1999; Pemberton et al., 1999). Considering this finding, and that 

the Cofilin NLS is not conserved in yeast (Iida et al., 1993), it is likely that the nuclear 

import of yeast actin is mediated by another pathway. Alternatively, transgenic disruption of 

importin 9 in mouse (Blake et al., 2017) and Drosophila (ranbp9) is homozygous lethal 

(Kelpsch, Jaime, and Tootle, unpublished observation). These findings suggest that nuclear 

actin is essential for survival. Together, these data establish Importin 9 as the factor 

mediating the nuclear localization of actin/Cofilin complexes in higher eukaryotes and this 

translocation is critical for development. However, it remains unclear what other factors are 

translocated to the nucleus by this importin. Recent data has shown that Importin 9 is 

sufficient, but not required, for the nuclear localization of the core histones and c-Jun 

(Muhlhausser et al., 2001; Waldmann et al., 2007).

While Importin 9 is responsible for the translocation of actin into the nucleus (Fig. 1), the 

mechanism controlling the nuclear export of actin has faced controversy over the years. Two 

functional nuclear export sequences (NESs) have been identified in mammalian α-, β-, and 

γ-actin as well as S. cerevisiae actin (Wada et al., 1998). Interesting, treatment with 

Leptomycin B, a specific inhibitor of CRM1 (also known as Exportin 1), enhanced nuclear 

actin rod formation in response to heat shock in mammalian cells, suggesting that actin is 

exported by CRM1 (Wada et al., 1998). It should be noted that CRM1 is responsible for the 

cytoplasmic translocation of many different factors, including ribosomal RNAs – thus, 

Leptomycin B treatment is also a cellular stressor (Hutten and Kehlenbach, 2007). While 

nuclear actin rod formation following CRM1 inhibition may indicate CRM1 plays a direct 

role in the nuclear export of actin, this does not eliminate the possibility that the rod 

formation was a result of Leptomycin B-induced cellular stress. Supporting this idea, several 

studies have argued against CRM1-mediated export of nuclear actin (Stuven et al., 2003; 

Dopie et al., 2012). Indeed, it was found that Exportin 6, a member of the Importin β 
superfamily, mediates actin’s translocation into the cytoplasm (Stuven et al., 2003) (Fig. 1). 

Interestingly, Exportin 6 is not capable of binding actin alone; the two proteins only interact 

in the presence of Profilin (Stuven et al., 2003). Thus, actin is exported from the nucleus in a 

complex with Profilin. Profilin is a well-studied actin binding protein that canonically binds 

G-actin at a 1:1 stoichiometry, accelerates the exchange of ADP for ATP on actin, and 

ultimately promotes F-actin polymerization (Witke, 2004). Exportin 6 is highly conserved 

among higher eukaryotes and has very few cargos – actin/Profilin complexes, and the actin 

binding proteins Diaphanous 1, VASP (vasodilator-stimulated phosphoprotein), and Mena 

(mammalian enabled) (Stuven et al., 2003). However, no Exportin 6 ortholog has been 

identified in S. cerevisiae, suggesting that the cytoplasmic translocation of actin depends on 

a different mechanism in yeast (Stuven et al., 2003). Together these data support the model 
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that in higher eukaryotes, actin/Profilin complexes are exported from the nucleus via 

Exportin 6.

Through decades of research, the mechanisms regulating the transport of actin in and out of 

the nucleus are now well established (Fig. 1). Specifically, Importin 9 is responsible for the 

nuclear localization of actin/Cofilin complexes (Dopie et al., 2012), while Exportin 6 

mediates the translocation of actin/Profilin complexes to the cytoplasm (Stuven et al., 2003). 

These results are striking, considering the critical roles of Cofilin and Profilin in F-actin 

dynamics, and suggests that actin polymerization and depolymerization may also occur in 

the nucleus. Furthermore, the highly regulated nuclear localization of actin strongly suggests 

that there is some purpose for actin within the nucleus. However, the presence of actin 

regulators in the nucleus also raises the questions of what the structures of nuclear actin are 

and whether actin binding proteins impact the nuclear functions of actin.

FORMS OF NUCLEAR ACTIN

In the cytoplasm, actin is highly dynamic – actin monomers quickly polymerize into 

filaments and filaments disassemble into actin monomers (Dominguez and Holmes, 2011). 

These filaments are beautifully labelled by fluorescent phalloidin, can be arranged into 

higher order structures, and, ultimately, contribute to cellular shape and mobility, among 

many other cytoplasmic functions (Dominguez and Holmes, 2011; Pollard, 2017). The 

polymerization and organization of actin is tightly regulated by actin binding proteins 

(Pollard, 2016). While numerous actin binding proteins localize to the nucleus, the structure 

and regulation of nuclear actin remains poorly understood.

Nuclear actin exists as monomers, polymers, and rods (Fig. 1). Monomers are canonical G-

actin. However, whether nuclear G-actin is post-translationally modified and the identity of 

its binding partners remain largely unknown. Conversely, as explained throughout this 

section, filamentous nuclear actin is largely distinct from cytoplasmic F-actin and many 

terms have been used to describe these nuclear structures that contain actin, including 

fibrillar bodies (Lane, 1969), nuclear bundles (Lane, 1969), paracrystals (Osborn and Weber, 

1980), filaments (Welch and Suhan, 1985), bars (Dopie et al., 2012), and rods (Sanger et al., 

1980b). While the literature lacks consensus, we distinguish two major forms of 

polymerized nuclear actin: polymers and rods. Nuclear actin polymers are oligomers of actin 

that do not have an obvious filament structure, while nuclear actin rods are larger polymers 

of actin that resemble either cytoplasmic actin filaments or bundles (Fig. 1).

While dynamic formation of nuclear actin rods was observed in response to various cellular 

stressors (Fukui, 1978; Fukui and Katsumaru, 1979, 1980; Osborn and Weber, 1980; Welch 

and Suhan, 1985; Iida et al., 1986; Pendleton et al., 2003), nuclear phalloidin staining was 

largely absent from the literature (Nishida et al., 1987). Thus, nuclear actin rods were 

considered to be distinct from the easily phalloidin stainable F-actin observed in the 

cytoplasm. This difference could be for several reasons. Perhaps the structure of nuclear 

actin rods is distinct enough from cytoplasmic F-actin that phalloidin cannot bind (Bettinger 

et al., 2004). Alternatively, many nuclear actin rods are decorated with Cofilin (Bamburg et 

al., 2010) and this interaction is sufficient to occlude phalloidin binding (Nishida et al., 
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1987; McGough et al., 1997). While several studies have demonstrated phalloidin stainable 

nuclear actin rods (Nishida et al., 1987; Baarlink et al., 2013), this weak nuclear phalloidin 

signal is only observed with high exposure of cytoplasmic phalloidin. This finding supports 

the concept that the structure of these filaments is distinct from that of cytoplasmic F-actin 

(Baarlink et al., 2013; Belin et al., 2015; Plessner et al., 2015; Baarlink et al., 2017).

One of the commonly used tools to study nuclear actin are anti-actin antibodies. 

Interestingly, the use of different antibodies to label nuclear actin suggests that there are 

distinct pools of nuclear actin (Gonsior et al., 1999; Schoenenberger et al., 2005; Wineland 

et al., 2018). Specifically, the 2G2 anti-actin antibody, which was raised against actin/

Profilin complexes, reveals nuclear structures in myogenic cells and X. laevis oocytes 

(Gonsior et al., 1999). Alternatively, the 1C7 anti-actin antibody, which recognizes a 

different epitope on actin from the 2G2 antibody, labels a distinct nuclear actin pool from the 

2G2 antibody in mammalian cell lines (Schoenenberger et al., 2005). Further, neither of 

these antibodies label canonical F-actin in its native state (Gonsior et al., 1999; 

Schoenenberger et al., 2005), suggesting these antibodies either label G-actin or actin 

polymers. One tool to specifically label actin monomers is fluorescently-conjugated DNase I 

(Hitchcock, 1980). DNase I staining is ubiquitous throughout Drosophila oogenesis, 

demonstrating that every nucleus features nuclear actin monomers (Wineland et al., 2018). 

In this system, another antibody, C4 anti-actin, which has been used to visualize nuclear 

actin in several other systems (Parfenov et al., 1995; Gedge et al., 2005; Lenart et al., 2005; 

Maslova and Krasikova, 2012), identifies a subset of actin monomers and polymers in 

different nuclei during early oogenesis (Kelpsch et al., 2016; Wineland et al., 2018). 

Alternatively, the AC15 anti-actin antibody, previously used to visualize nuclear actin in 

plants (Cruz and Moreno Diaz de la Espina, 2009) and examine it in Drosophila cultured 

cells (Dopie et al., 2012), labels a distinct, polymeric nuclear actin pool during mid-to-late 

oogenesis in Drosophila (Wineland et al., 2018). In mammalian cells, the nuclear actin 

chromobody (ChromoTek) – a genetically encoded NLS-tagged actin nanobody – reveals 

actin monomers throughout the nucleus and nuclear actin rod formation following serum 

stimulation or the induction of cellular spreading (Plessner et al., 2015). Notably, this tool 

fails to recognize actin/Cofilin rods (Plessner et al., 2015). Thus, different anti-actin 

antibodies identify separate pools of nuclear actin monomers and polymers.

In addition to anti-actin antibodies, a growing number of actin labeling tools are now being 

utilized to characterize nuclear actin (Melak et al., 2017). Specifically, FRAP and 

fluorescence correlation spectroscopy (FCS) of fluorescently-tagged actin in mammalian 

cells indicates that roughly half of the nuclear actin is monomeric and the remaining fraction 

is polymeric (McDonald et al., 2006). Expression of GFP-actin in the Drosophila germline 

results in the formation of nuclear actin rods that exhibit regions that are either Cofilin or 

phalloidin positive (Kelpsch et al., 2016). An NLS-tagged version of LifeAct-GFP, a tool 

derived from S. cerevisiae Abp140 to label F-actin (Riedl et al., 2008), fails to recognize 

actin/Cofilin rods (Munsie et al., 2009), but labels a pool of nuclear actin that polymerizes in 

mammalian cells following serum-stimulation (Baarlink et al., 2013). Expression of 

LifeAct-GFP in the Drosophila female germline causes female sterility, severe actin defects 

in the cytoplasm, and nuclear actin rods in the oocyte nucleus that label with phalloidin and 

LifeAct-GFP (Spracklen et al., 2014). Thus, LifeAct-derived tools are useful for examining 
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phalloidin-positive nuclear actin rods. The expression of a fluorescently labeled NLS-tagged 

truncation of Utrophin, termed Utr230-EN, identified two different pools of nuclear actin 

rods in mammalian cells (Belin et al., 2013). When full-length GFP-Utrophin is expressed in 

the Drosophila female germline, it results in severe cytoskeletal defects and nuclear actin 

rods in all germ cells that label with Utrophin and phalloidin (Spracklen et al., 2014). Given 

the difference in nuclear actin rod induction by LifeAct-GFP and GFP-Utrophin in the 

Drosophila germline (Spracklen et al., 2014), and the different actin binding properties of 

these tools (Winder et al., 1995; Riedl et al., 2008; Prochniewicz et al., 2009), it is likely that 

these tools recognize distinct forms of nuclear actin rods. Like the different actin antibodies, 

the unique patterns of the actin labeling tools support the ideas that nuclear actin takes on a 

number of different structures, and that multiple pools of nuclear actin exist.

Together, different tools can be used to identify actin monomers, polymers, and rods. The 

use of different antibodies and actin labeling tools has identified distinct pools of nuclear 

actin, which likely feature different conformations. The mechanisms that define the 

conformational states of actin within the nucleus remain unknown. However, it is appealing 

to consider roles for post-translational modifications of actin (Terman and Kashina, 2013). 

For example, actin oxidation occurs in the nucleus, reduces nuclear actin levels, and alters 

gene expression (Lundquist et al., 2014). Alternatively, actin interacts with a large number of 

proteins. These interactions may reveal antigens that define specific pools of nuclear actin 

monomers, polymers, and rods. For example, the 2G2 anti-actin antibody was raised against 

the actin/Profilin complex (Gonsior et al., 1999). Further, LifeAct-GFP and the nuclear actin 

chromobody identify nuclear actin rods that do not colocalize with Cofilin (Munsie et al., 

2009; Plessner et al., 2015). Whether and how post-translational modifications or protein/

protein interactions define the distinct pools of and/or contribute to specific functions of 

nuclear actin remains to be fully explored.

FUNCTIONS OF NUCLEAR ACTIN

The findings that nuclear actin exists in numerous forms, the structure of actin is known to 

control its activities, and its nuclear localization is highly regulated, suggest that actin has 

important functions within the nucleus. Indeed, nuclear actin has been widely implicated in 

regulating transcription (Fomproix and Percipalle, 2004; Hofmann et al., 2004; Hu et al., 

2004; Philimonenko et al., 2004), chromatin remodeling (Zhao et al., 1998; Galarneau et al., 

2000; Shen et al., 2000; Serebryannyy et al., 2016a), DNA-damage repair (Andrin et al., 

2012; Belin et al., 2015; Serebryannyy et al., 2017; Wang et al., 2017), and nuclear structure 

(Sasseville and Langelier, 1998; Bohnsack et al., 2006; Feric and Brangwynne, 2013) (Fig. 

2). These nuclear actin activities are discussed below. However, as the body of literature on 

nuclear actin grows, so do the reported functions of nuclear actin. For example, more recent 

evidence suggests nuclear actin has roles in apoptosis (Grzanka et al., 2010a; Grzanka et al., 

2010b; Grzanka et al., 2011), DNA replication (Parisis et al., 2017), and viral infection 

(Fuchsova et al., 2015).
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Transcription

The early finding that nuclear actin rods form in response to treatment with a potent 

inhibitor of transcription spurred research into the roles of nuclear actin in transcription 

(Lane, 1969). Studies in Chironomus tentans (C. tentans) found that an anti-actin antibody 

labels transcriptionally active regions of chromatin and that actin specifically interacts with a 

subset of proteins that bind new transcripts as they are synthesized (Percipalle et al., 2001; 

Percipalle et al., 2002). Disruption of this actin interaction blocks global transcription in 

both C. tentans (Percipalle et al., 2003) and human cells (Kukalev et al., 2005). These data 

suggest that nuclear actin plays an essential role in transcription. Recent studies support that 

this is a widely conserved function of nuclear actin, as Drosophila actin interacts with 

regions of euchromatin, as observed via DNA adenine methyltransferase ID (DamID) 

technology, (Filion et al., 2010), and actin is required for transcription, as blocking the 

nuclear import of actin via RNAi knockdown of Importin 9 or Cofilin inhibits global 

transcription (Dopie et al., 2012). Thus, disruption of nuclear actin in many different species 

perturbs transcription. However, the mechanisms that underlie the regulation of transcription 

by nuclear actin remain to be fully identified.

A large body of evidence supports that nuclear actin regulates transcription by directly 

affecting RNA Polymerase (RNAP) activity (Fomproix and Percipalle, 2004; Hofmann et 

al., 2004; Hu et al., 2004; Philimonenko et al., 2004). Early studies identified that a 

molecule, presumed to be actin, co-purified with RNAPII from P. polycephalum (Weaver, 

1976; Smith et al., 1979), S. cerevisiae (Bell et al., 1977), and calf thymus (Hodo and Blatti, 

1977). These studies suggested that nuclear actin directly interacts with transcription 

machinery but were widely criticized, as actin was thought to be a contaminant of the 

purification process. However, more recent studies support the validity of this early research, 

as they identified that actin not only directly interacts with transcription machinery, but also 

regulates the process. Indeed, studies of Pleurodeles waltlii (salamander) oocytes 

demonstrated that the injection of anti-actin antibodies into the nucleus blocked RNAPII-

dependent transcription (Scheer et al., 1984). Further, actin co-purified with the RNAPII pre-

initiation complex from mammalian cells (Egly et al., 1984). In purified systems, actin was 

sufficient to stimulate transcription, while actin antibodies blocked transcription (Egly et al., 

1984; Hofmann et al., 2004). Together, these data indicate that nuclear actin regulates the 

initiation of transcription. Nuclear actin also contributes to elongation as actin monomers 

recruit a kinase, Positive Transcription Elongation Factor b (P-TEFb), to RNAPII to activate 

it via phosphorylation of its C-terminal domain (Qi et al., 2011). Thus, nuclear actin directly 

interacts with transcription machinery and influences transcriptional initiation and 

elongation (Fig. 3). Further, this role of nuclear actin is conserved amongst higher 

eukaryotes.

While the exact mechanisms that underlie nuclear actin’s regulation of RNAPII have yet to 

be identified, recent studies have begun to explore the structure of the nuclear actin involved. 

Specifically, the formation of nuclear actin rods blocks RNAPII-dependent transcription, and 

this is rescued by expression of a non-polymerizable NLS-tagged actin (R62D mutation) 

(Serebryannyy et al., 2016b). This finding suggests that nuclear actin monomers are 

essential for RNAPII activity. However, other studies have implicated polymeric actin in 
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transcription. Specifically, a number of studies have determined that nuclear myosin I 

localizes to the nucleus where, like actin, it interacts with RNAPII (Pestic-Dragovich et al., 

2000; Hofmann et al., 2006). Further, nuclear myosin I antibodies block RNAPII activity in 
vitro (Pestic-Dragovich et al., 2000; Hofmann et al., 2006). Canonically, myosins are 

molecular motors that interact with F-actin (Sellers, 2000). Considering this, and that both 

nuclear actin and nuclear myosin I interact with RNAPII and are required for RNAPII 

activity, it seems likely that nuclear myosin I and polymerized nuclear actin interact to 

contribute to transcription (Philimonenko et al., 2004; Hofmann et al., 2006; Ye et al., 2008; 

Philimonenko et al., 2010). Thus, it is likely that dynamic polymerization of nuclear actin is 

required for RNAPII activity (Fig. 3).

While nuclear actin is critical for RNAPII-dependent transcription, many studies have also 

implicated roles for actin in regulating the other RNA polymerases. Actin binds to RNAPIII 

and is essential for basal transcriptional activity (Hu et al., 2004). While actin antibody 

injection in salamander oocyte nuclei did not block RNAPI-dependent transcription (Scheer 

et al., 1984), actin was later found to associate with RNAPI in mammalian cells (Fomproix 

and Percipalle, 2004; Philimonenko et al., 2004). Specifically, actin was found in the 

nucleolus of HeLa cells, where it physically associates with RNAPI and is required for 

RNAPI activity (Fomproix and Percipalle, 2004; Philimonenko et al., 2004). Thus, nuclear 

actin regulates RNAPI activity in mammalian cells, but not in salamander oocytes, 

suggesting that this process could be specific to mammals or nuclear actin regulation of 

RNAPI is not required in the salamander oocyte or, potentially, oocytes in general. Together, 

these data suggest that nuclear actin regulates RNAPI and RNAPIII, in addition to RNAPII.

Considering its interactions with RNAPI and RNAPIII, nuclear actin likely participates in 

ribosome biosynthesis in the nucleolus. Supporting this idea, immunogold-labeling and 

electron microscopy demonstrated that actin localized to the nucleolus at sites of ribosomal 

DNA (rDNA) transcription (Kysela et al., 2005). Further, mouse embryonic fibroblasts 

lacking β-actin have reduced rDNA transcription, resulting in impaired cell growth and 

proliferation (Almuzzaini et al., 2016). While reintroduction of wild-type NLS-actin rescues 

these phenotypes, the expression of polymerization-deficient or -promoting mutant actins 

only partially rescues. Further, recent studies demonstrated that actin polymers promote 

RNAPI activity, as non-polymerizable actin fails to bind to the complex (Ye et al., 2008). 

Thus, dynamic nuclear actin polymerization is a critical for regulating nucleolar function 

through its interaction with and regulation of RNAPI and RNAPIII in mammalian cells (Fig. 

3). Recent data from Drosophila suggests the nucleolar functions of actin are conserved as 

actin localizes to this subnuclear compartment (Wineland et al., 2018). However, actin’s 

functions in the nucleolus during development have yet to be explored.

Nuclear actin, in addition to controlling global transcription through its interactions with all 

three RNAPs, also binds to and regulates specific transcription factors. Specifically, actin 

regulates the localization and activity of Myocardin-related transcription factor A (MRTF-A; 

also referred to as MAL), a serum response factor (SRF) coactivator (Vartiainen et al., 

2007). Another study, using breast cancer cells, found that β-actin interacts with Estrogen 

receptor α (ERα) following its activation and nuclear localization; it is suspected that this 

interaction is functionally relevant for the expression of ERα target genes (Ambrosino et al., 
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2010). Additionally, polymerized nuclear actin recruit Coronin 2A, a component of the 

nuclear receptor co-repressor (NCoR) complex, away from Toll-like receptors to de-repress 

transcription (Huang et al., 2011). Whether nuclear actin binds and regulates the activity of 

other transcription factors remains to be determined.

Several signaling pathways impinge on transcription via modulating nuclear actin. For 

example, the induced expression of the Homeobox B (HoxB) gene cluster by retinoic acid 

treatment of mammalian cells is dependent on nuclear actin polymerization (Ferrai et al., 

2009). Furthermore, extracellular cues, like fibronectin, stimulate nuclear actin 

polymerization via the Linker of the Nucleoplasm and Cytoskeleton (LINC) complex 

proteins, Sun1 and Sun2 (Plessner et al., 2015). This pathway is suspected to impinge on 

transcriptional regulation by MAL/SRF, although other transcriptional regulators may also 

be affected. Recent research also identified that the loss of the extracellular cue Laminin-111 

reduces Exportin 6 activity and thereby, increases nuclear actin levels to activate 

transcriptional networks promoting growth and proliferation (Fiore et al., 2017). Thus, 

nuclear actin is a key mediator of the transcriptional responses downstream of a variety of 

signal transduction cascades.

Decades of research indicate that nuclear actin regulates transcription at many levels, 

including regulating RNAPII initiation (Egly et al., 1984) and elongation (Qi et al., 2011), 

regulating the activities of RNAPI (Fomproix and Percipalle, 2004; Philimonenko et al., 

2004) and RNAPIII (Hu et al., 2004), modulating activity of specific transcription factors 

(Vartiainen et al., 2007; Ambrosino et al., 2010; Huang et al., 2011), and being a 

downstream target of signaling pathways that impinge on transcription (Plessner et al., 2015; 

Fiore et al., 2017). However, many questions remain. While nuclear actin is essential for 

RNAP activity, the structure – monomers versus polymers – involved remains debated and 

the mechanisms of its actions are unknown. While nuclear actin polymerization state 

influences the activity of several transcription factors, the proteins that control actin 

polymerization in the nucleus remain to be defined. Additionally, how the activity of nuclear 

actin binding proteins is regulated by various signaling pathways to alter nuclear actin-

dependent transcription is not yet understood. Finally, transcriptional regulation by nuclear 

actin has largely been explored in cell lines and a limited number of organisms. Thus, it is 

unclear how universal the roles of nuclear actin are in regulating transcription, specifically in 

in vivo, multicellular contexts.

Chromatin organization

Like its regulation of transcription, it is now well-recognized that nuclear actin modulates 

chromatin organization. A prominent study demonstrated that injection of anti-actin 

antibodies into the X. laevis oocyte nucleus blocked chromosome condensation, while 

injection into the cytoplasm had no effect (Rungger et al., 1979). Another study injecting 

anti-actin antibodies and actin binding proteins showed similar results, and suggested actin 

monomers and polymers likely play roles in chromatin organization (Scheer et al., 1984). 

While these data implicated nuclear actin in chromatin organization, the mechanisms 

remained unknown. More recent studies have revealed that actin is a component of some, 
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but not all, chromatin remodeling complexes. Here we will briefly discuss the interaction of 

actin with several of these complexes (for more detailed insight see (Venit et al., 2018)).

One chromatin remodeling complex that contains actin is the highly conserved BAP 

(Brahma-associated proteins) complex in Drosophila, which is referred to as SWI/SNF 

(switching/sucrose nonfermenting) in S. cerevisiae and BAF (BRG1-associated factors) 

complex in mammals. Specifically, protein interaction and genetic studies discovered that an 

actin-related protein (ARP) associated with the BAP complex (Papoulas et al., 1998). 

Subsequently β-actin monomers were found to not only interact with the BAF ATPase 

subunit, Brg1 (Brahma-related gene 1; Brahma in Drosophila; SWI2/SNF2 in S. cerevisiae), 

but are required for optimal activity and, therefore, proper chromatin remodeling (Zhao et 

al., 1998). Further showing the functional role of nuclear actin in chromatin remodeling, 

knockout of β-actin in mouse embryonic fibroblasts results in transcriptional reprogramming 

via loss of Brg1 binding to chromatin, and increased Histone 3 lysine 9 trimethylation 

(H3K9me3) and Heterochromatin protein (HP)1α levels (Xie et al., 2018). These effects 

were partially rescued by the expression of NLS-tagged β-actin (Xie et al., 2018). Together 

these data demonstrate that nuclear actin is essential for BAP complex activity.

Actin is also a defined component of the S. cerevisiae inositol requiring (INO80) complex 

(Shen et al., 2000). It was shown through mutagenesis of INO80 components that Arp4, 

Arp8, and actin monomers bind to the N-terminus of the INO80 ATPase, Ino80. Loss of this 

interaction impairs chromatin remodeling activity and reduces survival in a similar manner 

to loss of Ino80 itself (Shen et al., 2003). Further, subdomain 2 of actin is essential for 

INO80 binding to chromatin (Kapoor et al., 2013). Thus, actin is directly required for 

INO80 activity, as it is involved in the binding of this complex to chromatin.

Actin is also a component of the TIP60 (Tat-interactive protein 60 kDa) complex in S. 
cerevisiae and the homologous NuA4 (Nucleosome acetyltransferase of histone 4) complex 

in mammals (Galarneau et al., 2000; Ikura et al., 2000); this type of chromatin remodeling 

complex promotes transcription. Interestingly, actin is not required for the ATPase activity of 

this complex but is suspected to contribute its structure (Ikura et al., 2000).

TIP60 is also essential for the response to γ-radiation-induced DNA lesions. Specifically, 

loss of complex activity in HeLa cells results in apoptotic escape (Ikura et al., 2000). 

Considering that actin is likely a structural component of this complex, it is suspected to 

have a role in the response to DNA damage (Ikura et al., 2000). Supporting this idea, studies 

expressing non-polymerizable nuclear actin (G13R) and utilizing F-actin depolymerizing 

drugs revealed that nuclear actin polymerization is necessary for DNA damage repair 

(Andrin et al., 2012). Indeed, DNA damage induced Formin2- and Spire1/2-dependent 

nuclear actin polymerization is required for proper repair (Belin et al., 2015). Additionally, 

α-catenin localizes to sites of DNA damage via a mechanism that depends on nuclear actin 

polymerization and β-catenin; although the function of these proteins at sites of damage 

remains enigmatic (Serebryannyy et al., 2017). More recent studies found DNA damage 

rapidly induced nuclear actin rod formation and recruits ATR (Ataxia telangiectasia and 

Rad3-related) for DNA repair (Wang et al., 2017). Thus, nuclear actin is likely critical for 

DNA damage responses, both in general and those mediated by TIP60.
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Actin is a component of specific remodeling complexes. While it does not interact with 

imitation switch (ISWI) containing chromatin remodeling complexes (Zhao et al., 1998), it 

is present in the BAF, INO80, and TIP60 complexes. However, it is still unclear how actin 

differentially influences the functions of each of these complexes. As Arp4, and several 

other ARPs, directly bind to core histones (Harata et al., 1999; Kapoor et al., 2013) and actin 

(Schafer and Schroer, 1999), it suggests that actin/Arp4 complexes bind nucleosomes 

directly and serve as a scaffold for binding different subsets of ARPs to recruit specific 

chromatin remodeling complexes (Kapoor et al., 2013). Therefore, actin likely functionally 

regulates the activity of BAF, INO80, and TIP60 via interactions with specific ARPs.

More recently, actin was identified as a functional binding partner of histone deacteylase 

(HDAC) 1 and 2 of the nucleosome remodeling histone deacetylase (NuRD) complex and 

the corepressor for element-1-silencing transcription factor (CoREST) complex 

(Serebryannyy et al., 2016a). Nuclear actin monomers bind HDACs and inhibit their 

function, whereas stimulation of nuclear actin polymerization alleviates this suppression 

(Serebryannyy et al., 2016a). HDACs remove acetyl-moieties from histones, relaxing 

chromatin and promoting transcription (Seto and Yoshida, 2014). Thus, actin monomers 

negatively regulate transcription, at least through their interactions with HDACs 

(Serebryannyy et al., 2016a). Interestingly, HDAC2 interacts with Arp4 (Joshi et al., 2013). 

This interaction is similar to that of Arp4 with other chromatin remodeling complexes and 

suggests a potential mechanism of regulation of HDACs by nuclear actin.

More recent studies have explored the role of nuclear actin in regulating cell fate specific 

transcriptional programs. Transplanting somatic nuclei into the nuclei of X. laevis oocytes, 

which are rich in nuclear actin, is an efficient system to directly study transcriptional 

reprogramming (Gurdon and Melton, 2008; Miyamoto et al., 2011). This reprogramming 

requires nuclear actin polymerization. Specifically, nuclear actin polymerization at the Oct4 
locus recruits the BAF chromatin remodeling complex to induce the expression of this 

pluripotency gene (Miyamoto et al., 2011). Similarly, nuclear actin polymerization is 

necessary for the osteogenic differentiation of mesenchymal stem cells (Sen et al., 2015). 

Surprisingly, treatment with cytochalasin D, an inhibitor of actin polymerization (Casella et 

al., 1981), increased the levels of and caused polymerization of nuclear actin; this, in turn, 

induced the transcriptional activation of genes that define an osteogenic fate (Sen et al., 

2015). However, the chromatin remodeling complexes mediating this nuclear actin-

dependent process remain undefined. Together these studies strongly implicate nuclear actin, 

in the context of modulating chromatin remodeling complexes, as a key regulator of 

transcriptional reprogramming.

Numerous studies have demonstrated that nuclear actin binds to and regulates the activity of 

a variety of chromatin remodeling complexes. This interaction functionally alters complex 

activity, ultimately controlling transcriptional output. Indeed, recent studies indicate that 

nuclear actin regulates transcriptional programs controlling cell fate (Miyamoto et al., 2011; 

Sen et al., 2015). Notably, chromatin remodeling is just one of the means by which nuclear 

actin regulates transcription; as discussed above, nuclear actin also directly regulates all 

three RNAPs and affects specific transcription factors.
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Chromatin movement

Nuclear actin has also been implicated in the movement of chromatin over long distances. 

Live imaging of fluorescently-labelled transgenes demonstrated that loci move away from 

the nuclear periphery upon transcriptional activation (Chuang et al., 2006). This movement 

was delayed by the expression of non-polymerizable NLS-actin (G13R mutation), while it 

was accelerated by the expression of F-actin stabilizing NLS-actin (S14C mutation) (Chuang 

et al., 2006). Similarly, polymerization of nuclear actin is critical for repositioning 

transgenic loci to Cajal bodies (Dundr et al., 2007) or nuclear speckles (Khanna et al., 2014) 

for subsequent expression. While these studies have been incredibly informative, they 

utilized complex transgenes that may not represent endogenous conditions. A more recent 

study utilized fluorescent in situ hybridization (FISH) probes to label endogenous chromatin 

territories to demonstrate that perturbing actin polymerization via latrunculin A or 

jasplakinolide alters chromatin movement (Mehta et al., 2010). As these drugs alter actin 

polymerization throughout the entire cell, it is possible that the defects are due to perturbing 

cytoplasmic, nuclear, or both pools of actin. Together these studies suggest that polymeric 

actin, and likely nuclear actin polymerization, contributes to the movement of chromatin.

In addition to regulating chromatin organization in interphase cells, actin has also been 

implicated in chromosome segregation during meiosis and mitosis. Actin has been observed 

on meiotic spindles in plants (Forer and Jackson, 1979; Forer et al., 1979), insects 

(Silverman-Gavrila and Forer, 2000; Fabian and Forer, 2007), and mice (Bogolyubova and 

Ginzburg, 2013). It was later shown that actin filaments are required for proper chromosome 

alignment and segregation during meiosis in multiple mammalian oocytes (Mogessie and 

Schuh, 2017). Considering that improper meiotic chromosome segregation results in 

aneuploidy (Nagaoka et al., 2012), actin plays a protective role in meiosis (Mogessie and 

Schuh, 2017). Actin has also been reported to be a part of the mitotic spindle and regulate 

spindle length in X. laevis embryos (Woolner et al., 2008). Supporting this finding, we 

recently identified a pool of actin that localizes to mitotic spindles in Drosophila follicle 

cells (Wineland et al., 2018). These studies suggest a conserved, in vivo role for actin in 

chromosome movement, including during mitosis and meiosis.

The roles of nuclear actin in regulating chromatin organization and chromosome separation 

are not surprising given the functions of actin in prokaryotes. While bacterial MreB only 

features 15% identity to S. cerevisiae actin, its 3D structure is strikingly similar to 

monomeric actin and it forms filaments comparable to F-actin (van den Ent et al., 2001). 

MreB not only contributes to bacterial shape but has been implicated in chromosome 

segregation. Specifically, MreB is required for chromosome movement to the opposite sides 

of dividing bacteria (Soufo and Graumann, 2003; Gitai et al., 2005; Kruse and Gerdes, 

2005). Additionally, MreB interacts with RNAP to mediate chromosome separation but may 

also influence transcription (Wachi and Matsuhashi, 1989; Kruse and Gerdes, 2005). 

Another bacterial actin, ParM, also strongly resembles actin monomer structure and forms 

filaments reminiscent of F-actin (van den Ent et al., 2002). ParM has a well-defined role in 

the segregation of a bacterial plasmid in vivo and in vitro (Moller-Jensen et al., 2002). 

Interestingly, ParM filaments are incredibly unstable unless bound to plasmids on both ends 

(Garner et al., 2004). Thus, the functions of bacterial actins in the regulation of cell shape 
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and chromosome segregation mirrors that observed for eukaryotic cytoplasmic and nuclear 

actin, respectively, and represents an excellent example of functional conservation.

Together, these studies implicate that actin’s contributions to chromatin movement during 

transcriptional activation, meiosis, and mitosis may have derived from an ancient, ancestral 

function of bacterial actins. Further studies are needed to delineate the mechanisms by 

which actin mediates chromatin movement.

Nuclear structure

Early studies of nuclear actin also proposed a structural role for actin in the giant nuclei of 

amphibian oocytes. Analysis of hand-dissected nuclei from X. laevis oocytes revealed that 

the majority of nuclear actin is diffusible and not filamentous (Clark and Merriam, 1977). 

The remaining filamentous actin is randomly oriented and makes up a gel-like matrix (Clark 

and Merriam, 1977; Clark and Rosenbaum, 1979). More recent studies demonstrated that X. 
laevis oocytes lack Exportin 6, which results in the high level of nuclear actin (Bohnsack et 

al., 2006). When Exportin 6 was added back to the oocytes, the nuclei became very fragile; 

this finding strongly supports a structural role for nuclear actin (Bohnsack et al., 2006). 

Further, stabilization of the nuclear F-actin network blocks nuclear envelope breakdown, a 

process necessary for meiosis, in X. laevis and Patiria miniata (starfish) (Okada et al., 2012; 

Mori et al., 2014). Nuclear actin is thought to contribute to the structure of oocyte nuclei 

because of their large size. However, polymerized nuclear actin is observed in bovine 

lymphocytes and is thought to contribute to their nuclear structure as well (Nakayasu and 

Ueda, 1983). Furthermore, in cultured cells, when cell spreading is induced by fibronectin, 

the forces on the nucleus change and transient nuclear actin rods are observed (Li et al., 

2015; Plessner et al., 2015). Nuclear actin polymerization is also essential for the nuclear 

expansion following mitotic exit. Specifically, as cultured mammalian cells exit mitosis, 

their nuclear volume expands and the chromatin reorganizes; these processes depend on the 

transient formation of nuclear actin rods (Baarlink et al., 2017). Together, these findings 

suggest that nuclear actin contributes to the structure, dynamics, and stability of the nuclear 

envelope.

While it is unknown how nuclear actin contributes to the stability of the nuclear envelope, 

actin has been found to interact with nuclear proteins that contribute to nuclear structure. 

Specifically, nuclear actin likely regulates the structure of the nucleus and nuclear envelope, 

at least in part, through interactions with lamins, intermediate filament proteins that are a 

key component of the nucleoskeleton (de Leeuw et al., 2018). In vitro studies uncovered that 

actin binds to the C-terminus of lamin A, where it may have a role in chromatin organization 

and nuclear structure (Sasseville and Langelier, 1998). Further, the C-terminus of both A- 

and B-type lamins can bind and bundle F-actin in vitro (Simon et al., 2010). Supporting that 

this interaction extends to a cellular context, an RNAi based screen in Drosophila cultured 

cells suggested that lamins regulate nuclear actin polymerization (Dopie et al., 2015). 

Interestingly, loss of A-type lamins in Drosophila larval muscle results in phalloidin 

stainable nuclear actin rods (Schulze et al., 2009). These data suggest a conserved role for 

lamins in the regulation of nuclear actin polymerization. Actin also interacts with another 

nuclear envelope protein, Emerin, in mammalian myoblasts (Fairley et al., 1999; Lattanzi et 
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al., 2003). Interestingly, Emerin promotes actin polymerization in vitro (Holaska et al., 

2004) and this polymerized actin is expected to mediate the nuclear envelope localization of 

various chromatin remodeling complexes and respond to mechanical tension (Holaska and 

Wilson, 2007). Thus, nuclear actin polymers are likely critical for maintaining nuclear 

envelope shape and the overall structure of the nucleus via their interactions with Lamins 

and Emerin.

Nuclear actin also regulates nuclear organization. Specifically, the nuclear actin matrix in 

amphibian and avian oocytes is essential for nuclear organization (Maslova and Krasikova, 

2012; Feric and Brangwynne, 2013). Interestingly, a number of studies have demonstrated 

that both the nucleolus and silenced chromatin undergo phase separation to defined sub-

nuclear compartments (Feric et al., 2016; Larson et al., 2017; Strom et al., 2017). The proper 

formation and organization of the nucleolus by phase separation is essential for ribosomal 

processing, and therefore cell survival (Feric et al., 2016; Banani et al., 2017). Because 

perturbation of nuclear actin can induce chromatin and nucleolar coalescence, this suggests 

that nuclear actin may, by unknown mechanisms, regulate phase separation.

Together, these data demonstrate that nuclear actin contributes to the structure and 

organization of the nucleus, and this process is highly conserved among higher eukaryotes. 

Specifically, nuclear actin is essential for nuclear envelope integrity and this may be 

accomplished via interactions with Emerin and lamins. Further, nuclear actin may contribute 

to the organization of nuclear subcompartments. However, the exact mechanisms by which 

nuclear actin regulates nuclear and nuclear subcompartment organization remain to be 

defined.

NUCLEAR ACTIN IN DISEASE

Considering the vast functions of actin in the nucleus, it is not surprising that nuclear actin 

has been implicated in a number of diseases including cancer (Spencer et al., 2011; Fiore et 

al., 2017), neurodegeneration (Bamburg et al., 2010; Munsie et al., 2011), and myopathies 

(Costa et al., 2004; Bathe et al., 2007; Domazetovska et al., 2007) (Fig. 4).

While each of the functions of nuclear actin discussed above could easily be connected to 

cancer, it was recently demonstrated that there is a link between cellular senescence, the 

escape from it (i.e. tumorigenesis), and nuclear actin levels (Spencer et al., 2011). 

Specifically, mammary epithelial cells maintain their senescence through Laminin-111 

induced signaling. Perturbing this pathway increases nuclear actin levels, transcription, and 

eventually proliferation (Spencer et al., 2011). Further, the expression of an NLS-tagged 

non-polymerizable actin (R62D) allowed cells to escape senescence regardless of the 

presence of Laminin-111, suggesting that maintaining a low level of nuclear actin monomers 

is essential for senescence (Spencer et al., 2011). A more recent study found that 

Laminin-111 promotes the cytoplasmic localization of actin by positively regulating 

Exportin 6 via phosphoinositide 3-kinase (PI3K) signaling (Fiore et al., 2017). Malignant 

cells are insensitive to Laminin-111 and exhibit high levels of nuclear actin. Notably, the 

malignant phenotype can be replicated by knocking down Exportin 6 in previously quiescent 

cells (Fiore et al., 2017). Thus, high levels of nuclear actin contribute to a tumor-like 
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phenotype (Fig. 4A). As perturbing Laminin-111-induced signaling ultimately causes 

transcriptional reprogramming of these cells, it is tempting to hypothesize that nuclear actin 

regulates chromatin remodeling complexes to drive tumor formation and progression. Future 

studies are needed to explore this and other potential mechanisms of nuclear actin activity in 

cancer.

Nuclear actin has also been implicated in neurodegenerative disorders. These disease states 

are associated with cytoplasmic and/or nuclear actin/Cofilin rods (Minamide et al., 2000; 

Bamburg et al., 2010; Munsie et al., 2011). Interestingly, in the context of Huntington’s 

disease, mutant huntingtin protein localizes to the nucleus of cultured neurons and is 

covalently crosslinked to nuclear actin/Cofilin rods (Munsie et al., 2011). It is suspected that 

this protein interaction stabilizes nuclear actin/Cofilin rods and thereby, contributes to 

disease progression (Munsie et al., 2011) (Fig. 4B). Considering nuclear actin rod formation 

is a common response to cellular stress (Fukui, 1978; Fukui and Katsumaru, 1979, 1980; 

Osborn and Weber, 1980; Welch and Suhan, 1985; Iida et al., 1986; Pendleton et al., 2003; 

Plessner et al., 2015), it is likely these cells experienced some type of stress, nuclear actin 

rod formation was induced, and these rods were stabilized by mutant huntingtin. 

Interestingly, similar actin/Cofilin rods have been observed in the cytoplasm and nucleus of 

neurons from Alzheimer’s patients and cultured cells induced to mimic the disease 

(Minamide et al., 2000; Huang et al., 2008; Whiteman et al., 2009; Bamburg et al., 2010; 

Munsie et al., 2011). Thus, actin/Cofilin rods are associated with a number of 

neurodegenerative disorders. Rods have also been observed at an increased frequency with 

age in normal samples (Masurovsky et al., 1970; Feldman and Peters, 1972; Fiori, 1987; 

Bamburg et al., 2010). The mechanisms that contribute to rod formation in the contexts of 

aging and Alzheimer’s disease have yet to be explored. Together, these data suggest that 

persistent nuclear actin rods occur in neurodegenerative states. We suspect that the 

persistence of the rods contributes to these pathologies. Indeed, persistent rod formation 

results in disruption but not death of neurites in culture, mimicking disease pathogenesis 

(Minamide et al., 2000).

A subset of actin myopathies are referred to as intranuclear rod myopathies, so named 

because they exhibit actin rods in the nuclei of muscle cells (Clarkson et al., 2004). 

Specifically, several patient myopathy-linked mutations of α-actin result in nuclear actin rod 

formation in cultured myoblasts and myotubes (Costa et al., 2004; Bathe et al., 2007) (Fig. 

4C). The formation of these rods happens in a similar manner to that of wild-type α-actin 

nuclear actin rod formation in response to cellular stressors (Domazetovska et al., 2007). 

Further, a specific mutation of α-actin induces nuclear actin rods and reduces the mitotic 

index of cultured myoblasts, suggesting that persistent nuclear actin rods are detrimental to 

muscle development (Domazetovska et al., 2007). The exact mechanisms by which nuclear 

actin rods contribute to myopathies remains unknown. However, as persistent nuclear actin 

rods alter HDAC activity and, ultimately, transcription (Serebryannyy et al., 2016b), it is 

appealing to hypothesize the involvement of altered nuclear actin-dependent transcription in 

intranuclear rod myopathies.

These studies strongly support the model that the level and structure of nuclear actin have to 

be tightly regulated for normal cellular function and human health; misregulation contributes 
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to diseases such as cancer (Spencer et al., 2011; Fiore et al., 2017), neurodegeneration 

(Bamburg et al., 2010; Munsie et al., 2011), and myopathies (Costa et al., 2004; Bathe et al., 

2007; Domazetovska et al., 2007). Given the broad functions of nuclear actin, we suspect 

that misregulation of nuclear actin also contributes to other disease. Indeed, it is particularly 

intriguing to consider the roles of nuclear actin in diseases that are associated with cellular 

stress, such as metabolic diseases including diabetes, heart disease, fatty liver, and obesity.

CONCLUSION

The initial observations of nuclear actin were >50 years ago. While early studies hinted at 

function, they were met with skepticism; this caused the study of nuclear actin to lag behind 

its cytoplasmic counterpart. The discovery that the nuclear localization of actin is an active 

and regulated process strongly suggested that there was a purpose for actin to translocate to 

the nucleus. We now know that nuclear actin has many functions, including regulating all 

three RNA polymerases, specific transcription factors, chromatin remodeling complex 

activity and formation, histone deacetylases, chromatin movement, DNA damage repair, and 

nuclear structure/integrity (Fig. 2). However, the precise mechanisms that underlie actin’s 

contribution to each of these functions remain to be fully defined and must be further 

explored. Multiple pools of nuclear actin monomers and polymers have also been identified 

– the regulation and functions of these pools are largely unknown. Nuclear actin also 

contributes to human health and disease, although to what extent needs to be fully explored. 

In order to overcome these knowledge gaps, we must identify tools to specifically probe the 

nuclear functions of actin separately from its cytoplasmic activities. Further, the vast 

majority of nuclear actin studies have been performed in cultured cells or large oocyte 

nuclei. The use of in vivo, genetic models will greatly enhance our understanding of nuclear 

actin. Such studies will build on the groundwork that has been laid – actin localizes to the 

nucleus and its functions there are essential for key cellular processes.
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Figure 1: 
Nucleo-cytoplasmic shuttling of actin and types of nuclear actin. Importin 9 (blue) takes 

actin (red) and Cofilin (orange) complexes into the nucleus through the nuclear pore 

complex (NPC). Exportin 6 (purple) mediates the nuclear export of actin and Profilin (green) 

complexes. Within the nucleus actin takes on many forms. Actin can polymerize into weakly 

phalloidin-stainable rods and Cofilin-decorated rods. For simplicity, individual actin 

filaments are shown to represent nuclear actin rods, but rods may be composed of bundles of 

actin filaments. Additionally, there are short polymers of actin and pools of actin monomers 

that exist on their own, in an altered conformational state (dark green circle on actin) or 

complexed with Cofilin or Profilin.
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Figure 2: 
Summary of nuclear actin functions. Nuclear actin positively regulates RNA polymerase 

activity, chromatin remodeling complex activity and formation, chromatin movement, 

nuclear structure and integrity, and DNA damage repair. Histone deacteylase activity is 

negatively regulated by nuclear actin, while several transcription factors are positively or 

negatively regulated by nuclear actin.
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Figure 3: 
Nuclear actin regulation of transcription. Nuclear import and export of actin (red) is 

mediated by Importin 9 (blue) and Exportin 6 (purple), respectively, through the nuclear 

pore complex (NPC). Nuclear actin monomers and polymers are found throughout the 

nucleus and make up a gel-like matrix at the periphery with the nuclear lamina (yellow 

lines). Both actin monomers and polymers regulate the activity of RNA polymerase II 

(RNAPII; yellow hexagons), while nuclear actin rods inhibit RNAPII activity. For simplicity, 

individual actin filaments are shown to represent nuclear actin rods, but rods may be 

composed of bundles of actin filaments. Nuclear actin monomers are also found in the 

nucleolus, where polymerization is required for RNAPI (yellow hexagon) activity.
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Figure 4: 
Nuclear actin in disease states. (A) Model for the role of nuclear actin in cancer. 

Extracellular cues maintain low levels of nuclear actin (light red nuclei in grey cells) in the 

normal epithelium. Changes in the microenvironment induce a tumor-like phenotype by 

increasing nuclear actin (dark red nuclei in grey cells) and thereby, causing transcriptional 

reprogramming (adapted from (Fiore et al., 2017)). (B) Model for the role of nuclear actin in 

neurodegeneration. When normal cells are stressed, nuclear actin transiently polymerizes 

into Cofilin-decorated rods (actin in red; Cofilin in orange). In cases of neurodegeneration, 

the actin/Cofilin rods are stabilized. (C) Model for the role of nuclear actin in myopathy. 

Under standard conditions, nuclear actin rod formation is limited. However, mutations in 

actin (yellow star on red actin) promotes polymerization and stabilization of nuclear actin 

rods. For simplicity, individual actin filaments are shown to represent nuclear actin rods, but 

rods may be composed of bundles of actin filaments.
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