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Abstract
Purpose Approximately 1–2% of the women faces three or more successive spontaneous miscarriages termed as recurrent
miscarriage (RM). Many clinical factors have been attributed so far to be the potential risk factors in RM, including uterine
anomalies, antiphospholipid syndrome, endocrinological abnormalities, chromosomal abnormalities, and infections. However, in
spite of extensive studies, reviews, and array of causes known to be associated with RM, about 50% cases encountered by treating
physicians remains unknown. The aims of this study were to evaluate recent publications and to explore oocyte-specific genetic
factors that may have role in incidence of recurrent miscarriages.
Method Recent studies have identified common molecular factors contributing both in establishment of ovarian reserve and in
early embryonic development. Also, studies have pointed out the relationship between the age-associated depletion of OR and
increase in the risk of miscarriages, thus suggestive of an interacting biology. Here, we have gathered literature evidences in
establishing connecting links between genetic factors associated with age induced or pathological OR depletion and idiopathic
RM, which are the two extreme ends of female reproductive pathology.
Conclusion In light of connecting etiological link between infertility and RM as reviewed in this study, interrogating the oocyte-
specific genes with suspected roles in reproductive biology, in cases of unexplained RM, may open new possibilities in widening
our understanding of RM pathophysiology.
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Introduction

Miscarriage, which is widely defined as a spontaneous loss of
pregnancy before 20 weeks of gestation [1, 2], is recognized
as the most common complication of pregnancy affecting 2–
5% of couples [3]. About 15% of all clinically recognizable
pregnancies terminates in a miscarriage [4] while preclinical
miscarriages take place in approximately 60% of human con-
ceptions and are lost very early, i.e., near or following

implantation [4]. Approximately 1–2% of the women faces
three or more successive spontaneous miscarriages termed as
recurrent miscarriage (RM) [5–7] leaving them in a devastat-
ing and emotionally taxing situation [8, 9]. The possibility of
having another miscarriage tends to increase with history of
previous miscarriages [10]. Such incidence of repeated mis-
carriages in a women seems not to be a result of chance but is
suggestive of some underlying abnormality.

The known causes of RM

Many clinical factors have been attributed so far to be poten-
tial risk factors in RM. In 15% of the women facing RM, an
anatomical abnormality could be involved, with septate uterus
being most common [11]. Immunological blood clotting dis-
order like antiphospholipid syndrome (APS) is found associ-
ated with another 15% of RM cases causing 1st and 2nd tri-
mester miscarriages [1, 3]. Several endocrinological abnor-
malities have also been implicated as etiologic factors for
about 8 to 12% of RM [12]. This is due to poorly controlled
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and untreatable hormonal imbalances, as in disorders like di-
abetes mellitus [13, 14], hypothyroidism [15, 16], and luteal
phase deficiency [17] which may have deleterious effects in
implantation of growing embryo. In 2–4% of RM cases, bal-
anced chromosomal translocations in asymptomatic parents
may result in generation of unbalanced translocation in con-
ceptuses [18]. These are often negatively selected by nature
and mostly end up in a miscarriage [19, 20]. Several infections
have been also identified as potential cause of early miscar-
riage [21] with specifically, 15% of early miscarriages and
66% of late miscarriages been associated with infections [22].

The unknown cause of RM

In spite of extensive studies, reviews, and array of causes
known to be associated with RM, about 50% cases encoun-
tered by treating physicians remains unexplained, idiopathic,
or unknown. The challenge of identifying underlying cause in
these perplexing cases is huge and urges researchers to put in
efforts to know more, explore more, and relate more. There
might be some related pathways that remained either
unquarried or underexplored in defining their potential role
in RM till date. One such entity that might affect the embryo
development is the molecular factors associated with the es-
tablishment of the ovarian reserve (OR). OR is the quantity
and quality of the ovarian primordial follicular pool remaining
in a women’s ovaries. The relationship of age-associated
depletion of OR and increase in the risk of miscarriage
and also role of various oocyte-specific genes in early em-
bryonic development and in embryo implantation is sug-
gestive of interacting biology [23, 24]. This review aims to
gather evidences in establishing connecting links between
genetic factors associated with age induced or pathological
OR depletion and idiopathic RM, which are the two ex-
treme ends of female reproductive pathology. This will
facilitate in identifying possible candidates in the RM path-
ophysiology and may lead to provide possible explanation
for many of the unclassified RM cases.

Biological ovarian age and risk of miscarriages

Recent decades have witnessed an increase in the mean ma-
ternal age at the time of childbirth in developed countries [25].
Advanced maternal age has long been linked with increasing
incidence of RM. For example, miscarriage risk of 9 to 12% is
found in a women ≤ 35 years, but this risk upsurges to 75% in
women with age > 40 [26]. The ovaries of a women exhibit
accelerated aging in comparison to other biological system
and therefore result in deterioration of OR both in number
and quality of the oocytes. In fact, an exponential relationship
has been observed between maternal age and presence of
chromosomal abnormality in oocytes, with about 40–60% of
oocytes from women of 40 years being aneuploids [27, 28].

Subsequently, such oocytes after fertilization translate into
compromised quality embryos. Recently, Quenby et al. sug-
gested that RM is a failure of nature’s quality control that
allows poor quality embryos to implant inappropriately, pres-
ent as clinical pregnancy, and then undergo miscarriages [29].
This is evident from the fact that about 40–50% of miscar-
riages in the first trimester are result of chromosomal abnor-
malities in the conceptuses [30, 31].

Also, it was observed that assisted reproductive technology
(ART) methods often fail for older women using their own
oocytes, while donor oocytes from younger women can be
successfully used in these women [32]. Reports depicting
the potential of postmenopausal women to act as a successful
surrogate have also been identified previously [33–36].
Similarly, with the help of ART, cases where post-
menopausal women have given birth to healthy offspring have
become quite common. These findings establish that parame-
ters associated with decreased fertility appear to be present
majorly within oocyte itself rather than the uterine environ-
ment. Therefore, understanding the genetic factors affecting
the oocyte quality and quantity and further in embryo devel-
opment is important to define its role in compromised fertility.

Apart from age-related physiologic depletion of OR in
women of more than 40 years of age, a premature reduction
of OR (pathological OR depletion) has also been identified in
a subset of women suffering with diminished ovarian reserve
(DOR). DOR is defined as reduced capacity of the ovaries to
produce oocytes and is characterized by an abnormal OR test-
ing with decreased antral follicle count (AFC < 5) on ultra-
sound, reduced anti-müllerian hormone (AMH < 0.5–1 ng/
mL), or higher levels of follicle stimulating hormone (FSH
> 10 IU/L on cycle days 2 to 4) [37, 38]. Toukhy et al. in
2002 enrolled 762 women with DOR and classified them in
three different age groups of young, intermediate, and old.
Themiscarriage rate was found to be similarly high in all these
three groups. The results of this study depicted that it is not the
chronological age which is important; instead, it is the biolog-
ical age of the ovary that dictates the pregnancy outcome and
also, that the young age of a women does not protect her
against the adverse effect of reduced OR [39]. In some wom-
en, a severe form of DOR can be present called as premature
ovarian insufficiency (POI), characterized by 4 months of
amenorrhea and day 3 FSH to be > 40 IU/L. Once the diag-
nosis of POI is reached, the women’s reproductive potential is
completely exhausted and women enter an early age meno-
pause before 40 years. As quantity and quality of the oocytes
and thereby the reproductive potential of a women go on de-
pleting [40] and ultimately come to an end at natural meno-
pause, thus it is likely that a diagnosis of POI (complete ces-
sation of fertility) may be preceded by RM due to compro-
mised oocyte quality with an augmented meiotic non-
disjunction and subsequent generation of aneuploidy of em-
bryos, which is one of the main causes of spontaneous
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miscarriages [41–44]. In fact, a study by Santos et al., in 2015,
observed that the oocyte in women with elevated FSH (prone
to POI) is of worst quality in comparison to age-matched
control women. Here, the author concluded that these oocytes
of compromised quality are indicative of ovarian aging and
may negatively affect the oocyte development into viable em-
bryos leading to frequent miscarriages. Another recent study
reported that percentage of women with elevated FSH was
higher in the women undergoing RM, as compared to age-
matched control women, and thereby recommended the asso-
ciation of DOR and RM [45]. The association of oocyte qual-
ity and RM in both physiological (normal aging) and patho-
logical depletion of OR (DOR or POI) cases suggest that they
may share common etiological pathways. Exploring the mo-
lecular pathways related to physiological aging and the path-
ologic disorders of oocyte quality would give researchers and
clinicians the ability to improve fertility and pregnancy out-
comes for many women.

Genetic factors involved in launch of OR and their
putative role in RM

The OR decreases constantly, from fetal life, when it is
established, until the menopause. The fetal number of oocytes
is approximately 7 million duringmid-gestation, 1 to 2million
at birth which further drops down to only 0.3–0.5 million at
puberty [46–48]. Awomen can ovulate about 500 times in her
lifetime, and a majority of oocytes undergo atresia; thus, peri-
menopausal women’s ovaries are left with only approximately
1000 oocytes of compromised quality [49, 50]. The overall
process of OR establishment, pubertal OR activation, and age-
dependent or pathological depletion of OR is largely influ-
enced by genetic parameters. An alteration in the genes un-
derlying these processes may lead to a spectrum of impaired
ovarian function including POI. Till date, several causative
mutations in various oocyte-specific genes have been impli-
cated in POI rendering women infertile [51, 52].

Researchers have noted that there is an elevated risk of
miscarriages in infertile women and vise versa [53–55].
Also, following infertility treatment, a high frequency of mis-
carriages has been reported [56]. These findings point out that
both infertility and miscarriages lie within the spectrum of
human reproductive failure that is inclusive of inability to
conceive, inability to maintain pregnancy, or post-conception
pregnancy loss. Some of the earlier studies have also shown
common etiopathogenic pathways underlying these two ex-
treme ends of reproductive failure spectrum [57, 58]. As POI
is associated with infertility [59–61], thus factors contributing
to development of POI may have implication in RM owing to
proven links between infertility and the later.

Mutation in several genes has been validated by functional
studies to be implicated in POI (for example BMP15, GDF9,
FSHR, LHCGR, FOXL2, FIGLA, NR5A1, NOBOX, NANOS3,

and STAG3) [51, 62–72]. Several mutations in folliculogenesis
growth factors like BMP15 and GDF9 gene have been report-
ed in POI womenwith either primary or secondary amenorrhea
[65, 66, 73–84]. The influence of level of these factors (GDF9
and BMP15) in the follicular fluid, on the quality of the em-
bryo, has been studied formerly. It was observed that a high
mature GDF9 level in follicular fluid was positively correlated
with embryo quality [85]. Similarly, role of BMP15 in deter-
mining oocyte quality and developmental potential has also
been previously recognized with a finding that a high
BMP15 level in follicular fluid is associated with best grade
embryo morphology [85, 86]. Also, augmented levels of
GDF9 and BMP15 mRNA in cumulus granulosa cells are
found to correlate with oocyte maturation, fertilization, embryo
quality, and pregnancy outcome in humans [87]. All these
findings suggest that the intra-ovarian BMP/GDF system is
of great importance in regulating a spectrum of ovarian func-
tions from establishment of OR to generation of a competent
oocyte for embryo development and thus may have roles in
problems of infertility/subfertility and miscarriages both.

Once a high-quality oocyte is generated, the next important
primary process required for successful reproduction is the
transformation of this terminally differentiated oocyte to a
pluripotent embryo after fertilization. Before the massive ac-
tivation of zygotic genes, the early embryo development sole-
ly relies on the maternal transcripts and proteins that have
accumulated during the course of folliculogenesis and oogen-
esis [88–91]. The genes encoding these transcripts and pro-
teins are called as maternal effect genes (MEG) and are fun-
damental for early cleavage events post-fertilization [92, 93].
The maternal effect proteins can interact together to form a
large multiprotein complex known as sub-cortical maternal
complex (SCMC), which are uniquely expressed in oocytes
and in early embryos. Studies conducted on mice model with
mutations in genes encoding these maternally provided pro-
teins and multi-component complexes showed impaired early
embryonic development and hence leads to RM [94–100]. In a
recent publication, the authors have identified human SCMC
homologous genes (NLRP5, OOEP, TLE6, and KHDC3L) to
be specifically expressed in the oocytes of human fetal ovaries
and concluded that the human SCMC and its regulators may
too have similar central role in early embryonic development.
Investigating these oocyte-specific genes can thus provide an-
swer for many unresolved RM cases [101]. In this context,
various oocyte-specific transcription factors like FIGLA,
NOBOX, SOHLH1, and SOHLH2 have been found to regulate
the expression of important MEG like PADI6, KHDC3L,
NLRP gene family, Pou5f1 [97, 102–109]. The same oocyte-
specific transcriptional factors have been identified to have
established role in controlling the expression of genes in-
volved follicular development also [105–108, 110–112].
Furthermore, mutations in genes encoding these transcription
factors are found to be associated with POI [52, 62, 68,
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113–119]. This suggests an interconnected pathway between
various facets of reproduction, viz. folliculogenesis and estab-
lishment of OR, pathogenic depletion of OR and RM.

Another important ovarian transcription factor is FOXO3
which plays a key role in appropriate maintenance of the ovar-
ian functioning, belongs to the FOXO (Forkhead box O) family
of transcription factors, it acts as a key regulator for follicle
activation or quiescence [Hopkins et al. 2014]. Constitutive
activation of this protein blocks primordial follicle growth and
thus induces infertility [120]. Other member of this family,
FOXO1a, regulates the cell cycle progression [121]. A number
of studies have described potential POI-causing variants both in
FOXO3A and FOXO1A [122, 123]. FOXL2, which also be-
longs to fork head family, is also identified to function as the
central transcription factor of the ovary and is essential for
follicular maturation and maintenance of ovarian identity
[124]. Heterozygous mutations in FOXL2 have been identified
in 90% cases of BPES (Blepharophimosis, ptosis, epicanthus
inversus syndrome) [125–127], an autosomal dominant syn-
drome with complex eyelid malformations either associated
with POI (type I BPES) or not (type II). FOXL2 mutation has
also been reported in isolated form of POI [128, 129].

Evidences have proved the role of these FOX factors in
regulating the development and differentiation of endometrial
cells during pregnancy also. This process is called as endome-
trial decidulization, and it is indispensable for the placental
formation as it helps in maintaining the proper microenviron-
ment for the implantation and growth of the embryo. An im-
paired decidualization of endometrium disables embryo-
maternal recognition and selection upon implantation, which
causes RM [130–133]. For instance, FOXO1 protein is recog-
nized to have a critical role in regulation of progesterone-
dependent endometrial decidulization and protection of the
feto-maternal interface against oxidative damage during preg-
nancy [134–137]. Similarly, another forkhead protein impli-
cated in POI, i.e., FOXL2, has been recently shown to be
strongly expressed in the uterine tissue of human, mice, and
bovine besides its early expression in the ovarian follicles and
granulosa cells [138–140]. Studies have also shown that
FOXL2 controls the expression profile of the endometrial
genes and plays a pivotal role in regulating uterus receptivity
and embryo implantation [141, 142]. Owing to high level of
expressivity and functionality of these FOX proteins in the
uterine tissue, in addition to ovaries, speculates that mutation
in these genes may have significant implication in RM along-
side with their putative role in POI.

Conclusion

In summary, it is understood that the clinical miscarriages
result either when a poor quality oocyte develops into poor
quality embryo which subsequently fails to implant properly,

or when a high-quality embryo gets implanted in a hostile
uterine environment which does not support the embryo
growth. As there are evidences, the oocyte quality, embryo-
genesis, and also the uterine microenvironment are governed
by various oocyte-specific genes, while most of these genes
are also implicated in POI, thus a connecting etiological link
between infertility and RM could be thought of. Interrogating
the oocyte-specific genes with suspected roles in reproductive
biology, in cases of unexplained RM, may open new possibil-
ities in widening our understanding of RM pathophysiology.
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