
REGULAR ARTICLE

Direct modulation of the bone marrow mesenchymal stromal cell
compartment by azacitidine enhances healthy hematopoiesis

Catharina Wenk,1,* Anne-Kathrin Garz,1,* Sonja Grath,2 Christina Huberle,1 Denis Witham,1 Marie Weickert,1 Roberto Malinverni,3,4
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Key Points

• AZA treatment of MSCs
in MDS leads to prefer-
ential expansion of
healthy over malignant
hematopoiesis.

• AZA regulates key MSC
genes crucial for sup-
port of hematopoiesis,
providing proof of
concept for epigenetic
therapy of MSCs in
MDS.

Mesenchymal stromal cells (MSCs) are crucial components of the bone marrow (BM)

microenvironment essential for regulating self-renewal, survival, and differentiation of

hematopoietic stem/progenitor cells (HSPCs) in the stem cell niche. MSCs are functionally

altered in myelodysplastic syndromes (MDS) and exhibit an altered methylome compared

with MSCs from healthy controls, thus contributing to disease progression. To determine

whether MSCs are amenable to epigenetic therapy and if this affects their function, we

examined growth, differentiation, and HSPC-supporting capacity of ex vivo–expanded MSCs

from MDS patients in comparison with age-matched healthy controls after direct treatment

in vitro with the hypomethylating agent azacitidine (AZA). Strikingly, we find that AZA

exerts a direct effect on healthy as well as MDS-derived MSCs such that they favor support of

healthy over malignant clonal HSPC expansion in coculture experiments. RNA-sequencing

analyses of MSCs identified stromal networks regulated by AZA. Notably, these comprise

distinct molecular pathways crucial for HSPC support, foremost extracellular matrix molecules

(including collagens) and interferon pathway components. Our study demonstrates that the

hypomethylating agent AZA exerts its antileukemic activity in part through a direct effect on the

HSPC-supporting BM niche and provides proof of concept for the therapeutic potential of

epigenetic treatment of diseasedMSCs. In addition, our comprehensive data set of AZA-sensitive

gene networks represents a valuable framework to guide future development of targeted

epigenetic niche therapy in myeloid malignancies such as MDS and acute myeloid leukemia.

Introduction

Myelodysplastic syndromes (MDS) are clonal hematopoietic stem/progenitor cell (HSPC) disorders
characterized by ineffective hematopoiesis, peripheral cytopenias, and risk of transformation to acute
myeloid leukemia (AML). Distinct acquired epigenetic and genetic mutations have been detected in
MDS HSPCs and are considered disease-initiating events.1 However, accumulating evidence also
implicates the bone marrow (BM) microenvironment (niche), specifically mesenchymal stromal cells
(MSCs), in MDS pathogenesis and progression.2,3
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MSCs are critical for regulating self-renewal, survival, and
differentiation of HSPCs. MSCs communicate with HSPCs by
cell-cell contact, through secreted factors and production of
extracellular matrix (ECM). In addition, MSCs replenish osteoblasts
as well as adipocytes in the niche and have diverse immunoreg-
ulatory functions.4

MDS MSCs are essential for propagation of human MDS HSPCs in
vivo in xenograft models.3 Conversely, MDS hematopoietic cells
promote acquisition of MDS-specific features in healthy MSCs,
reinforcing clonal dominance of MDS cells.3,5 Patient-derived MDS
MSCs exhibit distinct phenotypical abnormalities when expanded in
vitro.3,5 However, no recurring genetic mutations or cytogenetic
aberrations have been found in MDS MSCs, suggesting their
specific MDS HSPC-supporting properties underlie epigenetic
modifications. Indeed, the methylome of ex vivo–expanded MDS
MSCs was found to be distinct from healthy controls.5,6 Because
the epigenetic niche signature is in theory reversible, the epigenetic
drug azacitidine (AZA) may also be active on MDS MSCs. AZA is
primarily considered to act as a hypomethylating agent on the
malignant HSPC compartment. However, other cells besides the
malignant clone also randomly metabolize AZA.7 MDS patients
responding to AZA show reversion of their MSC phenotype, but
this may be an indirect effect on the MSC compartment due to
suppression of the leukemic clone. We hypothesized that AZA may
also exert a direct effect on the HSPC-supporting BM niche.
Hence, we comprehensively examined growth, differentiation, and
HSPC-supporting capacity of ex vivo–expanded MSCs from MDS
patients in comparison with age-matched healthy controls after
direct AZA treatment in vitro. In addition, we performed RNA
sequencing (RNA-seq) on a homogenous HSPC-supportive MSC
line treated in vitro to identify stromal networks regulated by AZA.

Materials and methods

Cell lines and reagents

EL08-1D2 stromal cells were cultured as described and used up to
passage 12.8Cytokineswere purchased fromR&DSystems. Chemicals
were obtained from Sigma-Aldrich; media and supplements were
obtained from Gibco/Life Technologies. AZA (Celgene) was freshly
prepared directly before use following the manufacturer’s instructions.

BM samples

BM samples were obtained from untreated MDS patients un-
dergoing routine clinical evaluation or from femoral heads of
patients undergoing hip replacement surgery. Written informed
consent in accordance with the Declaration of Helsinki was
obtained from all patients according to protocols approved by
the ethics committee of the Technische Universität München.
Mononuclear cells (MNCs) were isolated from BM samples using
Biocoll solution (Biochrom) and stored in liquid nitrogen until use.

MNCs were enriched for CD341 cells by magnetic bead separation
(Miltenyi Biotec). CD341 cells were cultured in suspension or on
stroma in serum-free medium with 5 growth factors: kit ligand, FLT3
ligand, thrombopoietin, interleukin-6, and interleukin-3.9 BM MSCs
were isolated and expanded using an adapted protocol.10 MNCs
were plated in Dulbecco’s modified Eagle medium containing 5%
fresh frozen plasma, 107 platelets per milliliter, 100 IU/mL penicillin,
100 mg/mL streptomycin, and 10 IU/mL heparin at 37°C and 5%
CO2. Nonadherent cells were removed by medium change after

1 week. MSCs were expanded to confluency and passaged up to
4 times. Ex vivo–expanded MSCs were analyzed by flow cytometry
to confirm adherence to minimal criteria for defining multipotent
MSCs11 and were void of hematopoietic cells determined by
negative staining for CD45, CD34, CD19, CD14, and HLA-DR.
MSCs at 80% confluency were treated with AZA (10 mM) for 48
hours, followed by washing and addition of fresh medium.

MSC differentiation induction

MSCs were induced toward osteogenic and adipogenic lineages
after plating to 80% confluency. MSCs were treated with AZA
(10 mM) for 48 hours followed by washing and addition of fresh
medium. AZA treatment was repeated once after 7 days.
Adipogenic differentiation was induced by adding 1 mM dexameth-
asone, 0.5 mM isobutylmethylxanthine, 60 mM indomethacin, and
10 mM insulin. For osteogenic differentiation, 10 nM dexametha-
sone, 0.1 mM ascorbic acid, and, starting on day 7, 10 mM
b-glycerol phosphate were added. Medium was replaced twice
weekly. After 18 days, MSCs were stained using oil-red-o and
Harris-hematoxylin or alizarin-red to visualize adipogenic or osteogenic
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Figure 1. Effects of AZA treatment on stromal support of healthy and MDS

HSPCs. (A) Primary healthy or MDS CD341 cells were cultured in serum-free

medium in suspension or on EL08-1D2 stromal cells. After 4 days, CD341 cells

were harvested and viability was assessed by Annexin V/PI flow cytometry. (B) Primary

healthy or MDS CD341 cells were cultured on untreated EL08-1D2 stroma or on stroma

treated with 10 mM AZA for 48 hours. After 4 days, CD341 cells were harvested and

viability was assessed by Annexin V/PI flow cytometry. Shown is the percentage of viable

(Annexin V2/PI2) CD341 cells for each culture condition; each circle represents 1

individual sample (healthy samples, n 5 10; MDS samples, n 5 10). n.s., not significant.
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differentiation, respectively. Images were captured using an
Olympus CKX41 microscope (Olympus) at 310 magnification
fitted with an AxioCam Icc1 camera (Zeiss).

Flow cytometry

Cell death was determined by staining cells with allophycocyanin–
Annexin V (BD Biosciences) and propidium iodide (PI) in 10 mM N-2-
hydroxyethylpiperazine-N9-2-ethanesulfonic acid (HEPES), 140 mM
NaCl, 1.62 mM CaCl2. For flow cytometric analyses of surface
markers, cells were suspended in phosphate-buffered saline containing
5% bovine serum albumin and stained with fluorescence-coupled
antibodies: CD105–fluorescein isothiocyanate (FITC) (N1-3A1;
Ancell Corporation), CD73-phycoerythrin (PE) (AD2; BD Biosciences),
CD90-PE (5E10; BD Biosciences), CD271-FITC (ME20.4-1.H4,
Miltenyi Biotec). For intracellular staining, cells were prepared
using a fixation/permeabilization kit (BD Biosciences) and stained
with anti-transforming growth factor b1 (TGF-b1)–PE or anti-TGF-b
receptor–PE (BD Biosciences). Frequencies of positive popula-
tions were calculated with respect to isotype controls: PE mouse
immunoglobulin G (IgG) (G18-145; BD Biosciences) or FITC
mouse IgG1, k isotype (clone MOPC-21; BD Biosciences).
Acquisition was performed on a CyAn ADP Lx P8 (Beckman
Coulter). Data were analyzed with FlowJo software (FlowJo, LLC).

Clonogenic assays

CD341 HSPCs were cultured in suspension or on stromal layers
for 4 days. HSPCs were harvested and directly plated in growth
factor–supplemented methylcellulose (Miltenyi Biotec) to assess
colony-forming units (CFUs). Colonies were scored after 14 days at
37°C, 5% CO2 in a humidified atmosphere.

RNA-seq

Details on RNA-seq and data analyses are described in supple-
mental Methods.

RT-PCR

RNA was extracted from MSCs using the RNeasy Mini kit (Qiagen).
Complementary DNA was synthesized using the RT2 First Strand
kit (Qiagen) with universal primers. Relative target quantity was
determined using the comparative cycle threshold (ΔΔCT) method.
Real-time polymerase chain reaction (RT-PCR) was performed
using Power SYBR Green PCR Master Mix (Life Technologies)
and target-specific primers (supplemental Table 6) on a StepOne
Plus Cycler (Applied Biosystems). Amplicons were normalized to
endogenous RPLP0 control.

Statistical analysis

Statistical analyses were performed by 2-sided paired or the unpaired
Student t test or 1-way analysis of variance followed by Tukey
multiple comparisons using GraphPad Prism (Graph Pad Inc).
Results are shown as mean 6 standard error of the mean (SEM).
P values are presented where a statistically significant difference was
found: *P , .05; **P , .01; ***P , .001, ****P , .0001.

Results

Treatment of stromal cells with AZA differentially

affects healthy vs myelodysplastic hematopoiesis

To test our hypothesis that the BM niche is amenable to
epigenetic therapy, we used a well-established BM niche model: theT

a
b
le

1
.
(c
o
n
ti
n
u
e
d
)

N
o
.

S
e
x

A
g
e
,
y

D
ia
g
n
o
s
is

W
H
O

2
0
1
6

K
a
ry
o
ty
p
e

M
o
le
c
u
la
r
g
e
n
e
ti
c
s
(V

A
F
%
)

IP
S
S

IP
S
S
-R

S
a
m
p
le

34
W

68
M
D
S

M
D
S
-E
B
-1

46
,X

X
S
F3

B
1
(5
0)
,T

ET
2
(5
0)

IN
T-
1

Lo
w

C
D
34

35
M

61
M
D
S

M
D
S
-E
B
-2

46
,X

Y
R
U
N
X
1
(4
0)

IN
T-
2

H
ig
h

C
D
34

36
M

76
sA

M
L

A
M
L-
M
R
C

46
,X

Y
,d

el
(7
q)
,4

7,
X
Y
,1

12
TP

53
N
/A

N
/A

C
D
34

37
M

78
M
D
S

M
D
S
-M

LD
46

,X
Y

S
F3

B
1
(4
5)

Lo
w

Lo
w

C
D
34

38
W

77
C
M
M
L

C
M
M
L-
0

46
,X

X
TE

T2
(5
0)
,S

R
S
F2

(3
0)

N
/A

N
/A

C
D
34

A
M
L-
M
R
C
,A

M
L
w
ith

m
ye
lo
dy
sp

la
si
a-
re
la
te
d
ch

an
ge

s;
C
M
M
L,

ch
ro
ni
c
m
ye
lo
m
on

oc
yt
ic

le
uk
em

ia
;F

LT
3-
IT
D
,f
m
s-
lik
e
ty
ro
si
ne

ki
na

se
3–

in
te
rn
al

ta
nd

em
du

pl
ic
at
io
n;

IP
S
S
,I
nt
er
na

tio
na

l
P
ro
gn

os
tic

S
co

rin
g

S
ys
te
m
;M

D
S
-E
B
,M

D
S
–
ex
ce

ss
of

bl
as
ts
;M

D
S
-M

LD
,M

D
S
–
m
ul
til
in
ea

ge
dy
sp

la
si
a;

M
D
S
-M

LD
-R
S
,M

D
S
–
m
ul
til
in
ea

ge
dy
sp

la
si
a–

rin
g
si
de

ro
bl
as
t;
M
D
S
-S
LD

,M
D
S
–
si
ng

le
-li
ne

ag
e
dy
sp

la
si
a;

N
/A
,n

ot
ap

pl
ic
ab

le
;R

-IP
S
S
,R

ev
is
ed

In
te
rn
at
io
na

l
P
ro
gn

os
tic

S
co

rin
g

S
ys
te
m
;

sA
M
L,

se
co

nd
ar
y
A
M
L;

S
am

pl
e,

sa
m
pl
es

us
ed

fo
r
ge

ne
ra
tio

n
of

M
S
C
s
or

C
D
34

1
H
S
P
C
s;

U
nk
,u

nk
no

w
n;

VA
F,

va
ria

nt
al
le
le

fre
qu

en
cy
;W

H
O
,W

or
ld

H
ea

lth
O
rg
an

iz
at
io
n.

3450 WENK et al 11 DECEMBER 2018 x VOLUME 2, NUMBER 23



mesenchymal murine cell line EL08-1D2, which maintains normal and
malignant HSPCs.8,9,12,13 Primary CD341 cells from MDS BM
samples or healthy controls were cultured in the presence or
absence of EL08-1D2 stromal cells (Figure 1A). A standardized
4-day culture period in serum-free medium with well-defined
cytokines conducive to cell division and maintenance of HSPCs
was chosen to exclude variables other than stroma affecting HSPC
viability.9 Viability of healthy as well as MDS HSPCs was significantly
improved through contact with EL08-1D2 cells (Figure 1A). This is in
line with our previously published results showing EL08-1D2 cells to
model the stem cell niche in vitro9,13 and reiterates the dependency
of MDS HSPCs on their microenvironment.14-16

In vitro AZA treatment conditions for EL08-1D2 cells were
established and a dose of 10 mM AZA was determined (supple-
mental Figure 1). EL08-1D2 cells were treated with AZA for 48

hours followed by washing. Subsequent coculture with CD341

HSPCs for 4 days revealed a significant decrease in HSPC support
for MDS progenitors on AZA-treated compared with untreated
EL08-1D2 stromal cells that was not discernable for healthy
HSPCs (Figure 1B), suggesting that AZA induces alterations in
stromal cells with differential consequences for MDS vs healthy
hematopoiesis.

AZA treatment of primary MSCs does not alter their

viability, morphology, or immunophenotype

Next, we established in vitro cultures of primary MSCs from MDS
BM samples, including samples categorized as MDS progressed to
secondary AML (Table 1) as well as from age-matched healthy
controls (supplemental Table 1) and exposed these to AZA at our
previously determined dose. Viability was not affected in either
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healthy or MDS MSCs after AZA treatment (Figure 2A). In line with
an earlier report,5 MDS MSCs showed a tendency to reduced
proliferation compared with healthy MSCs (not significant). Pro-
liferation of MDS MSCs was reduced by AZA treatment compared
with untreated MDS MSCs only on day 4 (Figure 2B), whereas
proliferation of healthy MSCs was unaffected. Similarly, morphology
of MSCs was not altered by AZA treatment, with clear persisting
differences discernible between healthy and MDS MSCs
(Figure 2C). Although healthy MSCs exhibited characteristic
monomorphic fibroblastoid appearance and orderly growth, MDS
MSCs appeared variable in size and showed disorganized growth.
Finally, AZA treatment did not affect expression of MSC-defining
markers CD73, CD90, CD105, or CD271 (Figure 2D).11 Taken
together, AZA treatment does not change cellular characteristics
of healthy or MDS MSCs in vitro.

Healthy hematopoiesis is significantly boosted by

AZA treatment of healthy MSCs

Next, we evaluated whether AZA treatment of healthy MSCs has
differential consequences for support of healthy or malignant
HSPCs. MDS or healthy HSPCs were cultured on healthy MSCs,
either untreated or treated with AZA, followed by assessment of
clonogenic capacity (Figure 3A). For MDS HSPCs, we aimed to
choose samples for which information on genetic mutations was
available. Variant allele frequencies (VAFs) ranged from 17% to
50% (mean, 43.8%; Table 1). This ensured a clonal CD341

population, representing a clean system to assay malignant HSPCs.
Furthermore, colony genotyping performed on 5 selected MDS
HSPC samples with high VAF (nos. 31, 32, 33, 34, 38) confirmed
that all colonies contained MDS-defining mutations and thus
belonged to the dominant MDS clone (supplemental Figure 2). In
line with previous reports, MDS HSPCs were significantly less able
to form colonies than healthy HSPCs after culture on healthy MSCs
(Figure 3B).3,5 Strikingly, treatment of healthy MSCs with AZA
further increased this difference by significantly boosting the
clonogenic capacity of healthy but not MDS HSPCs (Figure 3B).
In contrast, the colony-forming capacity of MDS HSPCs was further

reduced by AZA treatment of MSCs. Proliferation of healthy HSPCs
was enhanced on AZA-treated MSCs even in coculture with MDS
HSPCs (supplemental Figure 3). Thus, we can recapitulate our
results from EL08-1D2 cells showing that AZA treatment of
primary healthy donor-derived MSCs favors support of healthy
over malignant HSPCs.

MDS MSCs are amenable to epigenetic therapy

Previous reports found decreased support of healthy progenitors
on MDS MSCs, which we could not observe (Figure 3C).5 In our
hands, the clonogenic capacity of healthy HSPCs did not differ
significantly on either MDS or healthy MSCs (Figure 3C). However,
the significant growth difference between MDS and healthy HSPCs
seen after culture on healthy MSCs was less pronounced on MDS
MSCs. Having observed a favorable impact on healthy HSPC
support by treatment of both EL08-1D2 and primary healthy MSCs,
we asked whether AZA would have a similar effect in the diseased
setting (Figure 3D). Indeed, we found that AZA treatment of MDS
MSCs also favored support of healthy over MDS HSPCs. The
colony-forming capacity of healthy HSPCs increased on AZA
-treated MDS MSCs whereas that of MDS HSPCs decreased,
rendering the difference significant (Figure 3D). We conclude that
epigenetic treatment of MSCs is feasible and can be further
developed and exploited for MDS therapy. Specifically, AZA
treatment of MSCs, both healthy and MDS-derived, shifts their
supportive capacity toward healthy HSPCs.

AZA treatment cannot revert the impaired

differentiation potential of MDS MSCs

As the effect of AZA on MSCs is likely to occur through epigenetic
reprogramming, we assessed whether AZA treatment restores
differentiation of MDS MSCs (Figure 4A). MDS MSCs showed
fundamentally impaired osteogenic differentiation (Figure 4B), as
observed by others,5 which was not affected by AZA. Adipogenic
differentiation of MDS MSCs was also decreased compared with
healthy MSCs (Figure 4C). AZA treatment significantly decreased
adipogenic differentiation of healthy but not MDS MSCs. Together
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with our findings from immunophenotyping and morphologic
analysis, this demonstrates that AZA treatment in vitro cannot
revert the diseased phenotype of MDS MSCs.

AZA targets stromal pathways with diverse

biological function

To consider DNA as well as RNA-dependent AZA-induced
transcriptional changes, we performed RNA-seq on EL08-1D2 cells
cultured with or without AZA to gain a comprehensive overview
of affected genes and functional networks within the stromal
microenvironment. We chose EL08-1D2 cells in lieu of primary

MSC samples as they constitute a homogenous cell line allowing
sample consistency and eliminating potential interpatient variation,
generating a robust data set.

A total of 1183 genes were significantly differentially expressed
between untreated (2AZA) and AZA-treated (1AZA) cohorts
(“AZA-sensitive genes,” listed in supplemental Table 2). The
majority of genes were upregulated (69%; 821 genes) whereas
approximately one-third were downregulated (31%; 362 genes) in
response to AZA (Figure 5A). The distinct gene-expression pattern
became apparent by hierarchical clustering of the 500 most
differentially expressed genes between untreated and AZA-treated
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samples (Figure 5B). Gene-ontology (GO) enrichment analysis
revealed a striking number of immunoactive genes upregulated
under AZA treatment, whereas other regulated genes most
significantly related to ECM and cell-adhesion molecules (CAMs;

supplemental Table 3). To provide more detailed information on
stromal pathways regulated by AZA, we performed Kyoto Encyclo-
pedia of Genes and Genomes (KEGG)-based fixed network enrich-
ment analysis (FNEA). Significantly overrepresented AZA-sensitive
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genes affiliated with several biological pathways (Figure 5C; supple-
mental Table 4).When ranked by significance, the 3 top-listed pathways
were ECM receptor interaction, CAM, and focal adhesion (Figure 5C).
These pathways are intrinsically tied to each other and regulate cellular
functions such as growth, differentiation, migration, and intercellular
communication. Further significant gene sets, that is, cytokine-cytokine
receptor interaction, complement cascades, Toll-like receptor signaling,
chemokine signaling, and retinoic acid–inducible gene 1 protein (RIG-I)-
like receptor signaling pathways, demonstrate an (anti-)inflammatory or
immunomodulatory effect of AZA on stroma. Of note, many TGF-b
signaling genes were significantly upregulated in EL08-1D2 cells in
response to AZA (Figure 5C; supplemental Table 4). Because TGF-b is
epigenetically regulated and plays a role in regulation of stromal cell
function and HSPC support in various diseases including MDS,17-21

we selected TGF-b as a gene of interest for further expression analysis
in our primary MSC samples. To this end, we analyzed 8 healthy and 7
MDS MSC samples by RT-PCR. Of these, 3 of the same healthy and
3 MDS MSC samples were also available for analysis of TGF-b and
TGF-b receptor protein expression by flow cytometry. AZA-induced
transcriptional upregulation of TGF-b corresponded to translational
upregulation of TGF-b and TGF-b receptor protein in these samples
(Figure 5D-E). Thus, our RT-PCR and flow cytometry data for AZA-
induced modulation of TGF-b on primary MSCs confirm the results
of our RNA-seq studies on EL08-1D2 cells. However, given the
counterintuitive results in comparison with data showing upregula-
tion of TGF-b signaling in MDS,19,21 these data are not conclusive
as evidence for the enhanced HSPC-supportive effect we observed
for MSCs after AZA treatment.

AZA-regulated molecular pathways are essential for

HSPC support

To look further into how increased support of healthy HSPCs is
mediated by AZA treatment of MSCs, we used a published RNA-
seq data set of genes identified as essential to healthy HSPC
support in various stromal cell lines, including EL08-1D2 cells.12

Using this data set as reference set for critical regulators within
the stromal microenvironment, we performed gene-set enrich-
ment analysis. Indeed, we find that these crucial HSPC-support
genes are strongly enriched among our AZA-sensitive genes
(Figure 6A; supplemental Table 5). To unravel correlation patterns
among these HSPC-support genes, we performed weighted gene
coexpression analysis.12 We identified 3 distinct coexpression
modules, that is, HSPC-supportive genes following a similar
expression pattern in EL08-1D2 cells (designated blue, brown,
and turquoise modules). Genes of each module enriched for
distinct biological pathways: blue module for interferon (IFN)
signaling, brown for ECM receptor interaction, and turquoise for
WNT- and platelet-derived growth factor (PDGF)-signaling pathways
(supplemental Figures 4-9). Of note, only the blue (IFN) and
brown (ECM) modules significantly correlated with AZA treatment
(Figure 6B).

For each module, we visualized gene relationships and expression
of significantly enriched pathways in EL08-1D2 cells treated
with AZA. Furthermore, we defined the 10 most interconnected
genes, so-called hub genes for each module. The brown module
(ECM receptor interaction; Figure 6C) contains 10 hub genes,
all of which were significantly regulated by AZA. All 11 hub genes
in the blue module (IFN signaling; supplemental Figure 9) were
also significantly regulated in AZA-treated samples. In contrast,

none of the 22 hub genes within the turquoise module (WNT
and PDGF signaling; supplemental Figure 8) were significantly
differentially expressed between AZA-treated and untreated
samples.

Finally, to discriminate AZA-regulated genes most relevant to
MDS, we compared our list of AZA-sensitive EL08-1D2 genes to
2 available published RNA-seq data sets derived from primary
untreated MDS MSCs in comparison with healthy controls.3,22 The
majority of AZA-sensitive genes did not differ between MDS and
healthy MSCs (supplemental Figure 10), which is in line with our
functional results. Again, using GO analysis, we found ECM and
CAM molecules to be most overrepresented among the MDS-
specific AZA-sensitive genes (supplemental Figure 10). Specifi-
cally, we found 21 genes upregulated in MDS MSCs compared
with healthy MSCs that were downregulated in EL08-1D2 cells
after AZA treatment (Figure 6D). Of these, 7 (33%) are indepen-
dent loci, which encode for collagens.

To validate our bioinformatic results, we performed RT-PCR on a
total of 23 selected genes. These included 20 AZA-sensitive MDS-
specific genes (Figure 6D) and 3 hub genes from the brown module
(ECM receptor interaction; Figure 6C) in primary MSCs treated with
AZA in comparison with untreated MSC controls. Indeed, 13 of 23
tested targets were significantly regulated following AZA treatment
in MDS MSCs but were less responsive in healthy MSCs
(Figure 7A-C). Two genes, PRSS3 and COL5A3, showed a higher
mean AZA-induced transcriptional fold-change in healthy compared
with MDS MSCs (Figure 7B-C). Nine of 23 genes were not
significantly differentially expressed between MDS and healthy
MSCs according to RT-PCR analysis (Figure 7A-B; supplemen-
tal Figure 11), which could be due to a decreased sensitivity of
RT-PCR in comparison with RNA-seq.

In total, our integrative analysis demonstrates that distinct transcrip-
tional networks associated with stromal HSPC support (ie, IFN
signaling and ECM receptor interaction pathways) are modulated
by AZA. We identify hub genes in ECM receptor interaction and
IFN-signaling pathways that may play a key role in AZA-induced
stromal support of healthy hematopoiesis. In addition, our meta-
analysis demonstrates that the majority of AZA-sensitive stromal
HSPC-support genes do not differ between healthy and MDS
MSCs.

Discussion

Increasing evidence in myeloid neoplasms suggests that malignant
HSPCs and their progeny remodel the BM microenvironment
to their advantage.3,6,23,24 The fact that no recurrent somatic
mutations have been found in patient-derived MSCs argues that
malignant stromal alterations are of epigenetic nature.25 Only
recently, it was shown that ex vivo–expanded MSCs from MDS
patients exhibit not only an altered phenotype6,26 but also an
aberrant methylation signature that is reverted in patients respond-
ing to AZA.6 However, this has been attributed mainly to suppres-
sion of the malignant hematopoietic clone and subsequent loss of
signaling cues to the niche. Direct effects of AZA on the niche are
less clear. By examining MDS MSCs in comparison with age-
matched healthy controls directly treated with AZA in vitro, we
complement these studies further and provide proof of concept
that diseased stroma of myeloid neoplasms can be therapeutically
targeted using epigenetic drugs such as AZA.
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Figure 7. Transcriptional regulation of HSPC-supportive stromal genes in primary MSCs treated with AZA. Primary healthy and MDS MSCs were treated with AZA (10 mM)

once or left untreated. After 4 days, MSCs were harvested and expression of selected stromal HSPC-supportive genes was validated by comparative RT-PCR. (A) Selected hub genes

of the brown module (ECM receptor interaction, from Figure 6C). (B) Seven collagens differentially expressed between untreated healthy and MDS MSCs (from Figure 6D). (C) Other

stromal HSPC-supportive genes differentially expressed between untreated healthy and MDS MSCs (from Figure 6D, in red). *P , .05; **P , .01; ***P , .001; ****P , .0001.
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Most importantly, our RNA-seq data clearly show that AZA directly
regulates stromal genes crucial to HSPC support, providing an
explanation for the enhanced clonogenic capacity of healthy
HSPCs we observed in our coculture experiments. In contrast, MDS
HSPCs are less responsive to stromal cues after AZA treatment.
Bhagat et al have shown that epigenetic treatment of MDS stroma can
enhance erythropoiesis from healthy HSPCs.6 However, in our hands,
the effects of AZA in this regard are not specific to MDS stroma but
can also be induced in healthy MSCs as well as in murine stromal cells.
Accordingly, we could not observe a differential effect of AZA on MDS
MSCs compared with healthy MSCs in phenotypical assays. Although
we cannot rule out that longer in vitro treatment may produce different
results, our findings argue against the presumption that AZA entirely
reprograms disease-associated cellular phenotypes.

Our RNA-seq data demonstrate that AZA directly modulates diverse
genetic networks of stromal biology. Interestingly, we find that AZA
elevates TGF-b signaling in EL08-1D2 cells as well as primary MSCs.
Intrinsic and extrinsic TGF-b signaling has versatile and context-
dependent consequences for healthy and malignant stroma cell

biology.17,21,27 In turn, stroma-derived TGF-b plays a role in regulation
of healthy and malignant HSPCs.19,28 Our results are in apparent
contrast to previous data showing downregulation of TGF-b RNA in
MSCs from MDS patients after several courses of AZA therapy,
which may be an indirect effect of AZA or possibly due to longer drug
exposure than in our setup.26

Among the most strongly AZA-regulated HSPC support networks
we identified, the IFN-signaling pathway (blue module; supple-
mental Figure 8) stands out as it has been described before as an
AZA-regulated pathway in solid tumors, confirming the validity of
our RNA-seq data set.29,30 Of note, the IFN pathway is involved in
activation of healthy HSPCs and promoting their expansion.31 In
addition, induction of inflammatory and immune-response path-
ways by AZA may facilitate immune modulation by MSCs in the
leukemic niche.29,30,32 Accordingly, our FNEA analyses demon-
strated upregulation of TGF-b and RIG-I in AZA-treated stromal
cells. The second significantly regulated HSPC support network
(ECM receptor interaction, brown module; Figure 6) is composed, in
large part, of collagens, important components of the ECM.33,34 The

Con
tro

l

Hea
lth

y M
SC (+

)A
ZA

M
DS M

SC (+
) A

ZA
0

1

2

3

Fo
ld 

ch
an

ge

4
****

NID1

***

Con
tro

l

Hea
lth

y M
SC (+

)A
ZA

M
DS M

SC (+
) A

ZA
0

2

4

6

Fo
ld 

ch
an

ge

8

F3

*

Con
tro

l

Hea
lth

y M
SC (+

)A
ZA

M
DS M

SC (+
) A

ZA

Fo
ld 

ch
an

ge
0

2

4

6

8

10

MET

*

Con
tro

l

Hea
lth

y M
SC (+

)A
ZA

M
DS M

SC (+
) A

ZA

Fo
ld 

ch
an

ge

0.0

0.5

1.0

1.5

2.0

2.5

COX4L1

*

Con
tro

l

Hea
lth

y M
SC (+

)A
ZA

M
DS M

SC (+
) A

ZA

Fo
ld 

ch
an

ge

0

1

2

3

4

5

ZYX

***

Con
tro

l

Hea
lth

y M
SC (+

)A
ZA

M
DS M

SC (+
) A

ZA
0

1

2

3

Fo
ld 

ch
an

ge
4

*

PRSS3

**

C

Figure 7. (Continued).

3458 WENK et al 11 DECEMBER 2018 x VOLUME 2, NUMBER 23



ECM is a dynamic compartment that displays both direct and indirect
signaling properties and represents an important part of the stem cell
niche. As such, ECM molecules act directly on HSC by binding
receptors mediating cell anchorage and regulating intracellular signaling
as well as indirectly through noncanonical growth factor presentation.35

Within the stem cell niche, collagen types I, IV, and VI as well as
fibronectin and tenascin-C, are the main ECM components produced
by MSCs that have previously been identified.35-37 Accordingly, we find
that collagen types IV and VI are regulated by AZA in primary MSCs.

The turquoise module (WNT/PDGF-signaling pathways; supplemental
Figure 9) was not significantly regulated by AZA in our data set. This is
in apparent contrast to findings from Bhagat et al, which identified
FRZB, a component of the WNT-signaling pathway, by methylome
analysis as a specifically deregulated gene in MDS MSCs that was
demethylated after AZA treatment.6 However, although single genes
may be aberrantly silenced in MDSMSCs and subsequently reinduced
upon AZA treatment, it appears from our data that the mechanism by
which AZA exerts its activity on MSCs is more complex. In our hands,
epigenetic manipulation of stroma enhances healthy hematopoiesis
independently of MDS and thus argues for antileukemic effects beyond
reactivation of aberrantly silenced genes.

In early stages of MDS, hematopoiesis is not completely clonal
and healthy HSCs are still present. In later stages, clonal MDS
hematopoiesis dominates (as attested by high VAF) and it is
an open question of whether healthy HSPCs still remain in
significant numbers in the niche. This would argue that the
favorable effects of epigenetic modulation on the niche can be
best exploited in the early stages of MDS where a predominant
effect on healthy hematopoiesis is still attainable. Sequential
BM sampling has shown that overall clonal structure in MDS
is unchanged by AZA treatment.38,39 However, in responding
patients, AZA has been shown to promote expansion of HSPCs
with a lower mutational burden, thus changing their clonal
contribution to functional hematopoiesis.39 These data fit with our
observation of preferential support of healthy over MDS HSPCs on
AZA-treated MSCs.

In sum, our study demonstrates that the epigenetic agent AZA
exerts a direct effect on the HSPC-supporting BM niche and
provides proof of concept for epigenetic treatment of MSCs.

Our RNA-seq data set provides a valuable framework for further
evaluation of stromal gene networks influenced by AZA, which
could aid in developing more effective niche-based targeted
therapies for MDS.
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