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Polyamines (PAs) are indispensable polycations ubiquitous to
all living cells. Among their many critical functions, PAs con-
tribute to the oxidative balance of the cell. Beginning with stud-
ies by the Tabor laboratory in bacteria and yeast, the require-
ment for PAs as protectors against oxygen radical–mediated
damage has been well established in many organisms, including
mammals. However, PAs also serve as substrates for oxidation
reactions that produce hydrogen peroxide (H2O2) both intra-
and extracellularly. As intracellular concentrations of PAs can
reach millimolar concentrations, the H2O2 amounts produced
through their catabolism, coupled with a reduction in protective
PAs, are sufficient to cause the oxidative damage associated with
many pathologies, including cancer. Thus, the maintenance of
intracellular polyamine homeostasis may ultimately contribute
to the maintenance of oxidative homeostasis. Again, pioneering
studies by Tabor and colleagues led the way in first identifying
spermine oxidase in Saccharomyces cerevisiae. They also first
purified the extracellular bovine serum amine oxidase and elu-
cidated the products of its oxidation of primary amine groups of
PAs when included in culture medium. These investigations
formed the foundation for many polyamine-related studies and
experimental procedures still performed today. This Minire-
view will summarize key innovative studies regarding PAs and
oxidative damage, starting with those from the Tabor laboratory
and including the most recent advances, with a focus on mam-
malian systems.

Polyamines (PAs)2 are naturally occurring polycationic alkyl-
amines that are essential for growth and survival in all mamma-

lian cells (1, 2). This absolute requirement is based on the mul-
titude of roles PAs play, many of which relate to their positive
charge at physiological pH. PAs, including putrescine (Put),
spermidine (Spd), and spermine (Spm) (Fig. 1), contribute to
critical cellular processes such as ion channel regulation, chro-
matin structure maintenance, DNA replication, transcription,
and translation (3–6). They also act as free radical scavengers,
and their catabolism can be a source of toxic reactive oxygen
species (ROS), therefore implying their potential to affect
oxidative status. The main purpose of this Minireview will be
to cover the salient features of PAs and their catabolism in
association with oxidative stress in both normal and disease
processes.

Contributions of polyamines to cellular redox balance

Oxidative stress occurs when ROS, such as those derived
from hydrogen peroxide (H2O2), exceed the physiological
levels required for normal redox reactions and cell signaling.
The resulting oxidative damage to macromolecules is asso-
ciated with aging and a variety of related pathologies, includ-
ing cancer (7, 8). PAs play dual roles in maintaining cellular
oxidative homeostasis by both protecting against free
radical–mediated damage and acting as substrates for
enzymes that produce ROS.

Polyamines as protection from oxidative damage

Polyamines protect against oxidative damage in micro-
organisms—The natural PAs are themselves capable of acting
as free radical scavengers (9 –12) and protect against oxidative
damage of DNA and phospholipids in cell-free systems (13–
15). These properties extend to bacteria and yeast, where Tabor
and colleagues first demonstrated a protective role for PAs
against oxidative damage in vivo. Spd-deficient Escherichia coli
cells were hypersensitive to paraquat in the presence of oxygen,
suggesting that Spd reduced superoxide-associated cell death
(16). In subsequent studies, E. coli mutants lacking PAs were
extremely susceptible to ROS toxicity when grown in 95% oxy-
gen or exposed to H2O2 (17). These data were among the first to
demonstrate polyamine-mediated protection against oxygen
radicals.
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The polyamine modulon of E. coli comprises a growing col-
lection of genes that are stimulated by PAs at the level of trans-
lation (18). Recently, this modulon was expanded to include
polyamine-inducible genes specific to oxidative stress condi-
tions, including those governing the synthesis of superoxide
dismutases (SODs), glutathione (GSH), and catalases (19, 20).
Thus, in addition to the direct effects of PAs on ROS in E. coli,
PAs can stimulate the expression of proteins essential to an
effective antioxidant response.

Saccharomyces cerevisiae mutants lacking Spd and Spm
also require exogenous PAs for protection against ROS, even
in the presence of SOD overexpression (21, 22). Microarray
studies comparing Spm-deficient yeast mutants containing
low levels of Spd with those supplemented with Spd revealed
that Spd altered the expression of at least 500 genes greater
than 2-fold, including several oxidative stress-response
genes (23). Recently, the S. cerevisiae polyamine exporter
Tpo1 was discovered to participate in the oxidative stress
response by modulating intracellular Spd and Spm levels in
response to H2O2, thereby invoking the production of pro-
teins necessary for oxidant tolerance, including SODs and
heat shock proteins, governing the duration of cell cycle
arrest, and allowing adaptation to elevated H2O2 levels (24).

In addition to the unmodified PAs, polyamine conjugates
have been implicated in protection from oxidative stress. Glu-
tathionylspermidine (Gsp) was first identified in E. coli by the
Tabors in 1974 (25) and was later found to be a source of Spd for
the bacteria upon the induction of growth from stationary phase
(26). Glutathionylspermidine synthetase/amidase (GspSA) cata-
lyzes both the formation and removal of an amide bond between
GSH and Spd to govern Gsp abundance (27). The amidase domain
of GspSA is sensitive to inactivation by oxidation, resulting in Gsp-
modified proteins, including Gsp disulfides and protein thiols (28).
These data are consistent with the hypothesis that the formation/

hydrolysis of Gsp represents an oxidative stress mechanism that
contributes to the maintenance of redox homeostasis in E. coli.

Confirmation of a role for GSH–Spd conjugates in redox
reactions came with the discovery of trypanothione (N1,N8-
bis(glutathionyl)spermidine), a cofactor for trypanosomatid
GSH reductase (29). As an important mediator of redox balance
in pathogenic trypanosomes, including those responsible for
human African trypanosomiasis, leishmaniasis, and Chagas’
disease, the generation, use, and redox recycling of trypano-
thione have become targets for antitrypanosomal drug devel-
opment (30). Additionally, Spd and Spm protect against free
radical–mediated lipid peroxidation in Trypanosoma cruzi
(31).

Protective effects of polyamines against oxidative stress in
mammalian cells—Spm and Spd also protect mammalian cells
against ROS-mediated damage, and depletion of these PAs is
known to arrest cellular growth. The Gy11 embryonic fibro-
blast cell line is deficient in Spm due to a mutation in the Spm
synthase gene (32). These cells are more sensitive to the cyto-
toxic effects of H2O2 than their normal counterparts, and fur-
ther depleting their PA levels induces DNA damage and apo-
ptosis even in the absence of H2O2. Using combinations of
enzyme inhibitors to adjust the intracellular Spd and Spm
concentrations of these cells to within normal physiological
ranges protected fibroblasts from H2O2 exposure. Additionally,
depleting cellular GSH further sensitized PA-depleted cells to
H2O2, indicating the involvement of PAs in a protective mech-
anism against ROS independent of GSH (33).

Oxidative stress activates translocation of the transcription
factor NRF2 (nuclear factor (erythroid-derived 2)-like 2), which
then stimulates expression of genes involved in the antioxidant
response. Evidence suggests that NRF2 also regulates PA bio-
synthesis by inducing ornithine decarboxylase activity in
response to oxidative stress, thereby elevating PA levels to
potentially aid in the antioxidant response (34). However, acti-
vated PA catabolism through spermidine/spermine N1-acetyl-
transferase (SSAT), another transcriptional target of NRF2,
also occurs in response to ROS, perhaps to limit tumor-pro-
moting PA accumulation (34 –36).

Polyamine catabolism as a source of ROS

Intracellular mammalian polyamine catabolism—Mamma-
lian PA catabolism consists of highly regulated, inducible path-
ways that facilitate cellular PA homeostasis. It serves to balance
PA transport and biosynthesis to maintain intracellular PAs
within a cell type-specific range that is optimal for cellular func-
tion and proliferation. Mammalian PA catabolism has two dis-
tinct but interconnected pathways (Fig. 1), both of which con-
tain oxidases that generate ROS in the form of H2O2.

The originally discovered catabolic mechanism is a two-step
process, where Spd and Spm are acetylated in their N1 positions
by the highly-inducible SSAT (37–39). N1-Acetylated PAs are
either excreted from the cell or oxidized by peroxisomal
N1-acetylpolyamine oxidase (PAOX), resulting in H2O2, 3-ace-
toamidopropanal, and Put or Spd, depending on the starting
substrate (40 –43). Pharmacological superinduction of SSAT as
a chemotherapeutic strategy has antitumor effects through

Figure 1. Polyamine catabolic pathway in mammals. SSAT catalyzes the
acetyl-group transfer from acetyl-CoA to the aminopropyl end of spermidine
or spermine, producing N1-acetylspermidine or N1-acetylspermine, respec-
tively. These acetylated PAs are either excreted from the cell or used as sub-
strates for PAOX, producing H2O2, 3-acetoamidopropanal, and either putres-
cine or spermidine, depending on the starting substrate. Alternatively,
spermine can be directly oxidized back to spermidine by SMOX while gener-
ating H2O2 and 3-aminopropanal.
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depletion of the natural PAs needed for basic cell functions
(44, 45).

Spm can also be directly oxidized by Spm oxidase (SMOX;
PAOh1) to produce H2O2, 3-aminopropanal (3-AP), and Spd
(46, 47). Localized in the cytoplasm and nucleus of mammalian
cells (48, 49), SMOX is highly inducible by many of the same
stimuli that induce SSAT (46, 50). Thus, the H2O2 produced by
SMOX has greater potential for producing genetic damage than
that produced by PAOX, which, when produced in a normally
functioning peroxisome, is in the presence of catalase. As Spm
can exist in millimolar concentrations within the cell (1), the
release of H2O2 via this pathway in circumstances of up-regu-
lated SMOX activity is sufficient to evoke oxidative stress, par-
ticularly in the form of oxidative DNA damage. Furthermore,
the 3-AP generated by SMOX spontaneously converts into the
highly reactive and toxic unsaturated aldehyde acrolein (51,
52). Notably, the S. cerevisiae amine oxidase Fms1 also directly
oxidizes Spm to Spd and was first described by the Tabor lab
(53).

Recent studies have suggested a role for SSAT in the p53-
mediated ferroptotic response to ROS stress, an iron-depen-
dent, nonapoptotic mode of cell death characterized by
accumulation of lipid ROS at the cell membrane. Activation
of p53 by DNA-damaging agents induces SAT1, a direct tar-
get of p53, resulting in the induction of arachidonate 15-li-
poxygenase, lipid peroxidation, and cell death. This SAT1
induction ultimately sensitizes the cells to ferroptosis in the
presence of ROS, manifesting as tumor suppression in xeno-
graft models. Similarly, in embryonic fibroblasts from p53
WT or p53 acetylation-deficient mutant mice, which retain
the ability to stimulate ferroptosis, Sat1 expression is
induced by p53 activation, and Sat1 knockdown partially
prevents ferroptotic cell death. The results of these studies
propose a tumor-suppressive role for p53-mediated SSAT by
promoting ferroptosis (54).

Extracellular polyamine oxidases—In the early 1950s, it was
reported that the addition of Spm or Spd to certain culture
conditions was growth inhibitory to mycobacteria (55, 56).
These studies led to the discovery of the first soluble amine
oxidases (57). Crude preparations of sheep serum amine oxi-
dase allowed kinetic studies indicating oxidative deamination
of Spm and Spd at rates greater than 10-fold that of other
amines and concluded that this oxidative “activation” of the
PAs was responsible for their antibacterial effects (58). Tabor
and colleagues purified a soluble amine oxidase from bovine
plasma, bovine serum amine oxidase (BSAO), that had sub-
strate specificity for Spm and Spd and catalyzed the stoichio-
metric formation of their corresponding aldehydes, ammonia,
and H2O2 (Fig. 2) (59, 60). Subsequent studies revealed that the
reaction by-products of Spm or Spd with BSAO were highly
toxic to E. coli, Staphylococcus aureus, bacteriophages, and
mammalian spermatozoa and caused immotility in Trypano-
soma equiperdum (61, 62).

Many studies have since concluded that adding Spd or Spm
to mammalian cells in the presence of bovine serum results in
extracellular oxidation of the PA and growth inhibition due to
the oxidation products, not the exogenous PA (63–66). Studies
testing the inhibitory effects of Spm, Spd, their aldehyde reac-

tion products (which can convert to acrolein), and H2O2 in
mammalian cell lines have indicated major roles for acrolein
and H2O2 in the cytotoxic responses (51, 67– 69), and in most
systems, treatment with aldehyde dehydrogenase inhibitors
and catalase together yielded protection from cytotoxicity (70,
71). Therefore, caution must be used when interpreting results
involving PA treatment of cells in culture, particularly with
regard to cellular processes involving ROS, such as autophagy.
As virtually all of the mechanistic studies reported in mamma-
lian cells regarding the role of PAs in autophagy were per-
formed with high concentrations of PAs in medium containing
bovine serum (72), the published interpretation of these studies
is likely in error.

Early in vivo pharmacological studies in the Tabor lab pro-
vided evidence of Spm degradation to Spd following intraperi-
toneal injections of Spm in rabbits, mice, and rats, suggesting
the presence of a BSAO-like enzyme in laboratory animals
(61). In humans, extracellular oxidation of PAs and acetylpoly-
amines has been measured in plasma from patients suffering
from cerebral stroke or chronic kidney disease (73, 74). Plasma
amine oxidase activity in renal failure patients correlated with
the severity of disease, reduction of Spm and Spd levels, and
acrolein accumulation. Oxidation of Spm was inhibited in
plasma of all patients examined using a common polyamine
oxidase inhibitor; however, a copper-containing oxidase inhib-
itor, semicarbazide, inhibited Spm degradation in half of the
patients. These data suggest the presence of a human extracel-
lular, soluble, and semicarbazide-sensitive amine oxidase
(SSAO) capable of oxidizing Spm (74).

Recent ocular research implicates vascular adhesion protein
(VAP1/SSAO/AOC3)–mediated oxidation of Spm in the
pathology of proliferative diabetic retinopathy (PDR) (75).
Chronic inflammation and oxidative stress contribute to this
pathology, and like BSAO, VAP1 oxidizes primary amines to
generate H2O2, ammonia, and aldehydes capable of forming
acrolein (76). Soluble VAP1 protein levels and acrolein adducts
are increased in the vitreous fluid of patients with PDR, where
PA levels are also elevated (77). This potential of VAP1 as an
extracellular PA oxidase has implications for pathologies
and/or treatment opportunities beyond the eye that warrant
further evaluation and underscore the need for cautious exper-
imental design and interpretation when considering the admin-
istration of natural PAs.

Figure 2. Extracellular polyamine oxidation. BSAO oxidizes the terminal
aminopropyl nitrogens of spermine or spermidine (shown) to produce H2O2,
ammonia, and the corresponding amino aldehydes.
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Physiological effects of polyamine-associated oxidative
stress

Conditions that cause the release of free PAs, such as changes
in the macromolecules to which PAs are bound, can stimulate
PA catabolism through oxidation, resulting in the generation of
ROS while lowering the abundance of free PAs available to
serve in an antioxidant capacity (15). Consequently, elevated
levels of free PAs are associated with a number of pathologies,
including cancer, neurological disorders, stroke, and kidney
dysfunction.

Infection and chronic inflammation-induced spermine
oxidation

SMOX is induced by a variety of stimuli, including the
inflammatory cytokines tumor necrosis factor-�, interleukin-
1�, and interleukin-6 (78). As chronic inflammation contrib-
utes to the carcinogenic process through the generation of
ROS, evidence from multiple models suggests that increased
Spm oxidation serves as a molecular mechanism linking inflam-
matory stimuli to cancer initiation and/or progression through
increased H2O2 generation and reduced Spm levels (Table 1)
(79 –82). The accumulation of genetic and epigenetic changes is
a hallmark of cancer, and unrepaired DNA damage resulting
from ROS exposure can cause mutations in driver genes that
contribute to carcinogenesis. H2O2-induced DNA damage that
occurs during chronic inflammation also contributes to epige-
netic changes involving DNA methylation and histone modifi-
cation patterns, which reduce or silence the expression of
tumor suppressor genes (83). Thus, sub-lethal, chronically ele-
vated SMOX increases the likelihood of mutagenic and epige-
netic changes associated with cancer.

Helicobacter pylori infection—H. pylori colonization of the
stomach mucosa often persists for decades and causes chronic
inflammation in the form of gastritis and peptic ulcers. In
infected gastric epithelial cells, SMOX induction causes a
chronic, low level of oxidative stress that has been directly
linked to H2O2-dependent DNA damage without the induction
of apoptosis or cell death (82, 84). SMOX expression is
increased in gastric tissues from all stages of gastritis through
carcinoma, relative to normal gastric mucosa, but is most
highly expressed in the high-grade precursor lesion intestinal
metaplasia (84). In H. pylori-positive gastritis patients living in
geographically isolated high-risk versus low-risk regions of
Colombia, SMOX was identified as the key factor influencing
the progression to gastric cancer in high-risk regions (85). Fur-
ther studies of these populations revealed differential expres-
sion of microRNA-124 that targets the 3�-UTR of SMOX and
limits its translation. Analysis of DNA from the gastric mucosae
of the Colombian patients revealed significantly higher levels of
miR-124 gene methylation in those patients considered at high

risk for progression to gastric cancer, consistent with the low
expression levels of the mature miR-124 and unregulated pro-
duction of SMOX activity in response to H. pylori infection
(86). This uncontrolled production of ROS from SMOX com-
bined with decreased levels of Spm for protection increases the
likelihood of additional genetic and epigenetic changes in a
potential feed-forward loop.

Enterotoxigenic Bacteroides fragilis infection—The induction
of SMOX has also been observed following infection with
Enterotoxigenic B. fragilis (ETBF), a colitis-inducing bacterium
that is positively correlated with the development of colorectal
cancer (CRC). Detection of the secreted virulence factor of
ETBF, B. fragilis toxin, is an early marker for colon carcinogen-
esis that has been positively associated with early colonic neo-
plasms, particularly tubular adenomas and low-grade dyspla-
sias biopsied from the left side of the colon (87). ETBF has been
referred to as an “�-bug” or “driver” bacteria in CRC. While the
toxin itself induces DNA damage, the host responds to infec-
tion with the production of ROS, cytokines, and chemokines,
thereby producing an environment with an altered mucosal
immune response and bacterial community that further poten-
tiates oncogenesis (88 –90). Using the multiple intestinal neo-
plasia mouse model of ETBF-induced colitis, a role for SMOX
was identified in the accumulation of ROS-mediated DNA
damage and subsequent development of colon carcinogenesis
(80). Pharmacological inhibition of PA oxidation in ETBF-in-
fected mice decreased intestinal inflammation, aberrant prolif-
eration, and tumor number. In this same model, ROS resulting
from ETBF infection caused recruitment of DNA-modifying
enzymes to regions of DNA damage, resulting in epigenetic
changes associated with aberrant tumor suppressor gene
silencing (83).

More recently, levels of ETBF in paired biopsies of human
primary CRCs and adjacent normal tissues were correlated
with expression levels of PA metabolism genes. Both c-MYC
and SMOX expression levels were increased in 80% of CRC
tissues, with the greatest expression of SMOX observed in stage
I and II cancers. Although the majority of patients were colo-
nized with ETBF, the level of colonization was generally low,
with the highest levels in earlier disease stages (92). These
results are in line with those suggesting important roles for
SMOX and ETBF in early stages of neoplasia and indicate that
SMOX may remain elevated in the absence of ETBF.

Other inflammation-associated cancers—Elevated SMOX
expression has also been documented in precancerous inflam-
matory conditions in the absence of infection. A tissue microar-
ray of human prostate biopsies revealed the highest SMOX
immunostaining in precursor prostatic intraepithelial neopla-
sia (PIN) lesions. This study also concluded that men who have
developed PIN or prostate cancer have higher SMOX expres-

Table 1
Cancers associated with induction of SMOX activity during chronic infection and/or inflammation

Pathogen
SMOX-associated inflammatory

condition Precursor lesion
Associated
carcinoma Refs.

H. pylori Gastritis/peptic ulcer Intestinal metaplasia Gastric 84
Enterotoxigenic B. fragilis Colitis, inflammatory bowel disease Left-sided tubular adenomas and low-grade dysplasias Colorectal 80, 92
Undetermined Prostatitis Prostatic intraepithelial neoplasia Prostate 81
Hepatitis C virus Chronic hepatitis Undetermined Hepatocellular 79, 93
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sion levels in benign prostate epithelium than men who have
not had these lesions, suggesting increased SMOX as a risk
factor for prostate carcinogenesis (81). Similarly, a recent study
demonstrated increased SMOX expression in hepatic tissue
from patients with chronic hepatitis. SMOX staining was fur-
ther increased in hepatocellular carcinoma tissues and was pos-
itively correlated with poorer overall survival and relapse-free
survival (93). Hepatitis is typically associated with hepatitis B or
C virus infection and fibrosis, and recent in vitro studies have
indicated that hepatitis C virus induces SMOX activity in hep-
atoma cells (79), suggesting a role for SMOX in hepatocellular
carcinogenesis.

Immunomodulation through polyamine oxidation

In vitro studies have suggested that one way H. pylori infec-
tion alters the immune response is by highly inducing SMOX in
macrophages, leading to their dysfunction and death and cre-
ating a permissive environment that allows for chronic infec-
tion (94). Recently, the effect of SMOX activity on immuno-
modulation was studied in mouse models of colitis due to
pathogenic infection or epithelial injury-associated inflamma-
tion. SMOX is up-regulated in patients with ulcerative colitis
and inflammatory bowel disease due to its high expression in
infiltrating mononuclear cells, rather than colonic epithelial
cells (95). In WT mice, infection with Citrobacter rodentium
increased cytokine and chemokine levels and inflammatory cell
infiltration in association with histological injury and mucosal
hyperplasia, and these changes were diminished in SMOX
knockout mice. Conversely, when colon inflammation resulted
from administration of dextran sulfate sodium (DSS), SMOX
knockout mice displayed increased histological damage and
cytokine expression beyond that of DSS-treated WT mice, with
more frequent colitis-associated mortality. These data suggest
that in the context of infection, the regulation of intracellular
polyamine levels by SMOX serves an immunomodulatory func-
tion, while in the setting of colitis associated with epithelial
injury, SMOX-generated Spd may serve a protective role (96).

Ischemia/reperfusion injury

Ischemia reperfusion injury (IRI), physical trauma, and tox-
ins induce PA catabolism through SSAT and SMOX in multiple
organs, leading to tissue damage (73, 97–101). SSAT, in partic-
ular, plays a significant role in promoting kidney and liver dam-
age in IRI (102), and conditional knockout of SSAT in proximal
tubule epithelial cells, where the primary effects of IRI manifest,
decreases renal damage severity via reductions in both PAOX
and SMOX activities. Increasing SSAT expression in kidney
cells caused increased mitochondrial damage, stimulating apo-
ptosis and suggesting PA oxidation as a source of oxidative
stress (103). Knockout of SSAT in mice or pharmacological
inhibition of PA oxidation during IRI demonstrated that PA
catabolism contributes to activation of the innate immune
response, increasing inflammation and apoptosis at the site of
injury. It therefore appears that PA catabolism functions in the
initial injury as well as furthering damage via immunomodula-
tion (103).

Snyder-Robinson syndrome

Snyder-Robinson syndrome (SRS), an X-linked mental retar-
dation syndrome resulting from loss-of-function mutations in
the Spm synthase gene, biochemically results in accumulation
of high intracellular Spd levels and a near-complete lack of Spm
(104). A recently developed Drosophila model of SRS suggests a
role for increased Spd catabolism and the toxic metabolites it
produces in establishing oxidative stress and lysosomal defects
in the Drosophila nervous system, resulting in altered mito-
chondrial function and impaired autophagy that are also
observed in affected SRS patient cells. ROS were highly elevated
in the brains of mutant flies, and antioxidant therapies partially
restored mitochondrial function, suggesting that increasing
antioxidant capacity may be beneficial for SRS patients (105).

Therapeutic opportunities

Inhibition of polyamine oxidation

SMOX shares significant homology with PAOX as well as the
histone-modifying enzyme lysine-specific demethylase-1 (106).
As the crystallization of SMOX has eluded many attempts, the
development of a specific inhibitor for SMOX alone has been
challenging. However, studies with existing inhibitors and
genetic manipulation of SMOX indicate it is an attractive
therapeutic target for multiple pathologies. Most notably,
the apparent role for SMOX induction in the development of
epithelial cancers suggests the inhibition of SMOX as a
potential target for prevention in individuals at risk for car-
cinogenesis, particularly in association with infection and
chronic inflammation.

Of relevance to chemotherapy, a limitation of the common
chemotherapeutic agent cisplatin is acute kidney injury (AKI).
In mice with cisplatin-induced AKI, SSAT and SMOX levels
increase, stimulating endoplasmic reticulum stress response
genes that culminate in apoptosis and kidney damage (107).
Knockout of SSAT or SMOX or neutralization of the by-prod-
ucts of PA oxidation reduces the severity of damage, implicat-
ing a role for PA catabolism in AKI. Thus, incorporation of an
inhibitor of PA oxidation into a cisplatin treatment regimen
could prevent kidney injury that might otherwise limit treat-
ment. Furthermore, as organ damage due to insults such as
ischemia/reperfusion, toxins, and trauma appears to have a PA
catabolic regulatory component, suppression of these compo-
nents is a promising strategy for the protection of tissues in a
variety of contexts.

During stroke, PA catabolism is induced due to the release of
free PAs from damaged RNA (73, 108), and the extent of this
induction was recently correlated with aging (109). Acrolein,
spontaneously formed from SMOX-generated 3-AP, is the
metabolite most responsible for neuronal damage (110). Masuko
et al. (111) designed inhibitors of the PA oxidases and investi-
gated their effects on brain infarct sizes in a photochemically-
induced thrombosis model. Inhibitor C9-4 (N1-nonyl-1,4-di-
aminobutane) most potently decreased brain infarct volume
with a therapeutic window longer than 12 h and is thus a poten-
tial drug candidate for the treatment of brain ischemia.
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Therapeutic induction of polyamine oxidation

In certain circumstances, the production of potentially
harmful oxidative stress may have therapeutic potential. A
major intracellular source of ROS is metabolic activity, and
rapidly proliferating cells require a compensatory increase in
metabolism. Therefore, populations such as cancer cells or
pathogenic microorganisms may have increased sensitivity to
treatments that produce additional oxidants.

BSAO as a mediator of polyamines and oxidative stress—The
ability of BSAO to convert PAs into toxic aldehydes and H2O2,
thus producing oxidative stress, has suggested its potential
use in a therapeutic setting due to the abundance of PAs in
proliferating cells, including tumor cells. Immobilized BSAO
injected directly into B16 melanoma tumor xenografts in mice
decreased tumor growth by �70% through the induction of
apoptosis (112). Experiments in multidrug-resistant tumor cell
lines have indicated their increased sensitivity to the oxidation
products of BSAO and Spm (113–116). Recent advances in
drug delivery technology have led to the incorporation of BSAO
into nanoparticle formulations, thereby enhancing the stability
of its catalytic activity and improving its potential as an in situ
treatment strategy to reduce intratumoral PA levels while gen-
erating tumor-toxic oxidative stress (117–119).

Induction of SMOX by polyamine analogues—The use of PA
analogues to exploit the self-regulatory nature of PA metabo-
lism is a well-studied strategy for inhibiting growth of cancer
cells. Members of the bis(ethyl) group of analogues strongly
induce PA catabolism through large inductions of both SSAT
and SMOX. In certain cancer cell types, cytotoxicity from these
analogues is attributed to the production of H2O2 via SMOX
simultaneously with depletion of the natural PAs (50, 121, 122).
Curcumin, a natural polyphenol and popular dietary supple-
ment, was recently shown to increase uptake of these PA
analogues, resulting in enhanced polyamine depletion and
growth inhibition and allowing a substantial reduction in the
required effective analogue dose (123). As curcumin pos-
sesses multiple antitumor properties, this combination with
a PA analogue would target multiple anticancer pathways
(124). Finally, two PA analogues that have been studied clin-
ically as single agents, bis(ethyl)norspermine and PG-11047
(45), have been incorporated into self-immolative nanopar-
ticles capable of packaging and delivering therapeutic
nucleic acids in addition to the PA analogue (91, 125). These
prodrugs may allow for controlled drug release as well as the
ability to simultaneously target additional antitumor path-
ways via specific cargo. These parent compounds and their
prodrug derivatives were recently also shown to have an
antiviral effect on Zika virus replication through the induc-
tion of SSAT and SMOX (120).

Conclusion

The multiple mechanisms through which PAs and their
catabolism can affect oxidative homeostasis in organisms,
including humans, allow for a wide array of possible out-
comes in both normal and pathological states. Although a
prime function of the PA catabolic pathways may be to main-
tain PA homeostasis at a set point, the potential to exploit

the pathway for therapeutic benefits is great. This is espe-
cially true for the oxidation of Spm by SMOX in response to
infection and inflammation. All data currently point to this
enzyme as a rational target for chemoprevention strategies.
Additionally, the targeted, tumor-specific super-induction
of PA catabolism by specific PA analogues continues to hold
promise for future anticancer therapies. Finally, in addition
to PA catabolism being a homeostatic mechanism, there are
other possibilities that should be explored. For instance, PA
catabolism might provide important signaling molecules,
like H2O2, at levels that are not injurious. Similarly, the
recent linkage between PA catabolism and immune modula-
tion opens new avenues for investigation and possible treat-
ments. Although the catabolism of PAs has long been stud-
ied, with the Tabor laboratory leading the way in many
aspects, many avenues remain to be explored.
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