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Cancer is a set of diseases characterized by uncontrolled cell
growth. In certain cancers of the gastrointestinal tract, the ade-
nomatous polyposis coli (APC) tumor suppressor gene is altered
in either germline or somatic cells and causes formation of risk
factors, such as benign colonic or intestinal neoplasia, which can
progress to invasive cancer. APC is a key component of the
WNT pathway, contributing to normal GI tract development,
and APC alteration results in dysregulation of the pathway for
production of polyamines, which are ubiquitous cations essen-
tial for cell growth. Studies with mice have identified nonsteroi-
dal anti-inflammatory drugs (NSAIDs) and difluoromethylorni-
thine (DFMO), an inhibitor of polyamine synthesis, as potent
inhibitors of colon carcinogenesis. Moreover, gene expression
profiling has uncovered that NSAIDs activate polyamine catab-
olism and export. Several DFMO–NSAID combination strate-
gies are effective and safe methods for reducing risk factors in
clinical trials with patients having genetic or sporadic risk of
colon cancer. These strategies affect cancer stem cells, inflam-
mation, immune surveillance, and the microbiome. Pharmaco-
therapies consisting of drug combinations targeting the poly-
amine pathway provide a complementary approach to surgery
and cytotoxic cancer treatments for treating patients with can-
cer risk factors. In this Minireview, we discuss the role of poly-
amines in colon cancer and highlight the mechanisms of select
pharmacoprevention agents to delay or prevent carcinogenesis
in humans.

Background

Polyamines were described as early as the late 17th century
with their discovery credited to Van Leeuwenhoek as discussed
in Ref. 1. Their importance as targets for cancer treatment has
only become apparent since the 1960s, as highlighted in the
timeline shown in Fig. 1. In several seminal papers, Dykstra and
Herbst (2) and Raina et al. (3) reported strong associations
between concentrations of specific polyamines and tissue
growth in rodents. Russell and Snyder (4) extended these orig-

inal findings to other species and tumor models. In addition,
they demonstrated that the activity of ornithine decarboxylase
1 (ODC1) was rapidly induced by growth stimuli. They also
found that the enzyme had an exceedingly short half-life (�10
min), suggesting that ODC1 was under strict regulatory con-
trol. By the mid-1970s, O’Brien et al. (5) showed that a variety of
tumor promoters of different classes had similar abilities to
induce both ODC1 enzyme activity and skin tumor formation.
These reports were all important original findings but did not
provide evidence of cause– effect relationships between poly-
amines and growth.

Herbert Tabor, for whom this issue of minireviews is dedi-
cated on the anniversary of his 100th birth year, and colleagues
at the National Institutes of Health used genetic methods to
address the question of causality. They established that poly-
amines were not essential for growth of bacteria in general (6,
7), but the lack of enzymes to produce polyamines did compro-
mise bacterial growth under conditions that suggested poly-
amines were acting by a mechanism affecting protein transla-
tion (8). In collaboration with his wife Celia, Herbert Tabor
showed that polyamines were essential for growth in specific
strains of yeast (9, 10).

In this same time frame, Metcalf et al. (11) at the Merrell
Research Institute in Strasbourg, France (known by its French
name Centre de Recherche Merrell International-CRMI),
reported the synthesis of difluoromethylornithine (DFMO),2 a
highly targeted drug whose mechanism involved enzyme acti-
vation and irreversible inhibition of ODC1, in 1978. Scientists
at CRMI quickly reported the growth inhibitory and anti-tumor
effects of DFMO and other ODC1 inhibitors (12–14). These
early investigations found that the profound growth inhibitory
effects of DFMO were not accompanied by cytotoxicity. Slaga
and co-workers (15) used DFMO to show that inhibition of
polyamine synthesis could inhibit skin carcinogenesis in mouse
models and that the effect of the drug was on specific features of
tumor promotion. Kingsnorth et al. (16) were the first group to
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show DFMO inhibited colon carcinogenesis in a rodent model
of colon carcinogenesis, the dimethylhydrazine-treated rat.

Clinical trials of high-dose intravenous DFMO as a therapy
for advanced cancers were conducted in the 1980s and were
generally negative from both a safety and efficacy perspective
(17). Clinical trials in patients with conditions other than can-
cer were also conducted, and these trials led to regulatory
approval of high-dose DFMO administered intravenously for
treatment of patients with a form of African Sleeping Sickness
in 1990 (18) and a topical form of DFMO for female hirsutism in
2000 (19). Achieving regulatory approval of an oral dosage form
of DFMO has never been accomplished for any medical indica-
tion and is a current major challenge for development of this
and related drugs to treat cancer risk factors.

A major motivation for the work described in this Minire-
view was identification of risk factors for leading causes of dis-
ease and death in the United States and the understanding that
some of these factors are associated with the risk of cancer (20).
Many common risk factors, such as diet, tobacco use, high
body-mass index, air pollution, and low physical activity, are
not amenable to interventions with pharmacotherapies. How-
ever, some cancer-specific risk factors can be managed by phar-
macotherapies to reduce risk of disease and mortality analo-
gous to targeting high cholesterol in patients with a risk of
cardiovascular disease using pharmacoprevention strategies
(e.g. statins) (21). Cancer-specific risk factors that could be tar-
gets for pharmacoprevention strategies include intraepithelial
neoplasia (IEN) (22). Colorectal adenomas (CRA) are an exam-
ple of an IEN risk factor for colorectal cancer (CRC). Failure to
remove CRAs is associated with an increase in CRC in humans
(23). More recent studies indicate that screening for CRAs,
which is associated with the removal of large/advanced CRAs, is
strongly associated with a reduction in mortality (24). A signif-
icant challenge in the field of oncology is to determine whether
managing cancer risk factors, such as CRAs, with pharmaco-
therapies can prevent or delay cancer and reduce cancer disease
burden and deaths.

The major goal of the work summarized in this Minireview
was to understand the mechanistic basis of pharmacopreven-
tion agents and determine whether intervening in the poly-
amine pathway could be used successfully to delay/prevent car-
cinogenesis in humans.

Polyamines as mediators of colon carcinogenesis

Following the earlier observations of the association of
polyamines and growth, Luk et al. (25) took advantage of the
new inhibitor of this pathway, DFMO, to address the impor-
tance of polyamines in gut development in rodent models.
They reported that DFMO could delay gut development in
fetal rats and recovery from chemotherapy-induced gut
injury in adult rats (25). This finding led Luk et al. (25) to ask
whether the expression of ODC1 and polyamines, which
appeared to be important in normal gut mucosal develop-
ment, was altered in the apparently normal gut mucosa of
patients with familial adenomatous polyposis (FAP), a
genetic syndrome associated with near 100% risk of develop-
ment of colon cancer. They discovered that both ODC1 and
polyamines are elevated in the apparently normal colonic
mucosa of FAP patients and appeared to identify genotypic
individuals (26). Following the identification of the APC
gene in humans (27), the elevation of ODC1 enzyme activity
and polyamine contents in apparently normal colonic
mucosa of genotypic FAP patients was established (28).

Fig. 2 depicts the signaling of ODC1 and the polyamine path-
way in patients with FAP and in normal individuals. This depic-
tion is based on studies in humans and mouse models. Multiple
intestinal neoplasia in the ApcMin/� mouse model of FAP is
caused by a mutation in the murine homolog of the human APC
gene (29). Expression of ODC1 and other genes in the poly-
amine pathway, including the gene encoding the ornithine de-
carboxylase inhibitory protein antizyme (OAZ), are influenced
by the mutant APC-encoding gene in the mouse model (30).

Figure 1. Timeline of research findings linking the polyamine pathway to
cancer development. A, key observations and accomplishments (discussed
in text) that established the polyamine pathway as an integral aspect of car-
cinogenesis and a target for treating cancer risk factors. B, specific findings
and clinical trials in patients with FAP that supported the rationale for devel-
oping a combination drug product consisting of DFMO and an NSAID.

Figure 2. Role of the APC tumor suppressor gene in signaling expression
of genes regulating the polyamine pathway. Top (Normal), in individuals
with normal APC (APCWT), the canonical WNT pathway controls MYC expres-
sion (in part regulated by APC) and MYC target genes, including ODC and
other polyamine metabolic genes. Bottom (FAP), in genotypic patients with
FAP, ODC activity and polyamine contents in apparently normal mucosa are
elevated, compared with nongenotypic family members. In the ApcMin/�

mouse model, mutant APC is associated with an increase in ODC, a decrease
in antizyme (OAZ) RNA, and a consequent increase in intestinal tumor and
normal tissue polyamines. OAZ interacts with ODC 3A2 to initiate ODC deg-
radation and inhibits polyamine transport.
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ODC1 RNA levels were increased in both intestinal and colonic
mucosa, whereas OAZ RNA levels are decreased especially in
the intestinal mucosa of these mice.

Mechanistic studies in human cells support the pathway
depiction shown in Fig. 2. He et al. (31) showed that c-MYC is
transcriptionally activated by the APC signaling pathway, and
ODC1 was known to be a transcriptional target of c-MYC (32).
Conditional expression of WT APC in human colon cancer
cells containing mutant APC demonstrated that WT APC was
restrictive for ODC1 expression (33). This suppression de-
pended on the presence of canonical MYC-binding sites in the
ODC1 promoter. Tissue-specific knockdown of c-MYC in
ApcMin/� mice established that MYC was involved in APC-de-
pendent intestinal and colonic carcinogenesis (34) and that
treatment of ApcMin/� mice with DFMO reduced both intesti-
nal and colonic carcinogenesis (30, 35).

Polyamines may be involved in colon carcinogenesis due to
disruption in pathways other than the APC/MYC pathway.
Green and Hudson (36) have reviewed the roles of several sig-
naling pathways implicated in the development of colon can-
cers. KRAS-dependent tumorigenesis is inhibited by DFMO in
human Caco-2 xenografts (37), and colon carcinogenesis in
transforming growth factor � (TGF�)– deficient mice is asso-
ciated with changes in the polyamine and other metabolic path-
ways in the gut microbiome of these mice (38). The role of the
microbiome will be discussed further in a subsequent section of
this Minireview.

Drug combinations targeting the polyamine pathway to
inhibit carcinogenesis

DFMO was an effective but incomplete inhibitor of experi-
mental carcinogenesis in the ApcMin/� mouse (30) and other
models (39). Sporn (40) was an early advocate for using combi-
nations of agents as a means to increase efficacy and reduce
toxicity of treatments to suppress carcinogenesis. The non-
steroidal anti-inflammatory drug (NSAID) sulindac reduced
colonic and rectal polyps in patients with FAP in a statistically
significant but incomplete manner in a randomized placebo-
controlled trial (41). The efficacy of combinations of DFMO
with other NSAIDs, including paroxysm (42), indomethacin
(43), and aspirin (44), was reported for several models of exper-
imental carcinogenesis.

The precise mechanism by which NSAIDs inhibit carcino-
genesis remains elusive. Whereas NSAIDs are generally consid-
ered to work via their effects on cyclooxygenases and prosta-
glandin metabolism, noncyclooxygenase mechanisms have
been reported (45). Indomethacin suppresses the tumor-pro-
moter induction of ODC1 in experimental skin carcinogenesis
(46). To understand potential mechanisms of action of sulin-
dac, patterns of gene expression resulting from treatment with
sulindac sulfone, a sulindac metabolite lacking cyclooxygenase
inhibitory activity, were measured in human colon tumor-de-
rived cells (47). Sulindac sulfone inhibited cell growth and
induced apoptosis and the expression of the spermidine/
spermine N-acetyltransferase (SAT1), a polyamine catabolic
gene product implicated in polyamine export (48). The sulindac
sulfone induction of SAT1 gene expression was shown to occur
via the cyclooxygenase-independent transcriptional activation

of SAT1 by a peroxisomal proliferator-activated receptor
� (PPAR�)– dependent mechanism acting at a specific PPAR�-
responsive element in the SAT1 gene. Treatment of cells with
sulindac sulfone induces SAT1 and stimulates polyamine
export. Other NSAIDs also induce SAT1, and presumably poly-
amine export, but by unique mechanisms (49).

These results led us to hypothesize that combinations of
DFMO and NSAIDs, such as sulindac, might be working via
complementary mechanisms (depicted in Fig. 3) to suppress
dysregulated and high levels of polyamines in neoplasia by
inhibiting both polyamine synthesis and stimulating poly-
amine catabolism and export (50). Experimental studies in
the ApcMin/� mouse supported this hypothesis (DFMO and
sulindac combination in cancer chemoprevention; United
States patent no. 6,258,845, 2001) (51). A clinical trial of DFMO
and sulindac in patients with sporadic risk of colorectal cancer
showed dramatic efficacy to reduce both metachronous colo-
rectal adenomas (52) and rectal mucosal polyamine but not
prostaglandin E2 contents (53). Results from an international
clinical trial of DFMO and the NSAID celecoxib in patients
with FAP, and based on earlier preclinical data in the ApcMin/�

mouse (51), were reported in 2016 (54). This clinical trial found
that the combined DFMO-NSAID treatment had a highly sta-
tistically significant 80% reduction on global measures of tumor
burden from baseline, compared with the 30% reduction from
baseline for the NSAID alone. This trial reported a difference in
total polyp number from baseline in the two groups, but the
difference was not statistically significant. A trial of DFMO
combined with sulindac in patients with FAP is in progress and
uses a composite primary end point closely related to global
tumor burden (55).

Other drug combinations with DFMO are being investigated
in a number of preclinical cancer models. Several groups have
synthesized polyamine transport inhibitors (PTIs) (56 –58) that
suppress polyamine uptake as depicted in Fig. 2. PTIs appear to
work best in concert with a polyamine synthesis inhibitor, like
DFMO, to act as polyamine-blocking therapy (56, 59 – 61). PTIs

Figure 3. DFMO and sulindac reduce polyamines via dual mechanisms of
action. DFMO is an enzyme-activated irreversible inhibitor of ODC. As dis-
cussed in the text, DFMO has been reported to have some activity against
arginase. Sulindac and other NSAIDs can activate SAT1 by specific transcrip-
tional mechanisms. The diamine putrescine and the SAT1 products N1-ace-
tylspermidine and N1,N12-diacetylspermine are substrates for polyamine
export mediated by the solute carrier transporter (SLC3A2). Thus, DFMO acts
with sulindac and other NSAIDS in complementary ways to inhibit polyamine
biosynthesis (DFMO) and activate polyamine export (NSAIDS).
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are expected to begin clinical trial evaluations in the near
future.

Relevance of polyamines to the extracolonic sequelae of
APC mutations

The high penetrance of APC mutations in FAP results in
nearly 100% of patients developing colon and rectal cancer if
they retain their colons and rectums. Consequently, the stan-
dard of care for these patients in 2018 is colectomy with either
proctectomy or rectum-preserving surgery, followed by close
monitoring of any retained colonic/rectal tissue. Nonetheless,
these patients still develop several types of extracolonic
sequelae, including intestinal polyposis, especially in the duo-
denum, and other neoplasia, including desmoid tumors.

ApcMin/� mice express increased levels of ODC1 RNA and
polyamines in intestinal tissues, compared with normal litter-
mates. Administration of DFMO alone is effective in suppress-
ing carcinogenesis in the small intestines in these mice (30).
Combinations of DFMO and NSAIDS are potent inhibitors of
carcinogenesis in both the large and small intestines in this
model of FAP (51, 62). Isobologram analysis of drug– drug
interactions in human colon cancer-derived cells in culture
indicates that DFMO and sulindac, or its metabolites, interact
in at least an additive manner (63), supporting the conclusion
depicted in Fig. 3 that the two agents are acting by complemen-
tary mechanisms. The grade of intestinal polyps is polyamine-
dependent, and the anti-intestinal carcinogenic effects of sulin-
dac in ApcMin/� mice can be rescued by dietary putrescine (64).
Together, these findings support a role for polyamines in intes-
tinal carcinogenesis in ApcMin/� mice and the rationale for
combination DFMO and sulindac in therapy for this end point.
A current clinical trial evaluating the DFMO sulindac combi-
nation for control of intestinal polyposis is in progress (55)

ApcMin/� mice crossed with p53�/� mice show enhanced
formation of desmoid tumors, which are another example of
the extracolonic sequelae of loss of normal APC in germline.
The combination of DFMO and the NSAID piroxicam exerted
a moderate effect on development of desmoids in this model.
This combination reduced formation of desmoids by nearly
50% (62), which was significant but less substantial than the
effect this same combination exerted on intestinal carcinogen-
esis. These experimental findings suggest that the mechanisms
depicted in Figs. 2 and 3 are likely operational in the colon,
small intestine, fibroblasts (the source of desmoid tumors), and
other tissues. A major unanswered question is whether DFMO
alone or in combination with NSAIDs or other agents can be
used effectively to manage desmoids in a clinically significant
manner.

Mechanisms of cancer pharmacoprevention using drugs
targeting the polyamine pathway

DFMO is a targeted therapy acting in a very selective manner
to irreversibly inhibit a single enzyme (ODC1). There are lim-
ited data suggesting DFMO may have a modest effect on argi-
nase (65). Sulindac is a much less selective drug, acting by both
cyclooxygenase-dependent and -independent mechanisms.
The anti-growth effects of DFMO are reversed by adding an
extracellular source of polyamines, which can replete cellular

pools via the transport processes depicted in Fig. 2. The anti-
intestinal carcinogenic effects of sulindac can also be reversed
by providing ApcMin/� mice with putrescine in the drinking
water (64), supporting the conclusion that sulindac suppresses
tumor formation in these mice by a polyamine-dependent
mechanism.

Although DFMO and NSAIDs appear to affect the levels of
cell and tissue polyamines by influencing the activity and/or
expression of specific polyamine metabolic proteins, the mech-
anisms by which polyamines affect carcinogenesis are more
complicated. Evidence supporting some of these mechanisms
are further discussed in terms of the Hallmarks of Cancer, as
proposed by Hanahan and Weinberg (66, 67) and summarized
in Fig. 4.

Roles of polyamines in growth signaling, self-renewal,
invasion, and metastasis

The original Hallmarks of Cancer proposed six capabilities
that were general features of cancer. As seen in Figs. 2 and 4,
unregulated expression of genes like MYC or RAS lead to the
simple analogy of the “accelerator pedal stuck on,” where the
polyamines are the accelerant. Mutation/deletion of genes like
APC is loss of a “brake” on growth mediated by the polyamines.

Additionally, the polyamine metabolic genes ODC1 and
adenosylmethionine decarboxylase (AMD1) have been impli-
cated in the self-renewal of embryonic stem cells (ESCs) (68).
AMD1 has been shown to be essential for differentiation of
ESCs to neural precursor cells (69). Forced expression of either
ODC1 or AMD1 is able to maintain patterns of ESC gene
expression in the absence of inducers. Studies have not yet
demonstrated a role for polyamines or polyamine metabolic
genes in specific cancer stem cells. MYC is known to control the
balance of self-renewal and differentiation in hematopoietic
stem cells (70). Knockdown of c-MYC in the intestinal tract
reduces intestinal carcinogenesis due to mutant APC (34), but
intestinal homeostasis appears to occur in a MYC-independent
manner (71). It remains an unanswered question whether

Figure 4. Role of polyamines in Hallmarks of Cancer. Polyamine metabo-
lism is signaled by a number of pathways, including the APC-dependent
mechanisms, as in FAP, dietary factors acting via RAS, and other pathways and
the microbiome. Dysregulation of polyamine metabolism occurs when fea-
tures of these pathways are altered (e.g. mutations in APC and RAS). The
polyamines exert effects on a range of cell phenotypes, including Hallmarks
of Cancer such as growth signals, invasion and metastasis, broad aspects of
cell metabolism, inflammation, and immune responses.
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known MYC transcriptional targets like the polyamine meta-
bolic genes play any role in putative intestinal or colonic cancer
stem cells.

Polyamines mediate other cancer hallmarks, including inva-
sion (72) and metastasis (73). Dietary putrescine increases tis-
sue polyamine contents and intestinal tumor grade when
administered to ApcMin/� mice (64). DFMO inhibits cell motil-
ity and migration and suppresses tumor-forming ability in
colon tumor cells expressing an activated KRAS (37).

The distinction between “regulated” and “dysregulated” is an
important nuance in interpreting the consequences of the poly-
amine pathway on cell/tissue phenotypes. The polyamines are
associated with optimal growth in single and multicellular
organisms, but their regulation is equally important. The poly-
amines are critical to good health in humans, and some diseases
may be associated with age-related down-regulation of these
molecules (74). In a different context, loss of regulation (or dys-
regulation) of this pathway, as depicted in Fig. 2 for patients
with FAP, leads to severe pathological consequences, which are
largely reversible by agents targeting the polyamine pathway in
preclinical models (30, 51) and in initial clinical trials in humans
(54). The distinction has significant consequences for possible
therapeutic interventions. In the case of dysregulated metabo-
lism, such as occurs in cancer, therapies will aim to reduce
abnormally high polyamine levels. In the case of polyamine
deficiencies associated with regulated metabolism, therapies
will aim to increase abnormally low polyamines.

Roles of polyamines in deregulated metabolism

Deregulated cancer metabolism was added to the list of Hall-
marks of Cancer by Hanahan and Weinberg in 2011 (67). Can-
cer metabolism has many facets (75), and polyamines appear to
participate in several of these processes. Activation of SAT1
and polyamine acetylation suppresses tumor growth in the
transgenic adenocarcinoma of the mouse prostate (TRAMP)
model of prostate carcinogenesis (76), modulates polyamine
metabolic flux, and leads to broad metabolic consequences in
cell and rodent models (77, 78). Polyamine pools can affect the
production of 5�-methylthioadenosine, via the S-adenosylme-
thionine salvage enzyme 5�-methylthioadenosine phosphoryl-
ase (MTAP) (79). MTAP has been implicated in several cancers,
both as a tumor promoter (79) and suppressor (80). Inhibitors
of MTAP suppress growth and metastasis of at least one model
of human lung cancer (81).

Another facet of altered metabolism involving the poly-
amines is the LIN28/let-7 pathway, which is thought to play a
key role in the regulation of self-renewal of both normal and
cancer stem cells. LIN28 controls developmental timing in
Caenorhabditis elegans (82) and glucose metabolism in mice
(83). It cooperates with the WNT signaling pathway to promote
invasive intestinal and colonic carcinogenesis (84). An unbiased
screen of noncoding RNAs discovered that DFMO increased
the steady-state levels of a number of microRNAs, including
let-7, in human colon cancer– derived cells (85). The mecha-
nism of this increase was due to DFMO-dependent decreases in
cellular putrescine and spermidine pools and depletion of cel-
lular amounts of hypusine-modified eukaryotic translation ini-
tiation factor 5A (eIF-5A). The hypusine modification uses

spermidine as a substrate (see Minireview by Park and Wolff for
details (108)). Genetic knockdown experiments indicated that
eIF-5A was associated with expression of LIN28 protein, and
depletion of eIF-5A isoforms was associated with decreases in
LIN28 and increases in let-7 RNA. In neuroblastoma, let-7 is
regulated by multiple mechanisms, including the MYC family
member MYCN and LIN28. An unanswered question in this
field is as follows: can low levels of let-7 RNA be increased using
a small molecule like DFMO, or other drugs directed at the
polyamine pathway, in clinically significant settings in humans?

Role of polyamines in inflammation

Inflammation is a process that may be essential for tumori-
genesis (86). The polyamines have been implicated in inflam-
mation in cancer in several ways. One mechanism involves
polyamine oxidation with the generation of aldehydes and reac-
tive oxygen species (ROS) (87–89). This topic is dealt with
extensively in the Minireview by Casero and co-workers (109).

Ornithine, putrescine, and the polyamines are downstream
products of arginine metabolism, which has been widely impli-
cated in cancer and other inflammation-associated diseases
(90). Arginases convert arginine to ornithine, and specific argi-
nases have been implicated in H. pylori–associated gastric car-
cinogenesis by affecting host polyamine metabolism (91).
DFMO inhibits arginine- and NOS2-dependent carcinogenesis
in the ApcMin/� mouse model of FAP (35).

A novel mechanism of polyamine action in inflammation
involves the formation of neutrophil extracellular traps (NETs),
which have been implicated in tumor cell migration and metas-
tasis (92). NETs are composed of extracellular DNA, extruded
by an active process, that coats pancreatic and other tumor
cells. The tumor cells also produce and secrete the chemokine
CXCL8. NETs capture, as a consequence of CXCL8, circulating
neutrophils that also produce this chemokine and matrix met-
alloproteinases such as stromelysin. Together, these factors
promote tumor invasion and metastasis. Polyamines are in-
volved in the extrusion of DNA. Elevated polyamine levels lead
to the formation of nuclear aggregates of polyamines, which are
subsequently exported (93).

Treatment with the DNase of pancreatic cancer cells produc-
ing NETs suppresses measures of cell migration and motility.
Similarly, treatment of mice injected with xenografts of pancre-
atic cancer cells producing NETs reduces the growth of the
xenografts (92). It remains to be determined whether treatment
of tumor xenografts in mouse models, which is inhibited by
DFMO (37), does so by reducing the formation of NETs.

Roles of polyamines in anti-tumor immune responses

Polyamines are elevated in tumors, and inhibitors of poly-
amine metabolism exert their anti-tumor effects by acting on
both tumor cells (intrinsic cancer cell mechanisms) and the
tumor microenvironment (extrinsic mechanisms) (94). DFMO
alone or in combination with the statin rosuvastatin reduced
polyamines and enhanced natural killer cell activity associated
with cancer prevention in the azoxymethane-induced model of
colon carcinogenesis (95). Combination therapy with DFMO
and a polyamine transport inhibitor reduced tumor cell poly-
amines and relieved immunosuppression in the microenviron-
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ment allowing activation of anti-tumor T-cells to reduce tumor
growth in another mouse model of colon cancer (60). Poly-
amines have been broadly implicated in the function of normal
immune cells (96). The effects of inhibitors of polyamine
metabolism on tumor immunity and immune suppression may
involve both cancer cell intrinsic and extrinsic mechanisms, as
immune evasion may be tumor-induced in certain circum-
stances (97)

Role of the polyamines on the impact of diet and the
microbiome on carcinogenesis

Microorganisms in the human GI tract (referred to here as
the microbiome) are well established to impact colon carcino-
genesis, and its role in other cancer types and diseases contin-
ues to be investigated (98). Of note, the microbiome is a rich
source of exogenous polyamines and can contribute to the
overall polyamine content in an organism in normal and disease
settings. Through the microbiome and host sources, the GI is a
rich source of polyamines to support tumor growth (99). For
instance, the role of the microbiome in colon carcinogenesis
has been shown in germ-free mice that fail to develop colon
cancer in a TGF�-deficient mouse model that is predisposed
for cancer (100). Metabolomic analyses have identified in-
creased levels of N1,N12-Ac2Spm in both cancer and normal
host tissues of patients with bacterial biofilms (101). Treatment
of patients with antibiotics indicates that levels of N1,N12-
Ac2Spm are contributed by both the host and bacterial biofilm.
Biofilms containing tumorigenic bacteria appear to affect
colonic neoplasia at an early stage of carcinogenesis, based on
studies of apparently normal colonic mucosa from patients
with FAP (102). Urinary levels of N1,N12-Ac2Spm are highly
statistically and significantly associated with occurrence of
colon and breast cancer in humans (103).

Polyamines present in certain foods in the human diet have
been estimated (104), and these estimates have been associated
with risk of colon carcinogenesis in humans (105) and resis-
tance to the DFMO-sulindac therapy for reducing metachro-
nous colorectal adenomas in human clinical trials (106). It is
unlikely, however, that polyamines in the diet act as sources for
host tissue polyamine pools. Rather, the diet provides a source
of a number of elements (e.g. energy, red meat) that impact the
host via both direct metabolic mechanisms and indirect mech-
anisms mediated by the microbiome. The impact of diet on host
polyamine metabolism, assessed by measuring urinary poly-
amine levels, indicated that these other factors, rather than the
estimated dietary polyamine content, were more closely asso-
ciated with urinary polyamine contents (107).

Conclusions

The polyamine pathway is an important contributor to
both normal growth and development and specific patholo-
gies, including neoplasia. Dysregulation of the polyamine
pathway, as a consequence of tumor suppressor gene inacti-
vation (e.g. APC in colon carcinogenesis) or oncogene acti-
vation (e.g. MYC in colon carcinogenesis or neuroblastoma),
is causatively associated with carcinogenesis. Mechanisms of
this association include the role of polyamines in normal and
cancer stem cells, inflammation, immunity/immune eva-

sion, the microbiome, and diet and affect both tumor and
host. The relative importance of each of these mechanisms
linking dysregulation of the polyamine pathway and carcino-
genesis remains to be established in specific types of cancer.
Clinical evidence indicates that such therapies can success-
fully reduce risk factors for certain cancers (e.g. colonic and
intestinal polyposis for sporadic or genetic forms of colon
cancer). A major challenge for the future is to determine
whether these therapies can also reduce those specific can-
cers and decrease cancer-related deaths.
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