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ABSTRACT
Background: It is unknown whether dietary quality modifies genetic
association with body mass index (BMI).
Objective: This study examined whether dietary quality modifies
genetic association with BMI.
Design: We calculated 3 diet quality scores including the Alter-
native Healthy Eating Index 2010 (AHEI-2010), the Alternative
Mediterranean Diet score (AMED), and the Dietary Approach to
Stop Hypertension (DASH) diet score. We examined the interactions
of a genetic risk score (GRS) based on 97 BMI-associated variants
with the 3 diet quality scores on BMI in 30,904 participants from 3
large cohorts.
Results: We found significant interactions between total GRS and
all 3 diet scores on BMI assessed after 2–3 y, with an attenuated
genetic effect observed in individuals with healthier diets (AHEI:
P-interaction = 0.003; AMED: P = 0.001; DASH: P = 0.004). For
example, the difference in BMI (kg/m2) per 10-unit increment of
the GRS was smaller among participants in the highest tertile of
AHEI score compared with those in the lowest tertile (0.84; 95% CI:
0.72, 0.96 compared with 1.14; 95% CI: 0.99, 1.29). Results were
consistent across the 3 cohorts with no significant heterogeneity.
The interactions with diet scores on BMI appeared more significant
for central nervous system GRSs (P < 0.01 for 3 diet scores)
than for non–central nervous system GRSs (P > 0.05 for 3 diet
scores).
Conclusions: A higher diet quality attenuated genetic predisposition
to obesity. These findings underscore the importance of maintaining
a healthful diet for the prevention of obesity, particularly for those
individuals with a strong genetic predisposition to obesity. This trial
was registered with the Clinical Trial Registry as NCT03577639.
Am J Clin Nutr 2018;108:1291–1300.
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INTRODUCTION

Genetic factors have been shown to play a role in the
development of obesity (1–3). To date, based on genome-wide
association studies, 97 loci have been identified as associated with
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BMI (3). A recent study suggested that the genetic association
with BMI could be intensified by an obesogenic environment
(4), but specific factors that interact with genetic variants remain
largely unknown. Therefore, it is critical to identify those
environmental factors, particularly diet, which might modify
genetic associations with BMI. Moreover, identification of gene-
diet interactions may provide further evidence for benefits of
maintaining a healthful diet, especially among those with a strong
genetic preposition to obesity.

A few studies have examined interactions of food and nutrient
intake with genetic variants in relation to BMI. Studies found
that a higher consumption of sugar-sweetened beverages (SSBs)
and fried foods was associated with a more pronounced genetic
preposition to higher BMI in the Nurses’ Health Study (NHS), the
Health Professional Follow-up Study (HPFS), and the Women’s
Genome Health Study (WGHS) (5, 6). However, nutrients and
foods are not consumed in isolation, but are distributed across
correlated food networks with complex consumption patterns. It
remains unclear whether an overall diet pattern, which represents
a broader picture of food and nutrient consumption and captures
the complex nature of diet, may modify genetic associations
with BMI (7). One previous study found a significant interaction
between a diet score and FTO variant on BMI (8), whereas
another study did not find any significant interaction between
a healthful diet and a genetic risk score (GRS) based on
32 variants on BMI (9). These studies might be limited by
cross-sectional study design and measurement error in diet
quality assessment resulting from insufficient food components.
Furthermore, although the biological functions of most BMI
loci are not clearly known, more than half of these loci harbor
genes that are highly expressed, or known to function, in the
central nervous system (CNS) (3), the key site of central appetite
regulation. Given that excessive food and energy intake are the
leading risk factors for obesity (10), we classified the SNPs into
CNS and non-CNS subgroups based on the potential biological
role of nearby genes in the CNS.

Three diet quality scores [the alternative Healthy Eating Index
(AHEI) (11), the Alternative Mediterranean Diet score (AMED)
(12), and the Dietary Approach to Stop Hypertension (DASH)
diet score (13)] have been widely used to measure adherence to a
certain dietary pattern. In this study, we examined interactions
of AHEI, AMED, and DASH with a GRS based on 97 BMI-
associated single-nucleotide polymorphisms (SNPs) (3). We
further classified the SNPs into CNS and non-CNS subgroups and
examined the effect of their interactions with diet quality scores
on BMI.

METHODS

Study population

The NHS began in 1976, and was composed of 121,700
female registered nurses aged 30–55 y. The HPFS was initiated
in 1986, and was composed of 51,529 male professionals aged
40–75 y. The loss to follow-up rate of both cohorts was <10%.
The current analysis included 5730 women and 3588 men of
European ancestry whose genotype data were available. Those
participants were sampled as controls in 16 case-control data sets,
and a flow diagram of the sample selection process is shown in
Supplemental Figure 1A and B.

The WGHS is a prospective cohort study of 28,345 initially
healthy US women. Study participants were health professionals
aged ≥45 y, and free of cardiovascular disease and cancer at
baseline from 1992 to 1995 (14). In our study, we included 21,740
participants of confirmed self-reported European ancestry. A flow
diagram of sample selection is shown in Supplemental Figure 1C.

The study protocol was approved by the institutional review
boards of Brigham and Women’s Hospital and Harvard School
of Public Health. This study was registered at clinicaltrials.gov
as NCT03577639.

Assessment of diet quality

Dietary data were collected from the NHS in 1984 and from
the HPFS in 1986. Since 1986, dietary data were collected every
4 y thereafter until 2008 in both cohorts. Dietary data were
collected from the WGHS only at baseline. For the 3 cohorts,
we used a 131-item food-frequency questionnaire to obtain
information on usual intake of food and beverages. The validity
and reproducibility of this questionnaire have been described in
detail elsewhere (15–18).

Scoring for the AHEI-2010 was based on intake levels of 11
components, including fruit, vegetables, whole grains, long-chain
n–3 fats, nuts and legumes, polyunsaturated fatty acids, sugar-
sweetened beverages, alcohol, red and processed meat, trans fat,
and sodium. The components were chosen on the basis of their
association with chronic disease and mortality risk in observa-
tional and interventional studies (11). The total score ranged from
0 (nonadherence) to 110 (perfect adherence). The AMED score
was modified and adapted to the Mediterranean diet scale, and in-
cluded 9 food items, namely fruits, vegetables, whole grains, fish,
nuts, legumes, red and processed meat, alcohol consumption, and
monounsaturated fat-to-saturated fat ratios (12). The total score
ranged from 0 to 9 in the NHS and the HPFS, and from 0 to 55
in the WGHS, with a higher score representing closer adherence
to the Mediterranean diet. The DASH score was developed based
on foods and nutrients emphasized in the DASH diet and focused
on 8 components, namely vegetables, fruits, nuts and legumes,
whole grains, low-fat dairy products, SSBs, sodium, and red and
processed meat. The total score for the DASH diet ranged from
8 to 40 points (13). For each diet score, a detailed description
of component selection and score calculation can be found else-
where (11–13), and are shown in the Supplemental Methods.

Assessment of BMI

In the NHS and HPFS, height and weight were assessed
by questionnaire at baseline, and weight was collected by
questionnaire every other year. Self-reported weight was highly
correlated with measured weight (r = 0.97 for men and women)
(19). In the WGHS, weight and height were assessed at baseline
and 36 mo by self-reported questionnaires. BMI was calculated as
weight (kg) divided by height squared (m2). We defined obesity
as BMI ≥30 kg/m2.

Assessment of covariates

In the questionnaires at baseline in the NHS, the HPFS, and
the WGHS, information was collected on age, smoking status,
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physical activity, and self-reported diagnosis of hypertension and
hypercholesterolemia. In the NHS and the HPFS, the information
was updated in the biennial follow-up questionnaires. In the
WGHS, we used EIGENSTRAT analysis to calculate eigenvec-
tors accounting for population structure (20).

Genotyping and classification of SNPs

We selected 97 SNPs that were known to be associated with
BMI. Of the 97 SNPs, 77 SNPs were identified in Caucasians
and 20 SNPs were identified in mixed populations including
95% Caucasians (3). SNP genotyping and imputation have been
described in detail elsewhere (21). Most of the SNPs were
genotyped (sample call rate = 97%) or had a high imputation
quality score (r2 ≥ 0.8), as assessed with the use of MACH
software. In the WGHS, 1000 genomes version 1 phase 3 was
used as reference panel for imputation (sample call rate = 97%).
Two SNPs were excluded due to missing (rs12016871) and low
imputation quality (rs2245368: r2 = 0.01).

CNS-related SNPs were identified if biological functions of
the nearest gene of those BMI-associated loci were in the
following categories suggested by Locke et al (3): 1) neuronal
developmental process, 2) neurotransmission, 3) hypothalamic
expression and regulatory function, and 4) neuronal expression
(Supplemental Table 1). In total, 54 out of the 97 SNPs were
classified as CNS SNPs.

Genetic risk score

The total, CNS, and non-CNS GRSs were calculated as the
weighted average of the 97 SNPs, 54 CNS GRS, and 43 non-CNS
GRSs, respectively. Each SNP was weighted proportionally to the
magnitude of the per-allele-coefficient extracted from the most
recent genome-wide association study on BMI (3). The weights
of total, CNS, and non-CNS SNPs were rescaled to sum to 194,
108, and 86, respectively. The total, CNS, and non-CNS scores
were in the ranges 0–194, 0–108, and 0–86, with a higher score
indicating greater genetic predisposition to obesity.

Statistical analysis

To examine interactions between total GRS and diet scores
with BMI, generalized estimation equations were used in the
NHS and the HPFS, and a linear model was used in the
WGHS as diet was only assessed at baseline. To minimize
reverse causation, we used BMI data measured 2–4 y later
than assessment of dietary intake in the NHS and the HPFS,
and BMI measured at 36 mo after assessment of diet in the
WGHS as outcome. We assumed additive interaction between
diet quality and GRS on BMI, and interaction was tested using
the Wald test by including an interaction term (e.g., AHEI ×
GRS) into the model, with a P value of the interaction term
<0.05 indicating significant interaction. We further conducted
stratified analyses to examine associations of total GRS with BMI
by tertiles of diet scores. We adjusted for age, level of physical
activity, smoking status, total energy intake, and history of
hypertension and hypercholesterolemia. We further adjusted for
case-control data sets in the NHS and the HPFS, and geographic
region and population structure in the WGHS. The findings

across cohorts were pooled using fixed-effects models. Statistical
heterogeneity across studies was assessed by Cochrane Q test,
with P < 0.1 indicating significant between-study heterogeneity.
Similar analyses were conducted to examine interactions of CNS
GRS and non-CNS GRS with individual food components in
relation to BMI in the 3 cohorts.

To obtain predicted BMI from total GRS and tertiles of diet
score, we fitted 2 models with and without the interaction term as
described above. From each model, we obtained predicted BMI
at 10 consecutive points of total GRS between 60 and 110 within
each tertile of diet score using median value of covariates among
total participants. We pooled predicted BMI across the 3 cohorts
using a fixed-effects model. Associations of predicted BMI with
total GRS were plotted with the use of the “plot” command
in R.

We conducted stratified analyses by age, sex, smoking status,
and physical activity levels, as those variables might modify the
interaction between genetic score and diet quality on BMI. We
further examined interactions between individual SNPs and diet
score and food components on BMI, and we used Bonferroni
correction to adjust for multiple testing (critical P value after
Bonferroni correction = 0.05/[97 × (3 + 14)] = 3.0 × 10−5,
where 97 was the number of SNPs, 3 was the number of
diet scores, and 14 was the number of food components).
All statistical tests were 2-sided with P < 0.05 indicating
significance, and were performed with SAS version 9.4 (SAS
Institute) and R version 3.2.0 (R Foundation).

RESULTS

Baseline characteristics of the 3 cohorts

Participants with higher diet quality scores had lower BMIs
and higher levels of physical activity compared with those
who had lower diet scores across the 3 cohorts (Table 1).
AHEI, AMED, and DASH scores were correlated with each
other. Each diet score was significantly and positively correlated
with healthy food components, and negatively correlated with
unhealthy components (Supplemental Table 2).

Total, CNS, and non-CNS GRSs were normally distributed
in the 3 cohorts (Supplemental Figures 2 and 3). As expected,
participants with higher GRSs had higher BMIs.

Interaction between diet scores and GRS on BMI

We found significant interactions between total GRS and all
3 diet scores on BMI (AHEI: P-interaction = 0.003; AMED:
P = 0.001; DASH: P = 0.004) (Table 2). No significant
heterogeneity was observed across the 3 cohorts (P-heterogeneity
≥ 0.50). In the pooled data for the highest and lowest tertile, the
difference in BMI (kg/m2) per 10-allele increment (a 10-allele
increment was found to be equivalent to a 1.7-SD change in GRS)
was 0.84 (95% CI: 0.72, 0.96) and 1.14 (95% CI: 0.99, 1.29)
for the AHEI score; 0.83 (95% CI: 0.71, 0.96) and 1.17 (95%
CI: 1.03, 1.31) for the AMED score, and 0.78 (95% CI: 0.66,
0.91) and 1.09 (95% CI: 0.95, 1.23) for the DASH score. The
CNS GRS significantly interacted with all 3 diet scores on BMI
(AHEI: P-interaction = 0.009; AMED and DASH: P < 0.001),
but no significant interactions were observed between the non-
CNS GRS and diet quality scores (all P-interaction >0.10). We
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TABLE 1
Baseline characteristics of participants in the 3 cohorts according to tertiles of AHEI, AMED, and DASH1

AHEI AMED DASH

T1 T2 T3 T1 T2 T3 T1 T2 T3

NHS
Diet score 37.0 ± 4.7 47.8 ± 2.7 60.9 ± 6.8 2.2 ± 0.8 4.0 ± 0 5.9 ± 0.9 18.1 ± 2.5 23.5 ± 1.1 28.6 ± 2.2
Participants, n 1832 1888 2010 2243 1120 2367 1970 1761 1999
Age, y 50.7 ± 6.7 51.9 ± 6.7 53.5 ± 6.3 51.0 ± 6.7 52.0 ± 6.7 53.1 ± 6.5 50.2 ± 6.6 51.9 ± 6.6 54.0 ± 6.2
BMI, kg/m2 25.1 ± 4.8 25.0 ± 4.4 24.5 ± 4.1 25.0 ± 4.7 25.0 ± 4.6 24.7 ± 4.1 25.0 ± 4.6 25.0 ± 4.5 24.6 ± 4.2
Physical activity, MET-h/wk 10.4 ± 12.6 14.2 ± 16.7 18.2 ± 24.0 11.4 ± 14.7 14.3 ± 17.7 17.2 ± 22.2 10.6 ± 13.4 14.2 ± 17.0 18.3 ± 23.6
Total energy intake, kcal/d 1900 ± 499 1720 ± 506 1625 ± 500 1593 ± 469 1715 ± 509 1900 ± 514 1738 ± 525 1723 ± 526 1769 ± 492
Total GRS 88.1 ± 6.2 88.3 ± 6.0 88.6 ± 6.4 88.2 ± 6.2 88.4 ± 6.4 88.5 ± 6.2 88.1 ± 6.3 88.3 ± 6.2 88.5 ± 6.2
CNS GRS 58.2 ± 4.9 58.5 ± 4.9 58.6 ± 5.1 58.2 ± 4.9 58.4 ± 5.1 58.6 ± 5.0 58.2 ± 5.0 58.4 ± 4.9 58.7 ± 5.1
Non-CNS GRS 30.1 ± 3.6 30.1 ± 3.7 30.2 ± 3.5 30.2 ± 3.7 30.1 ± 3.6 30.1 ± 3.5 30.2 ± 3.6 30.1 ± 3.6 30.1 ± 3.6
Never smoker, % 47.7 47.5 42.0 43.9 44.5 47.7 42.7 46.3 47.9
Hypertension, % 6.0 8.2 7.2 6.4 7.1 7.8 5.9 6.8 8.7
Hypercholesterolemia, % 2.7 3.8 5.5 3.1 3.8 5.1 2.7 4.1 5.3

HPFS
Diet score 40.2 ± 5.3 52.3 ± 3.1 66.2 ± 6.6 2.2 ± 0.9 4.5 ± 0.5 6.7 ± 0.8 18.1 ± 2.5 24.0 ± 1.4 30.2 ± 2.7
Participants, n 1172 1164 1252 1176 1295 1117 1063 1236 1289
Age, y 53.3 ± 8.5 54.8 ± 8.7 56.2 ± 8.3 53.4 ± 8.7 54.9 ± 8.3 56.3 ± 8.6 52.9 ± 8.6 54.9 ± 8.3 56.4 ± 8.6
BMI, kg/m2 25.7 ± 3.2 25.2 ± 2.8 25.0 ± 2.7 25.7 ± 3.2 25.3 ± 2.8 24.8 ± 2.7 25.7 ± 3.1 25.4 ± 3.0 24.8 ± 2.7

Physical activity, MET-h/wk 17.1 ± 24.9 20.4 ± 26.7 26.1 ± 27.4 17.9 ± 26.0 20.4 ± 26.0 25.9 ± 27.4 16.5 ± 24.4 19.8 ± 22.8 26.7 ± 30.6
Total energy intake, kcal/d 2136 ± 603 2008 ± 612 1938 ± 581 1846 ± 546 2030 ± 610 2208 ± 599 1889 ± 577 2020 ± 605 2143 ± 601
Total GRS 88.0 ± 6.4 88.3 ± 6.3 88.1 ± 6.4 88.2 ± 6.3 88.4 ± 6.4 87.8 ± 6.4 88.2 ± 6.2 88.1 ± 6.5 88.2 ± 6.3
CNS GRS 58.3 ± 5.1 58.4 ± 5.0 58.3 ± 5.1 58.4 ± 5.1 58.5 ± 5.1 58.1 ± 5.0 58.3 ± 5.0 58.3 ± 5.1 58.4 ± 5.0
Non-CNS GRS 30.0 ± 3.6 30.1 ± 3.6 30.0 ± 3.8 30.0 ± 3.6 30.1 ± 3.6 29.9 ± 3.7 30.0 ± 3.5 30.0 ± 3.7 30.0 ± 3.7
Never smoker, % 48.0 46.0 48.2 45.8 46.9 49.8 42.1 46.8 52.5
Hypertension, % 15.0 18.0 17.7 16.8 16.8 17.0 15.2 17.0 18.1

Hypercholesterolemia, % 9.6 11.2 15.2 9.3 12.0 15.1 8.9 10.9 15.8
WGHS

Diet score 46.8 ± 5.7 58.9 ± 2.8 71.2 ± 5.8 21.3 ± 2.4 26.0 ± 0.8 30.3 ± 2.1 19.2 ± 2.5 24.5 ± 1.1 29.2 ± 2.0
Participants, n 7174 7174 7392 8477 5879 7384 8359 6937 6444
Age, y 53.4 ± 6.6 54.7 ± 7.0 55.8 ± 7.4 53.7 ± 6.8 54.6 ± 6.7 55.6 ± 7.3 53.4 ± 6.5 54.7 ± 6.9 56.2 ± 7.6
BMI, kg/m2 27.1 ± 5.5 26.4 ± 5.0 25.6 ± 4.6 27.0 ± 5.5 26.3 ± 4.9 25.8 ± 4.7 26.9 ± 5.4 26.4 ± 5.0 25.8 ± 4.7

Physical activity, MET-h/wk 10.0 ± 14.3 14.0 ± 17.3 20.2 ± 21.3 11.2 ± 16.3 14.4 ± 17.1 19.3 ± 20.5 10.7 ± 15.2 14.8 ± 18.6 20.1 ± 20.5
Total energy intake, kcal/d 1637 ± 527 1694 ± 511 1864 ± 508 1604 ± 522 1714 ± 495 1897 ± 505 1646 ± 529 1736 ± 522 1844 ± 498
Total GRS 87.6 ± 6.1 87.7 ± 6.0 87.9 ± 6.1 87.7 ± 6.2 87.7 ± 6.0 87.9 ± 6.0 87.6 ± 6.1 87.8 ± 6.0 87.9 ± 6.1
CNS GRS 58.5 ± 4.9 58.5 ± 4.8 58.7 ± 4.9 58.5 ± 5.0 58.5 ± 4.9 58.7 ± 4.8 58.4 ± 4.9 58.6 ± 4.8 58.7 ± 4.9
Non-CNS GRS 29.3 ± 3.5 29.3 ± 3.5 29.4 ± 3.5 29.4 ± 3.5 29.3 ± 3.5 29.4 ± 3.5 29.3 ± 3.5 29.4 ± 3.5 29.4 ± 3.5
Never smoker, % 53.2 51.6 49.4 54.2 48.6 50.3 48.0 52.9 54.0
Hypertension, % 24.3 24.5 22.1 25.1 22.9 22.4 24.4 23.3 22.9
Hypercholesterolemia, % 28.5 29.7 29.3 28.6 28.1 30.6 28.3 28.6 30.8

1Values are means ± SDs for continuous variables. AHEI, Alternative Healthy Eating Index 2010; AMED, Alternative Mediterranean Diet score; CNS, central nervous
system; DASH, Dietary Approach to Stop Hypertension diet score; GRS, genetic risk score; MET-h, metabolic equivalent task hour; T, tertile.

further found inverse associations of BMI with diet quality scores
stratified by tertiles of GRSs, and these inverse associations were
strongest among participants in the highest tertile of total and
CNS GRSs (Supplemental Table 3).

To further illustrate the results in Table 2, we presented
predicted BMI with total GRS stratified by tertiles of diet quality
scores estimated from multivariate models with the interaction
effect in Figure 1 and Supplemental Figure 4, and then, as
a comparison, we further obtained predicted BMI assuming no
interaction effect. Our figures showed that due to interaction, the
effect of GRS on BMI was attenuated with a high-quality diet,
and was intensified by a low-quality diet.

Interactions of food components with GRSs on BMI

Interactions between food components and GRSs in relation
with BMI were examined. Positive interactions of total GRS
on BMI were found for consumption of red/processed meat,
SSBs, and trans fat (P = 0.001), and negative interactions were
found for consumption of fruit and moderate alcohol (P < 0.01)

(Figure 2, Supplemental Table 4). For participants in the highest
tertile of intake of red/processed meat, SSBs, trans fat, fruit, and
alcohol, the difference in BMI was 1.21, 1.11, 1.10, 0.81, and
0.79, respectively, per 10-allele increment in total GRS; for those
in the lowest tertile, the difference was 0.82, 0.83, 0.77, 1.11, and
1.18, respectively (Figure 3).

Secondary and sensitivity analyses

In a stratified analysis, there were no significant differences
in interactions between diet scores and GRSs on BMI when
stratified by age, smoking status, physical activity, and sex
(Supplemental Table 5). In the NHS and the HPFS, we used
BMI assessed 4 y after dietary measurement as the outcome, and
the results remained similar to those from the primary analysis
(Supplemental Table 6). We further used simply updated diet
scores up until 2008 as the exposure, and the results were
consistent with those from the primary analysis (Supplemental
Table 7).



DIET QUALITY AND GENETIC ASSOCIATION WITH BMI 1295

TABLE 2
Difference in BMI per 10 risk allele increase in total, CNS, and non-CNS GRSs stratified by diet scores in the 3 cohorts1

Lowest tertile Second lowest tertile Highest tertile P-interaction

AHEI
Total GRS

NHS 1.25 (0.92, 1.59) 1.06 (0.78, 1.35) 0.76 (0.50, 1.02) 0.02
HPFS 0.75 (0.45, 1.04) 0.53 (0.28, 0.77) 0.49 (0.26, 0.71) 0.13
WGHS 1.28 (1.08, 1.48) 0.99 (0.80, 1.18) 1.07 (0.90, 1.24) 0.12
Pooled 1.14 (0.99, 1.29) 0.87 (0.74, 1.00) 0.84 (0.72, 0.96) 0.003

CNS GRS
NHS 1.30 (0.88, 1.72) 1.01 (0.66, 1.36) 0.66 (0.36, 0.97) 0.01
HPFS 0.84 (0.49, 1.19) 0.39 (0.08, 0.71) 0.63 (0.35, 0.91) 0.28
WGHS 1.31 (1.06, 1.57) 1.02 (0.79, 1.26) 1.12 (0.90, 1.37) 0.22
Pooled 1.18 (1.00, 1.36) 0.85 (0.68, 1.01) 0.87 (0.73, 1.02) 0.009

Non-CNS GRS
NHS 1.17 (0.60, 1.73) 1.15 (0.67, 1.63) 0.94 (0.48, 1.40) 0.53
HPFS 0.56 (0.04, 1.07) 0.76 (0.30, 1.22) 0.23 (-0.15, 0.60) 0.21
WGHS 1.27 (0.92, 1.62) 0.99 (0.66, 1.32) 1.04 (0.75, 1.34) 0.32

Pooled 1.07 (0.81, 1.33) 0.97 (0.74, 1.20) 0.78 (0.57, 0.98) 0.10
AMED

Total GRS
NHS 1.32 (1.01, 1.63) 1.02 (0.73, 1.31) 0.74 (0.48, 1.01) 0.01
HPFS 0.78 (0.46, 1.10) 0.50 (0.29, 0.70) 0.50 (0.26, 0.75) 0.14
WGHS 1.23 (1.05, 1.42) 1.01 (0.81, 1.21) 1.04 (0.86, 1.21) 0.11
Pooled 1.17 (1.03, 1.31) 0.81 (0.68, 0.94) 0.83 (0.71, 0.96) 0.001

CNS GRS
NHS 1.30 (0.92, 1.69) 1.01 (0.64, 1.38) 0.64 (0.32, 0.96) 0.01
HPFS 0.90 (0.54, 1.27) 0.52 (0.25, 0.79) 0.48 (0.16, 0.81) 0.07
WGHS 1.35 (1.12, 1.58) 1.04 (0.79, 1.29) 1.02 (0.80, 1.23) 0.03
Pooled 1.24 (1.07, 1.41) 0.84 (0.68, 1.01) 0.80 (0.64, 0.96) <0.001

Non-CNS GRS
NHS 1.33 (0.82, 1.84) 1.03 (0.51, 1.56) 0.93 (0.47, 1.39) 0.33
HPFS 0.54 (-0.01, 1.09) 0.45 (0.07, 0.83) 0.53 (0.11, 0.95) 0.81
WGHS 1.12 (0.80, 1.45) 0.99 (0.64, 1.35) 1.11 (0.81, 1.41) 0.96
Pooled 1.07 (0.82, 1.32) 0.81 (0.57, 1.04) 0.93 (0.71, 1.14) 0.50

DASH
Total GRS

NHS 1.39 (1.07, 1.71) 1.00 (0.69, 1.30) 0.71 (0.47, 0.96) 0.001
HPFS 0.49 (0.20, 0.78) 0.67 (0.41, 0.94) 0.58 (0.35, 0.81) 0.70
WGHS 1.23 (1.04, 1.41) 1.11 (0.92, 1.30) 0.96 (0.78, 1.15) 0.05
Pooled 1.09 (0.95, 1.23) 0.98 (0.84, 1.12) 0.78 (0.66, 0.91) 0.004

CNS GRS
NHS 1.48 (1.08, 1.87) 0.98 (0.60, 1.36) 0.54 (0.24, 0.84) 0.0002
HPFS 0.51 (0.16, 0.86) 0.72 (0.40, 1.03) 0.66 (0.37, 0.95) 0.65
WGHS 1.30 (1.07, 1.53) 1.23 (0.99, 1.47) 0.87 (0.64, 1.10) 0.01
Pooled 1.15 (0.98, 1.33) 1.03 (0.86, 1.20) 0.72 (0.56, 0.87) < 0.001

Non-CNS GRS
NHS 1.23 (0.69, 1.77) 1.02 (0.52, 1.53) 1.04 (0.58, 1.50) 0.56
HPFS 0.46 (-0.06, 0.97) 0.59 (0.13, 1.05) 0.44 (0.06, 0.82) 0.93
WGHS 1.18 (0.86, 1.50) 0.95 (0.62, 1.28) 1.16 (0.84, 1.49) 0.87
Pooled 1.03 (0.79, 1.27) 0.89 (0.65, 1.13) 0.90 (0.69, 1.12) 0.68

1Values are BMI change (kg/m2) with 95% CIs in parentheses. For the interaction term, diet scores of 0, 1, and 2 were assigned to the lowest, second
lowest, and highest tertiles. Tertiles of diet score and GRS were modeled as continuous variables. Models were adjusted for age (quintiles), physical activity
(quintiles), smoking status (never smoker, past smoker with 1–15 cigarettes/d, past smoker with >15 cigarettes/d, current smoker with 1–15 cigarettes/d, or
current smoker with >15 cigarettes/d), total energy intake (quintiles), hypertension (yes or no), hypercholesterolemia (yes or no), case-control data sets (9
categories in the NHS and 7 categories in the HPFS), geographic region (categories, WGHS only), and population structure (eigenvectors, WGHS only).
AHEI, Alternative Healthy Eating Index 2010; AMED, Alternative Mediterranean Diet score; CNS, central nervous system; DASH, Dietary Approach to
Stop Hypertension diet score; GRS, genetic risk score; HPFS, Health Professional Follow-up Study; NHS, Nurses’ Health Study; WGHS, Women’s Genome
Health Study.

DISCUSSION

For 3 observational cohorts of US women and men in which
BMI was ascertained after assessment of dietary preferences, we
found that higher diet quality attenuated the genetic associations

with BMI, adjusting for covariates including total energy intake
and physical activity. When we considered food components, we
found that higher intakes of red/processed meat, SSBs, and trans
fat accentuated genetic associations with BMI, whereas higher
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FIGURE 1 Predicted BMI from total GRS and tertiles of diet scores using models with and without interaction terms by pooling the 3 cohorts. Models
adjusted for age (quintiles), physical activity (quintiles), smoking status (never smoker, past smoker with 1–15 cigarettes/d, past smoker with >15 cigarettes/d,
current smoker with 1–15 cigarettes/d, or current smoker with >15 cigarettes/d), total energy intake (quintiles), hypertension (yes or no), hypercholesterolemia
(yes or no), case-control data sets (9 categories in the NHS and 7 categories in the HPFS), geographic region (categories, WGHS only), and population structure
(eigenvectors, WGHS only). AHEI, Alternate Healthy Eating Index 2010; AMED, Alternative Mediaterranean Diet score; DASH, Dietary Approach to Stop
Hypertension diet score; GRS, genetic risk score; HPFS, Health Professional Follow-up Study; NHS, Nurses’ Health Study; WGHS, Women’s Genome Health
Study.

intakes of fruit and moderate intakes of alcohol attenuated the
genetic effects on BMI.

Several previous studies have reported that certain dietary
nutrients and foods/beverages may interact with BMI-associated
GRSs. For example, by using the same population including
the NHS, HPFS, and WGHS, previous studies found that the
genetic association with BMI was stronger among participants
with higher intakes of SSBs and fried foods than among those
with lower intakes (5, 6). However, nutrients and foods are
not consumed in isolation, but are distributed across correlated
food networks with complex consumption patterns. In the past 2
decades, the dietary pattern approach has achieved considerable
success in understanding the dietary determinants of health
outcomes and translating public health messages (7). Thus, in
the current study, we examined the interactions for diet quality

scores that combine various nutrients and foods into “dietary
patterns.” Our study demonstrated that higher diet quality could
attenuate the genetic association with BMI, and the results were
consistent across 3 types of diet scores. Consistent with our
study, one recent study in the NHS and HPFS showed that
improving adherence to healthy dietary patterns could attenuate
the genetic association with weight gain (22). Among individual
food or nutrient components, besides the interaction of SSBs
with BMI that was found in a previous study (5), our study
added new information that higher intakes of red/processed
meat and trans fat accentuated the genetic association with
BMI, whereas higher intakes of fruits attenuated the association.
Moreover, our findings are consistent with previous studies in
which higher intakes of red/processed meat, SSBs, and trans fat
were found to be associated with a higher BMI, whereas intakes
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FIGURE 2 Difference in BMI (kg/m2) per 10 risk allele increase in BMI GRS and per unit increase in diet score components by pooling the 3 cohorts.
For the interaction term, food components were assigned 0, 1, and 2 to the lowest, second lowest, and highest tertiles. Tertiles of food components and GRS
were modeled as continuous variables. Model adjusted for age (quintiles), physical activity (quintiles), smoking status (never smoker, past smoker with 1–15
cigarettes/d, past smoker with >15 cigarettes/d, current smoker with 1–15 cigarettes/d, or current smoker with >15 cigarettes/d), total energy intake (quintiles),
hypertension (yes or no), hypercholesterolemia (yes or no), case-control data sets (9 categories in the NHS and 7 categories in the HPFS), geographic region
(categories, WGHS only), and population structure (eigenvectors, WGHS only). $P-interaction < 0.05; ∗components in AHEI score; #components in AMED
scores; &components in DASH scores. GRS, genetic risk score; HPFS, Health Professional Follow-up Study; NHS, Nurses’ Health Study; WGHS, Women’s
Genome Health Study.
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FIGURE 3 Difference in BMI (kg/m2) per 10 risk allele increase in total BMI GRS stratified by consumptions of red/processed meat, fruit, sugar-sweetened
beverages, alcohol, and trans fat by pooling the 3 cohorts. For the interaction term, food components were assigned 0, 1, and 2 to the lowest, second lowest, and
highest tertiles. Tertiles of food components and GRS were modeled as continuous variables. Model adjusted for age (quintiles), physical activity (quintiles),
smoking status (never smoker, past smoker with 1–15 cigarettes/d, past smoker with >15 cigarettes/d, current smoker with 1–15 cigarettes/d, or current smoker
with >15 cigarettes/d), total energy intake (quintiles), hypertension (yes or no), hypercholesterolemia (yes or no), case-control data sets (9 categories in the
NHS and 7 categories in the HPFS), geographic region (categories, WGHS only), and population structure (eigenvectors, WGHS only). GRS, genetic risk
score; HPFS, Health Professional Follow-up Study; NHS, Nurses’ Health Study; WGHS, Women’s Genome Health Study.

of fruits and moderate alcohol were associated with a lower
BMI (10).

Previous studies have examined interactions of individual
SNPs with dietary factors on BMI, but results were inconsistent.
Some studies reported that associations of the fat-mass and
obesity gene (FTO), APOA2, and PPAR-γ with BMI were
stronger among participants with higher intakes of saturated fat
than among those with lower intakes (23–25), whereas others did
not find such interactions (26). These inconsistent observations
might be due to insufficient statistical power of individual studies
to detect significant interactions between individual SNPs and
dietary factors on BMI, as most single variants have very modest
effects on BMI (3). This might also be the reason why few
SNPs significantly interacted with genetic score on BMI after
Bonferroni correction in our study. Therefore, we used the GRS
approach, which has been shown to be more powerful in gene-
environment interaction analysis than using single SNPs.

Although the biological functions of most BMI loci remain
largely unclear, there is increasing evidence supporting the role
of some obesity genes in the regulation of food intake and energy
balance. For example, the FTO obesity-predisposing allele was
associated with higher energy intakes in children (27, 28), and
higher intakes of fat and protein in adults independent of BMI (26,
29, 30). Risk variants within brain-derived neurotrophic factor
(BDNF), Src homology 2-B1 (SH2B1), troponin I-3 interacting
kinase (TNNI3K), potassium channel tetramerization domain
containing 15 (KCTD15), mitochondrial carrier 2 (MTCH2),
and neuronal growth regulator 1 (NEGR1) were also associated
with certain food and nutrient intakes (31–33). Furthermore,

risk variants in MTCH2, TNNI3K, zinc finger CCCH-type
containing 4 (ZC3H4), and FTO were found to be associated
with unhealthy eating behaviors independent of BMI (34).
Interestingly, MC4R and BDNF, common monogenic causes of
severe obesity, are highly expressed in the brain and regulate
appetite and energy control (35, 36). FTO, SH2B1, NEGR1,
KCTD15, glucosamine-6-phosphate deaminase 2 (GNPDA2),
and transmembrane protein 18 (TMEM18) are also believed to
be primarily expressed and functional in the CNS (37). This
might help explain the observed significant interactions between
GRS and diet scores on BMI, suggesting that appetite-regulating
genes may be involved. Moreover, we constructed 2 GRSs based
on BMI loci according to potential expression in the CNS,
the key site of central appetite regulation, and found that the
interactions with diet scores appeared more evident for CNS
GRSs than for non-CNS GRSs. This finding may help better
understand the mechanisms underlying the observations of gene-
diet interactions, although the significant interaction found for
CNS GRSs might be because the association of CNS GRSs with
BMI was stronger than that of non-CNS GRSs.

Our study has several strengths. First, our study included 3
cohorts with 30,904 participants, which provided us with ample
power to examine interactions of total, CNS, and non-CNS GRSs
with diet scores separately. Second, BMI was measured after
dietary intake with a 2- to 3-y lag in the 3 cohorts to minimize
reverse causation. Third, dietary intake was measured repeatedly
in the NHS and the HPFS, which minimized measurement errors.
Moreover, we analyzed diet quality scores instead of individual
nutrients or foods in our primary analyses, which took into
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account the complex and multidimensional nature of the diet.
Fourth, we measured diet quality using 3 diet scores, and found
significant interactions of GRS on BMI for all types of diet scores.
Our results provide individuals with multiple options of a healthy
diet.

Our study also has several limitations. First, interactions
between diet quality and GRS might be confounded by other
lifestyle factors. Previous studies have showed that physical
activity, television watching, and sleep modified genetic associ-
ations with BMI (8, 38). Although we have carefully adjusted
for other lifestyle factors, confounding by other unmeasured or
unknown factors might exist. Second, measurement errors of
dietary intake are inevitable. However, measurement error in
environmental exposure typically biases the interaction effect
toward the null and also substantially decreases the power
to detect subtle interaction effects. Third, because biological
functions of included SNPs are not known precisely, the
classification of CNS and non-CNS SNPs might be arbitrary;
however, we still observed stronger gene-diet interactions for
CNS GRSs than for non-CNS GRSs.

In conclusion, our study showed that a higher diet quality
attenuated genetic association with BMI. These findings provide
important insights into the complex interplays between diet
and the genetic predisposition to obesity, and underscore the
importance of maintaining a healthful diet.
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