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Abstract

Background: Subterranean rodents have evolved many features to adapt to their hypoxic environment. The brain
is an organ that is particularly vulnerable to damage caused by exposure to hypoxic conditions. To investigate the
mechanisms of adaption to a hypoxic underground environment, we carried out a cross-species brain transcriptome
analysis by RNA sequencing and identified genes that are differentially expressed between the subterranean
vole Lasiopodomys mandarinus and the closely related above-ground species Lasiopodomys brandtii under chronic hypoxia
[10.0% oxygen (O2)] and normoxia (20.9% O2).

Results: A total of 355 million clean reads were obtained, including 69,611 unigenes in L. mandarinus and 69,360
in L. brandtii. A total of 235 and 92 differentially expressed genes (DEGs) were identified by comparing the hypoxic and
control groups of L. mandarinus and L. brandtii, respectively. A Gene Ontology (GO) analysis showed that upregulated
DEGs in both species had similar functions in response to hypoxia, whereas downregulated DEGs in L. mandarinus
were enriched GO terms related to enzymes involved in aerobic reactions. In the Kyoto Encyclopedia of Genes and
Genomes pathway analysis, upregulated DEGs in L. mandarinus were associated with angiogenesis and the increased
O2 transport capacity of red blood cells, whereas downregulated DEGs were associated with immune responses. On
the other hand, upregulated DEGs in L. brandtii were associated with cell survival, vascular endothelial cell proliferation,
and neuroprotection, while downregulated genes were related to the synaptic transmission by neurons.

Conclusions: L. mandarinus actively adapts its physiological functions to hypoxic conditions, for instance by increasing
O2 transport capacity and modulating O2 consumption. In contrast, L. brandtii reacts passively to hypoxia by decreasing
overall activity in order to reduce O2 consumption. These results provide insight into hypoxia adaptation mechanisms
in subterranean rodents that may be applicable to humans living at high altitudes or operating in other O2-
poor environments.
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Background
Oxygen (O2) is essential to sustain most aerobic organ-
isms, and O2 deprivation creates a significant physiological
stress. Hypoxia occurs under natural conditions, for
instance in underground tunnels [1], at high altitude [2],
in aquatic habitats [3], and in the tumor microenviron-
ment [4, 5]. For many vertebrates, disruption of the O2

supply to the brain for more than a few minutes leads to
irreversible neurological damage due to neuronal death
[6]. Species that inhabit subterranean environments have
developed effective strategies to survive under hypoxia
and exhibit a variety of convergent morphological, physio-
logical, behavioral, and genomic adaptations [7–9].
Recent studies have revealed the molecular mecha-

nisms underlying the response to hypoxia in subterra-
nean mammals, including the differential expression
of genes encoding hemoglobin, hypoxia inducible fac-
tor (HIF)-1α, erythropoietin, and vascular endothelial
growth factor (VEGF) [10–12]. The expression pat-
terns of these genes differ between subterranean mam-
mals and mammals living above ground; the former
have evolved a unique cardiovascular system as an
adaptation of hypoxia. A large-scale transcriptome
sequencing study of the blind mole rat (Spalax galili),
a typical subterranean rodent, revealed that apoptosis
was suppressed and the expression of angiogenic fac-
tors was tightly regulated in the hypoxic environment
[13, 14]. However, it is possible that different species
of subterranean rodents have evolved distinct adaptive
mechanisms in response to chronic hypoxia [15, 16].
The Mandarin vole (Lasiopodomys mandarinus) is a

subterranean rodent that is widely distributed throughout
northeast and central China and north central Mongolia,
as well as in the adjacent areas of Siberia south of Lake
Baikal and the southern and central Korean Peninsula. For
most of its life, L. mandarinus lives in an underground
tunnel system characterized by chronic hypoxia and dark-
ness. As a subterranean species, L. mandarinus exhibits
remarkable physiological adaptations to hypoxic stress
including a higher capillary density and elevated values of
blood parameters such as hematocrit, mean corpuscular
volume, mean corpuscular hemoglobin (MCH), and MHC
concentration (MCHC) [17]. As the sibling species of L.
mandarinus, Brandt’s vole (L. brandtii) is mainly distrib-
uted in the grasslands of middle-eastern Inner Mongolia,
eastern regions of Mongolia, and some parts of southern
Russia [18]. Unlike L. mandarinus, L. brandtii spends
most of its life above ground. Their close evolutionary
relationship and distinct life histories make L. mandarinus
and L. brandtii ideal animal models for a comparative
study of mechanisms of adaption to hypoxia in subterra-
nean mammals.
In the present study, we sequenced and assembled the

brain transcriptomes of L. mandarinus and L. brandtii

under conditions of chronic hypoxia and normoxia.
Whole brain RNA was extracted and subjected to Illu-
mina sequencing to identify genes that are differentially
expressed under the two conditions as well as between
the two species.

Results
Illumina sequencing and de novo transcriptome assembly
A total of 355 million reads with 89.4 billion bases were
obtained after stringent quality assessment and data fil-
tering (Additional file 1: Table S2). We obtained 144,789
transcripts (mean length: 1989.39) and 69,611 unigenes
(mean length: 944.46) with an N50 of 2214 for L. man-
darinus, and 167,002 transcripts (mean length: 2501.43)
and 69,360 unigenes (mean length: 974.89) with an N50
of 2306 for L. brandtii. The length distribution of assem-
bled unigenes is shown in Additional file 1: Table S3.

Functional annotation
According to the BLASTX results, 20,011 (28.75%) uni-
genes of L. mandarinus and 19,120 (27.70%) unigenes of
L. brandtii had homologous proteins in the NCBI non-
redundant (Nr) database (Additional file 1: Table S4).
Based on annotated unigenes in the database, 10,593
and 9838 unigenes of L. mandarinus and L. brandtii,
respectively, were assigned to one or more Gene Ontol-
ogy (GO) terms, with 33.5%/32.5% in cellular compo-
nents, 21.1%/21.7% in molecular functions, and 45.4%/
45.8% in biological processes (Fig. 1). To identify biological
pathways that are differentially regulated between L. man-
darinus and L. brandtii, the annotated unigenes were
mapped to reference pathways in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database. L. mandarinus
and L. brandtii unigenes were mapped to 368 pathways.

Gene expression pattern analysis
To detect genes that are differentially expressed under
hypoxia and normoxia, RSEM and edgeR were used with
a false discovery rate (FDR) threshold of ≤0.05 and fold
change of ≥2. For L. mandarinus, 695 differentially
expressed genes (DEGs) were identified from a total of
69,611 unigenes, of which 425 were upregulated and 270
were downregulated in the hypoxic brain relative to the
normoxic brain (Additional file 1: Figure S1). Of the 695
DEGs, 289 were annotated in at least one of the following
databases: Nr (n = 270), Nt (n = 208), Swissprot (n = 239),
and KEGG (n = 170). Of the 270 DEGs annotated in the
Nr database, 47 were described as “hypothetical” in the
GenBank database and were therefore excluded from
further analysis. Ultimately, 223 DEGs that were anno-
tated in Nr were screened, of which 110 were upregulated
and 113 were downregulated (Additional file 2: Table S5).
For L. brandtii, there were only 158 DEGs among a

total 69,360 unigenes, with 104 upregulated and 54
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downregulated in the hypoxic brain relative to the
normoxic brain (Additional file 1: Figure S1). Of the
158 DEGs, 110 were annotated in at least one of the
following databases: Nr (n = 103), Nt (n = 76), Swissprot
(n = 93), and KEGG (n = 73). Of the 103 DEGs anno-
tated in the Nr database, 14 were described as “hypo-
thetical” in the GenBank database and were therefore
excluded from further analysis. Ultimately, 89 DEGs that
were annotated in Nr were screened, of which 49 were up-
regulated and 40 were downregulated (Additional file 2:
Table S5).

DEG functional enrichment analysis
The GO enrichment analysis indicated that the upregu-
lated DEGs of L. mandarinus were enriched in seven
GO terms in three categories—i.e., biological process
(n = 2), cellular component (n = 3), and molecular func-
tion (n = 2). There were also five enriched GO terms
among the downregulated DEGs in L. mandarinus. For
L. brandtii, all the DEGs were upregulated and were
enriched in 10 GO terms. (Fig. 2a and Additional file 1:
Table S6).
The GO categories enriched for the upregulated DEGs

of L. mandarinus represented biological functions such
as endothelial cell proliferation (Extracellular region and
growth), cell migration, cell differentiation (Biological
adhesion), gene expression (Helicase activity), and
energy harvesting (Peptidase activity); whereas enriched
GO terms for downregulated DEGs included coenzymes
(Generation of precursor metabolites and energy),

oxidoreductases (Oxidoreductase activity), and proteases
(Peptidase activity) related to aerobic reactions. Notably,
peptidase activity was found to be enriched among
DEGs that were up- and downregulated in L. mandari-
nus (Additional file 1: Table S7).
Three GO terms were shared by L. brandtii and L.

mandarinus, whereas six differed between the two spe-
cies that were related to vascular endothelial cell prolif-
eration (Cell proliferation), cell differentiation (Cell
differentiation), and cell migration (Anatomical structure
formation involved in morphogenesis).

DEG pathway analysis
To clarify the relationships between the DEGs, we
mapped the genes in the KEGG pathway database and
performed enrichment analysis with Fisher’s exact test.
Pathways with fewer than three genes were discarded,
and those with both P value < 0.05 and FDR < 0.05 were
selected as enriched pathways. We identified eight
enriched pathways for upregulated and five for downreg-
ulated DEGs in L. mandarinus, and three pathways for
upregulated and six for downregulated DEGs in L.
brandtii (Fig. 2b and Additional file 1: Table S8).
Among the eight enriched pathways for upregulated

DEGs in L. mandarinus, the major functions were angio-
genesis, cell proliferation, and apoptosis (AGE-RAGE
signaling pathway in diabetic complications, Bladder cancer,
and HIF-1 signaling). Some were involved in the regulation
of cell transendothelial migration (Leukocyte transendothe-
lial migration and Cell adhesion molecule), inhibition of

Fig. 1 GO annotations for L. mandarinus and L. brandtii transcriptomes
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angiogenesis, or induction of cell cycle arrest, cell re-
pair, and apoptosis (p53 signaling). The DEGs in the
malaria pathway included two subunits of heme (HBA
and HBB). An increase in heme can significantly in-
crease the O2-carrying capacity of red blood cells. Of
the five enriched pathways for downregulated DEGs,
most were related to the immune response and shared
a common feature of O2 consumption.
In L. brandtii, the pathways associated with the three up-

regulated DEGs were linked to cell survival (Maturity onset
diabetes of the young), extracellular matrix (ECM)-related
vascular endothelial cell proliferation (ECM-receptor inter-
action), and neuroprotection (Focal adhesion). However,
downregulated DEGs were enriched in six KEGG pathways
that were related to synaptic transmission in neurons.

Comparative analysis of unique differentially expressed
genes
To further analyze the similarities and differences between
the L. mandarinus and L. brandtii hypoxia adaptations, we
removed DEGs shared by the two species and constructed
protein interaction networks for their unique DEGs (Fig. 3).
Among the chronic hypoxia-specific differentially expressed
genes in L. mandarinus, the most prominent cores were
MMP2, THBS1, SERPINE1, and VEGFR-2, which are re-
sponsible for angiogenesis regulation /inhibition. It is worth
noting that MBP is a marker protein of cranial nerve

damage that is regulated by multiple proteins. The
down-regulation of MBP as well as the expression of
other interacting proteins indicates that neurons in L.
mandarinus are less prone to hypoxia-induced injury.
The most significant cores of the chronic hypoxia-spe-
cific differentially expressed gene protein interaction
network in L. brandtii are dopamine synthesis and
transport regulation-related proteins. The reduction of
these proteins leads to decreased neurogenic excitabil-
ity and decreased activity in L. brandtii.

Validation of DEGs by reverse-transcription quantitative
(RT-q)PCR analysis
To validate the expression data obtained from RNA se-
quencing (RNA-Seq), seven genes with different expression
patterns between L. mandarinus and L. brandtii were
randomly selected to perform qPCR. Among the seven
selected genes, five genes were up-regulated and two were
down-regulated in L. mandarinus, compared with L.
brandtii. The results showed a strong correlation between
the data of RNA-Seq and those of qPCR (R = 0.887,
P = 0.004 for L. mandarinus and R = 0.838, P = 0.019
for L. brandtii; Fig. 4a), indicating that the data from
our transcriptome analysis were reliable. The expres-
sion profile of the seven genes validated via RT-
qRCR is shown in Fig. 4b.

Fig. 2 a GO terms and b KEGG pathways significantly enriched for up- and downregulated DEGs in L. mandarinus and L. brandtii
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Discussion
In this study, we carried out a comparative transcriptome
analysis between L. mandarinus and L. brandtii whole
brain tissues exposed to chronic hypoxia vs. normoxia.
Our results reveal that similar GO terms were enriched
for upregulated DEGs in L. mandarinus and L. brandtii
under chronic hypoxia; these were associated with endo-
thelial cell proliferation, cell migration, gene expression,
angiogenesis, angiogenesis inhibition, energy acquisition,
O2 transport, neuroprotection, and protection from car-
bon dioxide [13, 19] (Fig. 5 and Additional file 1: Table
S6). This suggests that both L. mandarinus and L. brandtii
respond to chronic hypoxic stress by increasing the num-
ber of blood vessels, improving blood flow, and enhancing
O2 transport capacity. Additionally, in L. mandarinus,
enriched GO terms for downregulated DEGs were related
to cofactors and enzymes such as NADH dehydrogenase,
NAD-dependent malic enzyme, prenylcysteine oxidase,
and peroxisomal sarcosine oxidase (Fig. 2a and Additional

file 2:Table S5), which are also enriched in the Upper
Galilee Mountains blind mole-rat Spalax galili [20]. A
previous study of S. galili indicated that tight control of
angiogenesis may be a novel mechanism of hypoxia toler-
ance in subterranean rodents [14]. Our results demon-
strate that as O2 supply decreases, L. mandarinus and L.
brandtii reduce O2 consumption—the former, by sup-
pressing O2-consuming reactions such as redox reactions,
proteolysis, and coenzyme metabolism—and/or redirect
O2 usage. Besides, hypoxia-tolerance studies of hetero-
thermic Heterocephalus glaber (the naked mole-rat) found
that it can endure tissue hypoxic conditions by actively
reducing brain oxygen consumption, and it was suggested
that its protective strategies include modulation of
immune response, thrombolysis, antioxidant defense, and
activation or inactivation of pre-existing proteins [21, 22].
These results suggest that reducing brain oxygen con-
sumption may be a common way for subterranean rodents
to adapt to hypoxia conditions.

Fig. 4 Validation of RNA sequencing results by RT-qPCR. a Correlations between gene expression levels measured by RT-qPCR and RNA-Seq methods.
b Comparison of RNA-Seq log2FoldChange read counts with log2FoldChange RT-qPCR copy numbers. The upper panel shows the RNA-
Seq read counts (log2FoldChange) for seven genes, of which five are upregulated in chronic hypoxia vs. normoxia in L. mandarinus and
L. brandtii brain and two are downregulated. The lower panel shows log2FoldChange by RT-qPCR copy numbers for the same genes in
chronic hypoxia vs. normoxia in L. mandarinus and L. brandtii brain samples. (LM: L. mandarinus; LB: L. brandtii)

Fig. 3 Protein interaction network for specific DEGs in L. mandarinus (a) and L. brandtii (b) brain under chronic hypoxia
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Peptidase activity was enriched among up- and down-
regulated DEGs in L. mandarinus (Fig. 2a and Additional
file 1: Table S7). The upregulated group showed the
activation of genes such as A disintegrin and metallopro-
teinase with thrombospondin motifs (ADAMTS)1 and
ADAMTS9, which are involved in angiogenesis inhibition.
In addition, complement factor B (CFB) and MMP2 are
important for angiogenesis [23]; plasminogen activator
tissue type (PLAT) contributes to thrombolysis [24], and
autophagy 4C (ATG4C) is related to autophagy [25, 26].
Among the downregulated DEGs, transmembrane prote-
ase serine 5 (TMPRSS5) and chymotrypsin-like elastase
family member 1 (CELA1) are serine proteases that acti-
vate the complement system and induce blood coagula-
tion; fibrinogen-like protein 2 (FGL2) and coagulation
factor IX (F9) are highly expressed in vascular endothelial
cells and accelerate blood coagulation; and ADAMTS4
and ADAMTS2 are collagen precursors that are involved
in coagulation and cell support.
Enriched pathways for upregulated DEGs in L.

mandarinus were associated with angiogenesis (HIF-1
signaling, bladder cancer, and AGE-RAGE signaling
pathway in diabetic complications), transendothelial
migration (leukocyte transendothelial migration and
cell adhesion molecules), angiogenesis inhibition, cell
cycle arrest for cell repair, and apoptosis (p53 signaling
pathway). These pathways may be involved in increas-
ing blood vessels, enhancing red blood cell O2 transport
capacity, and repairing damaged cells. Enriched path-
ways for downregulated DEGs in L. mandarinus were
mainly related to aerobic metabolism and immune

response, which could supply additional O2 for cell
survival (Fig. 5).
The metabolic pathway network in L. mandarinus can

be roughly divided into three categories (Fig. 6a). The
first includes pathways and genes related to hypoxia
stress, angiogenesis and its inhibition, apoptosis, and cell
repair; and the second involves genes that are associated
with the ECM and regulate blood flow. Most of these
genes were upregulated. Interestingly, the results for the
first category were consistent with research findings for
S. galili compared with Spalax judaei. Avivi et al. uncov-
ered that S. galili exhibits species-specific responses to
hypoxic stress via numerous genes involved in angiogen-
esis, apoptosis, and oxidative stress management [27]. In
contrast, the third category comprises downregulated
genes and pathways involved in amino acid synthesis
and energy metabolism. Other studies that compared
transcript abundance in Spalax vs. rat whole brain tis-
sues showed that down-regulated genes in Spalax were
significantly associated with carbohydrate metabolism,
lipid metabolism, redox metabolism, mitochondria inner
membrane activity, and oxidative phosphorylation [20].
These findings on the hypoxic adaptation of Spalax are
similar to those of our third category in L. mandarinus.
Genes with more connections in the gene-metabolism
network such as VEGFA, matrix metallopeptidase
(MMP)2 [28], serpin peptidase inhibitor [29], and
thrombospondin 1 are associated with angiogenesis and
its inhibition; their upregulation indicates that angiogen-
esis in L. mandarinus is in a state of dynamic equilib-
rium under chronic hypoxia.

Fig. 5 Presumed responses of L. mandarinus and L. brandtii to chronic hypoxia. Red and green lines indicate up- and downregulated gene enrichment,
respectively. The images of voles were photographed in the animal laboratory of the school of life sciences, Zhengzhou University
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Upregulated pathways unique to L. brandtii hypoxic
brain were involved in ECM-related endothelium cell pro-
liferation and cell survival (ECM-receptor interaction and
focal adhesion) as well as neuroprotection (maturity onset
diabetes of the young) [30]. It is worth noting that all six
downregulated pathways in L. brandtii were related to
synaptic transmission, suggesting that L. brandtii reduces
its activity level in order to reduce O2 consumption under
hypoxic conditions (Fig. 5). The DEG-metabolic pathway
network of L. brandtii can be divided into two parts
according to gene function (Fig. 6b). The first part mainly
includes ECM and adhesion-related genes such as Vwf
(Von Willebrand factor) [31], COL4A1 (collagen, type IV,
alpha 1), ITGA4 (integrin alpha 4), and VEGFA. The in-
creased expression of these genes is linked to vascular
endothelial cell proliferation and angiogenesis [32]. The
second part of the metabolic network is related to synaptic
transmission. Key genes in the network including TH
(tyrosine hydroxylase), GRIN2D (glutamate ionotropic
receptor NMDA type subunit 2D), solute carrier family
(SLC)6A3 (neurotransmitter transporter, dopamine), and
SLC18A2 were downregulated. These four genes are

involved in the production, transport, and synaptic trans-
mission of the neurotransmitter dopamine; their downreg-
ulation decreases dopamine release, thereby reducing
neuronal excitability [33].
Differences in gene expression between the two spe-

cies of vole in this study under chronic hypoxia are
mainly determined by their distinct life histories. L.
mandarinus lives in an underground tunnel system for
most of its life; during summer when there is abundant
rainfall, tunnels can collapse as the earth becomes wet.
To repair the tunnel under hypoxic conditions, L. man-
darinus maintains a high blood pressure and neuronal
excitability and has evolved an enhanced O2-transport
capacity as well as mechanisms to reduce O2 consump-
tion and protect the brain from hypoxic injury.
In contrast, L. brandtii also burrows in tunnels but

this is mainly used for rest; O2-consuming activities such
as mating, feeding, and excavation are performed above
ground. A hypoxic environment develops when snowfall
covers the ground in winter. During this time, L. brand-
tii performs few activities in the tunnel and there is little
risk of tunnel collapse. This explains the relatively

Fig. 6 Gene-pathway networks for DEGs in (a) L. mandarinus and (b) L. brandtii under chronic hypoxia. Nodes (circles) represent DEGs and
enriched pathways for DEGs, respectively. Genes indicated in red and blue are up- and downregulated, respectively. Lines between nodes
represent connections between genes and pathways in the network
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passive response of L. brandtii to chronic hypoxia, includ-
ing reductions in blood pressure and nerve excitability.
Presently, research on activities related to hypoxia,

such as human life on the plateau or diving, has
received much attention. Our findings may shed new
light on human adaptation to hypoxia conditions. In
fact, many people, including Tibetans, Andeans, and
Ethiopians are currently living in long-term hypoxic
plateau environments [34]. However, the mechanisms
of high-altitude adaptation in different human popula-
tions are distinct and complex. Mounting evidence sug-
gests that the observed physiological adaptations are
controlled by interactions among multiple genes, espe-
cially those that are part of the HIF pathway. Tibetans
inhale more air with each breath and breathe more rap-
idly than either sea-level inhabitants or Andeans [35].
In addition, they have high levels of NO (nitric oxide)
in their blood when compared to low land dwellers,
and this probably aids the dilation of their blood vessels
to enhance blood circulation [36]. The patterns of gen-
etic adaptation among Andeans are largely distinct
from those of Tibetans. For instance, the lack of signifi-
cant associations between EPAS1 or EGLN1 SNP geno-
types and hemoglobin concentration is characteristic of
Tibetans [37]. For Ethiopians, adaptation to hypoxia in-
volves several candidate genes including CBARA1,
VAV3, ARNT2, and THRB [38]. THRB and ARNT2 are
known to play a role in the HIF-1 pathway, a pathway
implicated in a previous study conducted in Tibetan
and Andean populations [39]. In addition to facing hyp-
oxic conditions in the living environment, some special
human activities, such as diving, frequently expose cer-
tain individuals to hypoxic conditions. Early studies of
diving populations suggested that they were adapted to
hypoxic conditions via bradycardia and peripheral vaso-
constriction, which lower oxygen consumption and se-
lectively redistribute blood flow to the organs most
sensitive to hypoxia [40, 41]. A recent comparative gen-
omic study revealed natural selection of genetic vari-
ants in PDE10A in the “Sea Nomads” (The indigenous
Bajau people) and suggested that mutations in this gene
led to an increase in spleen size, thereby providing the
people with a larger reservoir of oxygenated red blood
cells [42].
Compared with human hypoxia adaptation studies,

although some physiological or pathway changes, such
as adjustment of angiogenesis and contraction or inter-
action of some genes in the HIF signaling pathway or
other pathways (VEGF signaling pathway), were similar
to the results of our studies on L. mandarinus, the
genes involved in these pathways differed between
humans and L. mandarinus. These may be related to
the large differences in hypoxia conditions between
humans and subterranean rodents.

Conclusions
Long-term existence in underground tunnels has enabled
L. mandarinus to better adapt to hypoxia than the closely
related species L. brandtii. At 10% O2, L. mandarinus
actively adapts its physiological functions by increasing O2

transport capacity and reducing O2 consumption,
whereas L. brandtii reacts passively by decreasing its
activity. These results provide insight into mechanisms
of hypoxia adaptation in subterranean rodents that may
be applicable to humans living in high-altitude or other
O2-poor environments.

Methods
Animals and hypoxia treatment
L. mandarinus was trapped live from croplands in
Xinzheng, Henan, China (N 34°52′, E 113°85′), and L.
brandtii was imported from the Chinese Academy of
Agricultural Science. The animals were maintained indi-
vidually in polycarbonate cages (37 × 26 × 17 cm) in the
laboratory on a 14:10-h light/dark cycle at a temperature
of 20 °C–24 °C.
To mimic chronic hypoxic stress, 12 healthy adult

male voles (3 months of age; n = 6 of each species) were
randomly divided into the hypoxia (10% O2 for 48) and
normoxia (20.9% O2 for 48 h) groups. A DS-II hyper-
baric cabin (Huaxin Hyperbaric Cabin, Weifang, China)
was used to simulate chronic hypoxia. O2 level in the
cabin was maintained at a constant level by balancing
the flow rate of O2 and N2, and was monitored with an
Oxygen analyzer (Talantek, Beijing, China). A bottle of
sodium hydroxide was placed in the cabin to absorb the
CO2 released by the animals. Once the treatment was
completed, the animals were immediately sacrificed with
an overdose of pentobarbital sodium. The brain was re-
moved and immediately frozen in liquid nitrogen and
stored at − 80 °C until use.

RNA extraction, cDNA library preparation, and RNA-Seq
Experimental procedures including sample preparation
and RNA-Seq were performed according to standard
protocols. Total RNA was extracted from each sample
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. The RNA
was treated with RNase-free DNase I (Takara Bio,
Dalian, China) to remove residual DNA. RNA integrity
was verified by agarose gel electrophoresis (1.2%), and
RNA concentration was measured with an Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara,
CA, USA).
High-quality RNA samples were sent to Biomarker Tech-

nologies Corp. (Beijing, China) for cDNA library construc-
tion and sequencing, with mRNAs purified through
interaction of the poly(A) tails and magnetic oligo(dT)
beads. RNA-Seq libraries were generated using the TruSeq
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RNA Sample Prep kit (Illumina, San Diego, CA, USA) and
multiplexing primers according to the manufacturer’s
protocol. The cDNA library was constructed with average
inserts of 250 bp (150–250 bp) by non-stranded library
preparation. The cDNA was purified using a QiaQuick
PCR extraction kit (Qiagen, Hilden, Germany). The short
cDNA fragments were subjected to end repair, adapter
ligation, and agarose gel electrophoresis filtration, and suit-
able fragments were selected as templates for PCR amplifi-
cation. Sequencing was performed via a paired-end
125-cycle rapid run on the Illumina HiSeq2500 system.

Read filtering and sequence assembly
High-quality clean reads were obtained by removing
adaptor sequences, duplicated sequences, and ambigu-
ous (‘N’) and low-quality reads. Transcriptomes of the
two species were separately assembled de novo using the
short-reads assembly program Trinity [43]. After assem-
bly, the TIGR Gene Indices clustering tools were used to
cluster and remove redundant transcripts [44]. The lon-
gest transcripts were considered as unigenes after
removing redundancies, and these were subjected to
downstream functional annotation and coding sequence
(CDS) prediction [45].

Functional annotation
The unigenes of L. mandarinus and L. brandtii were
compared using BLASTX against the Nr, KEGG [46],
GO [47], the Eukaryotic Orthologous Groups (KOG)
[48], and Swiss-Prot [49] databases (E-value ≤1e− 5) to
retrieve protein functional annotations based on se-
quence similarity. Gene names were assigned based on
the best BLAST hit. High-priority databases (followed by
Nr, Swiss-Prot, and KEGG) were selected to determine
the direction of unigene sequences. Sequences showing
the best alignment were used to predict the CDSs, and
TransDecoder (Find Coding Regions Within Transcripts,
https://transdecoder.github.io/) was used to identify can-
didate coding regions within transcript sequences. CDSs
were translated into amino sequences using the standard
codon Table. GO terms including molecular function,
biological process, and cellular component categories
were assigned to each sequence using Blast2GO software
with an E-value threshold of 1e− 6 for further functional
categorization [50]. The distribution of the GO func-
tional classifications of unigenes was plotted using the
OmicShare tool (http://www.omicshare.com/tools). The
unigenes were also aligned to the Cluster of Orthologous
Groups/KOG database to predict and classify possible
functions. KOBAS 2.0 software [51] (http://kobas.cbi.
pku.edu.cn/) was used to assign unigenes to KEGG path-
way annotations and analyze metabolic pathways.

Identification of DEGs
The clean reads of the L. mandarinus and L. brandtii
sequences were mapped with their respective unigenes
by RSEM package [52]. The Fragments Per Kilobase of
exon per Million mapped fragments (FPKM) was used
to eliminate the influence of different gene lengths and
sequencing levels on the calculation of gene expres-
sion, and FPKM values were directly used to compare
gene expression differences between samples. The
edgeR package [53] (http://bioconductor.org/packages/
release/bioc/html/edgeR.html) was used to obtain the
base mean value for identifying DEGs. To correct for
multiple testing, the FDR was calculated to adjust the
P value threshold. Transcripts with an FDR ≤ 0.05 and
a minimum of 2-fold difference in expression (|log2
ratio| ≥ 1) were considered as thresholds for the signifi-
cance of gene expression differences between two
groups. In addition, information for DEGs was
collected from unigene annotations, and these genes
were subjected to GO and KEGG significant enrich-
ment analyses to identify biological functions and
metabolic pathways involving these genes.

Validation of RNA-Seq results by RT-qPCR
To validate the reliability of DEGs identified by
RNA-Seq, the mRNA expression levels of seven selected
genes were measured by RT-qPCR using the same sam-
ples. Primers were designed using Primer-BLAST; the
sequences are shown in Additional file 1: Table S1. All
primer sets yielded a single peak in the dissociation
curves with an amplification efficiency of approximately
1.0. Three technical replicates were prepared for each
gene in 96-well plates and amplification was performed
on a LightCycler® 480 Instrument II (Roche Diagnostics,
Mannheim, Germany). Relative gene expression levels
were normalized to that of the internal reference gene
β-actin and were calculated with the 2−ΔΔCt method.
Correlation analysis in SPSS v.19.0 (SPSS Inc., Chicago,
IL, USA) was used to evaluate the concordance between
RT-qPCR results and RNA-Seq data. Differences were
defined as significant at P < 0.05 and highly significant at
P < 0.01 (Welch’s t-test).

Additional files

Additional file 1: Table S1. RT-qPCR primers for validation of RNA-Seq
data. Table S2. Illumina sequencing data for analyzed samples. Table S3.
Length distribution of assembled unigenes. Table S4. Functional
annotation results for L. mandarinus and L. brandtii transcriptomes.
Table S6. GO terms significant enriched for up- and downregulated
DEGs in L. mandarinus and L. brandtii. Table S7. Genes associated
with the GO term “peptidase activity” among up- and downregulated DEGs
in L. mandarinus. Table S8. KEGG pathways enriched for up- and
downregulated DEGs in L. mandarinus and L. brandtii under acute
hypoxia. Figure S1. DEGs in the brain of L. mandarinus and L. brandtii under
chronic hypoxia vs. normoxia. FC, fold change; FDR, false discovery rate. Red,
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blue, and green dots represent up- and downregulated and unchanged
genes, respectively. (DOCX 481 kb)

Additional file 2: Table S5. DEGs for L. mandarinus and L. brandtii.
(XLSX 48 kb)

Abbreviations
DEGs: Differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto
encyclopedia of genes and genomes; L. brandtii: Lasiopodomys brandtii; L.
mandarinus: Lasiopodomys mandarinus; RT-qPCR: Reverse-transcription
quantitative PCR
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