Skip to main content
. 2018 Dec 12;18(Suppl 4):126. doi: 10.1186/s12911-018-0676-9

Table 2.

Predictive performance on hypertension dataset

Dataset Model KNN RF SVR Ridge Lasso MTLasso MLP-4 GATAN-1 GATAN-2
Full feature set MSE 248.06 214.68 299.03 261.52 205.67 217.34 209.43 199.76 203.50
(60.73) (25.18) (82.16) (23.26) (36.07) (39.35) (28.36) (33.48) (29.98)
EVS 0.26 0.29 0.08 0.10 0.33 0.30 0.32 0.36 0.34
(0.18) (0.12) (0.02) (0.37) (0.11) (0.14) (0.14) (0.10) (0.14)
MAE 10.91 11.29 11.66 12.41 11.40 11.65 10.43 10.20 10.77
(2.05) (1.97) (1.93) (1.65) (2.58) (2.53) (2.02) (1.71) (2.10)
Lab and demo MSE 282.06 261.27 284.05 278.80 250.754 253.59 243.41 237.97 237.66
(39.58) (20.56) (58.15) (18.88) (26.01) (33.79) (31.87) (33.59) (34.09)
EVS 0.06 0.08 0.06 0.03 0.15 0.14 0.17 0.19 0.19
(0.17) (0.25) (0.01) (0.22) (0.11) (0.11) (0.10) (0.09) (0.10)
MAE 10.54 10.42 9.90 10.24 9.59 9.43 8.84 8.67 8.54
(2.38) (0.95) (1.24) (1.78) (1.26) (0.94) (1.96) (2.05) (2.01)

The first section uses a full set of features; the second only uses lab results and demographic information

The best performance is bolded