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Abstract

Background: There has been an increasing interest in learning low-dimensional vector representations of medical
concepts from Electronic Health Records (EHRs). Vector representations of medical concepts facilitate exploratory
analysis and predictive modeling of EHR data to gain insights about the patterns of care and health outcomes. EHRs
contain structured data such as diagnostic codes and laboratory tests, as well as unstructured free text data in form of
clinical notes, which provide more detail about condition and treatment of patients.

Methods: In this work, we propose a method that jointly learns vector representations of medical concepts and
words. This is achieved by a novel learning scheme based on the word2vec model. Our model learns those
relationships by integrating clinical notes and sets of accompanying medical codes and by defining joint contexts for
each observed word and medical code.

Results: In our experiments, we learned joint representations using MIMIC-III data. Using the learned representations
of words and medical codes, we evaluated phenotypes for 6 diseases discovered by our and baseline method. The
experimental results show that for each of the 6 diseases our method finds highly relevant words. We also show that
our representations can be very useful when predicting the reason for the next visit.

Conclusions: The jointly learned representations of medical concepts and words capture not only similarity between
codes or words themselves, but also similarity between codes and words. They can be used to extract phenotypes of
different diseases. The representations learned by the joint model are also useful for construction of patient features.
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Background
Electronic health record (EHR) systems are used by med-
ical providers to streamline the workflow and enable
sharing of patient data among providers. Beyond that pri-
mary purpose, EHR data have been used in healthcare
research for exploratory and predictive analytics in prob-
lems such as risk prediction [1–3] and retrospective epi-
demiologic studies [4–6]. Important challenges in those
studies include cohort identification [7, 8], which refers

*Correspondence: vucetic@temple.edu
1Department of Computer & Information Sciences, Temple University,
Philadelphia, PA, USA
Full list of author information is available at the end of the article

to finding a set of patients receiving a specific treatment
or having a specific diagnosis, and patient phenotyping
[9, 10], which refers to identifying conditions and treat-
ments for given diseases from patients’ longitudinal
records.

EHR data are heterogeneous collections of both struc-
tured and unstructured information. In order to store
data in a structured way, several ontologies have been
developed to describe diagnoses and treatments, among
which the most popular coding classification systems is
the International Classification of Diseases (e.g, ICD-9,
ICD-10). ICD codes provide alpha-numeric encoding of
patient conditions and treatments. On the other hand, the
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unstructured clinical notes contain various more nuanced
information (e.g, the history of patient’s illness and med-
ication), which creates challenges for designing effective
algorithms to transform data into meaningful represen-
tations that can be efficiently interpreted and used in
health care applications. Various studies manage to dis-
cover knowledge from free-text clinical notes. Wang et al.
proposed a token matching algorithm to map medical
expressions in clinical notes into a structured medical ter-
minology [11]. Pivovarov et al. developed a probabilistic
graphical model to infer phenotypes described by medical
codes, words and other clinical observations [12]. Joshi et al.
proposed a non-negative matrix factorization method to
generate latent factors defined by clinical words [13].

The success of extracting knowledge from clinical notes
often requires application of Natural Language Processing
(NLP) techniques. Learning distributed representations of
words using models based on neural networks has been
shown to be very useful in many NLP tasks. These mod-
els represent words as vectors and place vectors of words
that occur in similar contexts in a neighborhood of each
other. Among the existing models, Mikolov’s word2vec
model [14] is among the most popular due to its simplicity
and effectiveness in learning word representations from
a large amount of data. Several studies applied word2vec
on clinical notes data to produce effective clinical word
representations for various applications [15–21].

While word2vec was initially designed for handling text,
recent studies demonstrate that word2vec could learn rep-
resentations of other types of data, including medical
codes from EHR data [21–25]. Choi et al. used word2vec
to learn the vector representations of medical codes using
longitudinal medical records and show that the related
codes indeed have similar vector representations [22].
Choi et al. designed a multi-layer perceptron to learn rep-
resentations of medical codes for predicting future clinical
events and clinical risk groups [23]. Gligorijevic et al.
used word2vec to phenotype sepsis patients [25] and Choi
et al. fed code representation learned by word2vec into
a recurrent neural network to predict heart failure [24].
The limitation of those studies is that they focused only on
representation of medical codes and did not utilize other
sources of information from EHR data. Henriksson et al.
applied word2vec to learn the vector representations of
medical codes and words in clinical notes separately, and
used both of them to predict adverse drug events [26, 27].
As they embed medical codes and words into two differ-
ent spaces, their learned representations are not able to
capture relationship between words and codes, which is
exploited in our proposed method.

In this paper, we propose JointSkip-gram model: a
novel joint learning scheme for word2vec model which
embeds both diagnosis medical codes and words from
clinical notes in the same continuous vector space.

The resulting representations capture not only similarity
between codes or words themselves, but also similarity
between codes and words. We believe many clinical tasks
can be viewed as measuring similarity between codes and
words. For example, text-based phenotyping [12, 13] is the
process of discovering the most representative words for
diagnostic medical concepts. On the other hand, given a
collection of words, such as clinical notes, the automatic
code assignment task [11] aims to automatically assign
diagnosis and procedure medical codes and thus reduce
human coding effort. In this paper we illustrate that it
is possible to obtain representation of words and codes
in the same vector space and that the resulting repre-
sentations are very informative. To achieve this objective,
directly applying word2vec and related algorithms may
not be appropriate since codes and words are located
in different parts of EHR and have different forms and
properties. Our proposed model is designed to tackle the
heterogeneous nature of EHR data and build a connection
between medical codes and words in clinical notes.

In our experiments, we examined if our representations
are able to discover meaningful text-based phenotypes for
different medical concepts. We compared our proposed
model with Labeled LDA [28], a supervised counterpart
of Latent Dirichlet Allocation (LDA) [29], which has been
applied previously to clinical data analysis [30–32]. The
results show that our representations indeed capture the
relationship between words and codes. In comparison to
our previous study [21], we also show that our method
is able to identify common medicines and treatments for
different diseases. We also construct patient representa-
tions and test the predictive power of the representations
on the task of predicting patient diagnosis of the next visit
given information from the current visit. The results show
that representations learned by our approach outperform
several baseline methods.

Methods
After formulating the problem setup we overview
Skip-gram [14], the architecture contained in word2vec
toolkit designed for learning representations of natural
language words, which is also the basis of our method.
Then we explain the proposed JointSkip-gram model.

Fig. 1 The framework of Skip-gram. Each word is used to predict its
neighbours in a small context window. In this example the size of
context window is 2
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Basic problem setup
Let us assume we are given a collection of patient vis-
its. Each visit S is a pair (D, N), where D is an unordered
set of medical diagnosis codes {c1, c2, c3..., cn} summariz-
ing health condition of a patient and N is an ordered
sequence of words from clinical notes recorded dur-
ing the visit (w1, w2, w3..., wm). We denote the size of
the code vocabulary C as |C| and the size of the word
vocabulary W as |W |.

Preliminary: Skip-gram
Figure 1 summarizes the Skip-gram framework. Given a
sequence of words (w1, w2, w3..., wm), Skip-gram sequen-
tially scans it. For every scanned word wi, called the
target word, the log-likelihood of the words within its
neighborhood (e.g., a window of a predefined size q) is
calculated as

∑

i−q≤j≤i+q,j �=i
log p(wj|wi) (1)

where p(wj|wi) is the conditional probability of seeing
word wj as context of target word wi. It is defined as a
softmax function

p(wj|wi) = eVwi ·Uwj

∑
wk∈W eVwi ·Uwk

(2)

where Vwi is a T-dimensional vector providing the
input representation of target word wi and Uwj is a
T-dimensional vector providing the context representa-
tion of context word wj. Skip-gram results in two matrices:
the input word matrix V ∈ R

|W |×T and the context word
matrix U ∈ R

|W |×T . The obtained input word repre-
sentation Vwi is typically used as word representation in
downstream predictive or descriptive tasks.

To learn vector representation of words from the vocab-
ulary, a stochastic gradient algorithm is used to maximize
the objective function (1).

Maximizing (1) is computationally expensive since the
denominator

∑
wk∈W eVwi Uwk in (2) sums over all words

wk ∈ W . As a computationally efficient alternative of
(1), Mikolov et al. proposed the skip-gram with nega-
tive sampling (SGNS) [14], which replaces log p(wj|wi)
in (1) with the sum of two logarithmic probabilities as
follows. For scanned word wi, the objective function
becomes

∑

i−q≤j≤i+q
j �=i

⎛

⎝log p(wi, wj) +
∑

wN ∈Wneg

log (1 − p(wi, wN ))

⎞

⎠

(3)

where probability p
(
wi, wj

)
is defined as sigmoid

function σ
(
Vwi · Uwj

)
:

p(wi, wj) = σ
(
Vwi · Uwj

) = 1
1 + e−Vwi ·Uwj

(4)

and Wneg = {
wk ∼ Pw|k = 1, ..., K

}
is the set of so-called

“negative words” that are sampled from the marginal
distribution Pw of words. K is a hyperparameter deter-
mining the number of negative words generated with
each context word. The assumption is that words sam-
pled from the marginal distribution are less likely to
co-occur as context of the target word. The first term
of (3) is the probability that two words occur as tar-
get and context in the data set, while the second term
of (3) is the probability that a target word and “neg-
ative words” in Wneg are not observed co-occurring
in the dataset. By maximizing (3), the dot product
between frequently co-occurring words would become
large while the dot product between rarely co-occurring
words would become small. In other words, in the result-
ing T-dimensional vector space, the related words will be
placed in the vicinity of each other, such that their cosine
similarity is high.

Fig. 2 The framework of JointSkip-gram. a Each code is used to predict all other codes and words in the same visit. b Each word is used to predict all
codes in the same visit and its neighbour words in a small context window to keep its syntactic properties
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Proposed model: JointSkip-gram
In the Skip-gram model, each scanned word is used to
predict probability of its neighboring words in the
sequence. However, in the electronic health records
each visit consists of clinical notes, which are ordered
sequences of words, and medical codes, which are sets.
We are interested in jointly learning vector representation
of words and codes in the same vector space. Both medical
codes and clinical notes describe condition and treatment
of a patient and they are closely related. For example,
if a patient is assigned ICD-9 code “174” (female breast
neoplasm), the corresponding clinical notes are likely
to mention surgery (e.g, mastectomy or lumpectomy).
To derive JointSkip-gram, we first need to define context
of each word and each code.

Since the codes are unordered, we define the context of
target code ci as all other codes in the same visit, as well as
all words in the clinical note. Thus, as shown in Fig. 2a, in
JointSkip-gram, every scanned code ci is used to predict
other codes in D and all words in N. The log-likelihood of
code ci can be expressed as

∑

1≤j≤n
j �=i

log p(cj|ci) +
∑

1≤j≤m
log p(wj|ci) (5)

Similarly to Skip-gram, the probabilities p(cj|ci) and
p(wj|ci) are defined as softmax functions

p(cj|ci) = eVci ·Ucj

∑
ck∈C eVci ·Uck

(6)

and

p(wj|ci) = eVci ·Uwj

∑
wk∈W eVci ·Uwk

(7)

For words in clinical notes we define two types of con-
texts. One consists of neighboring words in the note.
Another consists of all codes in the medical code set.
Thus, as shown in Fig. 2b, for scanned word wi in N
JointSkip-gram uses words within a window of a prede-
fined size q as its context words. It also uses all codes in D
as its context codes. The resulting log-likelihood of word
wi can be expressed as

∑

i−q≤j≤i+q
j �=i

log p(wj|wi) +
∑

1≤j≤n
log p(cj|wi) (8)

in which

p(wj|wi) = eVwi ·Uwj

∑
wk∈W eVwi ·Uwk

(9)

and

p(cj|wi) = eVwi ·Ucj

∑
ck∈C eVwi ·Uck

(10)

Maximizing the sum of objective functions (5) and
(8) over the whole data set of visits is computationally
expensive since in (6), (7), (9) and (10), the denomi-
nators sum over all words in W and all codes in C.
Similar to SGSN [14], we use a computationally cheaper
algorithm that relies on negative sampling. Instead of
calculating the softmax function, the negative sampling
approach uses computationally inexpensive sigmoid func-
tion to represent the probability that a word or a code
is within a context of a target word or a code. For each
scanned code ci, the negative sampling objective function
becomes

∑

1≤j≤n
j �=i

⎛

⎝log p
(
ci, cj

) +
∑

cN ∈Cneg

log (1 − p (ci, cN ))

⎞

⎠

+
∑

1≤j≤m

⎛

⎝log p
(
ci, wj

) +
∑

wN ∈Wneg

log (1 − p (ci, wN ))

⎞

⎠

(11)

where

p
(
ci, cj

) = σ
(
Vci · Ucj

) = 1
1 + e−Vci ·Ucj

(12)

and

p
(
ci, wj

) = σ
(
Vci · Uwj

) = 1
1 + e−Vci ·Uwj

(13)

Cneg = {
ck ∼ Pc|k = 1, ..., K

}
is the set of “negative

codes” that are sampled from marginal distribution Pc of
codes and Wneg = {

wk ∼ Pw|k = 1, ..., K
}

is the set of neg-
ative words that are sampled from a marginal distribution
Pw of words, where K is the number of negative samples.

Similarly, for each scanned word wi, the negative sam-
pling objective criterion becomes:

∑

i−q≤j≤i+q
j �=i

⎛

⎝log p
(
wi, wj

) +
∑

wN ∈Wneg

log (1 − p (wi, wN ))

⎞

⎠

+
∑

1≤j≤n

⎛

⎝log p
(
wi, cj

) +
∑

cN ∈Cneg

log (1 − p (wi, cN ))

⎞

⎠

(14)
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where

p
(
wi, wj

) = σ
(
Vwi · Uwj

) = 1
1 + e−Vwi ·Uwj

(15)

and

p
(
wi, cj

) = σ
(
Vwi · Ucj

) = 1
1 + e−Vwi ·Ucj

(16)

Cneg and Wneg are the same as in (11). By maximiz-
ing (14), the probabilities p

(
wi, wj

)
and p

(
wi, cj

)
of related

words and codes will be large.
Similarly to Skip-gram, stochastic gradient descent algo-

rithm is applied in jointSkip-gram to learn vector rep-
resentations of codes and words that maximize (11) and
(14). The input vector representation matrix V is used as
the resulting representation of words and codes. Since we
jointly learn vector representations of codes and words,
matrices V ∈ R

(|W |+|C|)×T and U ∈ R
(|W |+|C|)×T include

representations of both words and codes. In the resulting
vector space, similarity of two vectors is measured using
cosine similarity. The vectors of similar codes or words
should be close to each other. Since JointSkip-gram rep-
resents codes and words in the same vector space, the
words related to a given medical code should be placed in
vicinity.

Results
Dataset description
MIMIC-III Dataset: The MIMIC-III Critical Care
Database [33] is a publicly-available database which con-
tains de-identified health records of 46,518 patients who
stayed in the Beth Israel Deaconess Medical Center’s
Intensive Units from 2001 to 2012. Each visit in the dataset
contains both structured health records data and free text
clinical notes.

We used EHR data from all patients in the dataset. The
total number of patient visits in MIMIC-III is 58,597. On
average, each patient had 1.26 visits, 38,991 patients had
a single visit, 5151 had two visits, and 2376 patients had 3
or more visits. The average number of the recorded ICD-9
diagnosis codes per visit is 11 and the average number of
words in clinical notes is 7898. For each patient visit, we
extracted all diagnosis codes and all clinical notes.

Preprocessing: For each EHR in the dataset we are only
focusing on the clinical notes and ICD-9 diagnosis codes.
Each clinical note was preprocessed in the following way.
All digits and stop words were removed. The typos were
filtered using a standard English vocabulary in PyEnchant,
a Python library for spell checking. For representation
learning, rare words were filtered out since they do not
appear often enough to obtain good quality representa-
tions. Therefore, all words whose frequency is less than 50

were removed. The resulting number of unique words was
14,302. Furthermore, the total number of unique ICD-9
diagnosis codes in MIMIC-III is 6984. Codes whose fre-
quency is less than 5 were removed. This reduced the
number of codes to 3874. Since some codes were still rel-
atively rare for learning meaningful representations, we
exploited the hierarchical tree structure of ICD-9 codes
and grouped them by their first three digits. For example,
ICD-9 codes “2901” (presenile dementia), “2902” (senile
dementia with delusional or depressive) and “2903” (senile
dementia with delirium) were grouped into a single code
“290” (dementias). The size of the final code vocabulary
was 752.

Training and Test Patients: We randomly split the
patients into training and test sets. All 38,991 patients
with a single visit were placed in the training set. Of the
7527 patients with 2 or more visits, we randomly assigned
80% of them (6015 patients) to the training set and 20%
of them (1512 patients) to the test set. The whole train-
ing set was used for learning of vector representations. We
excluded patients with only a single visit for the task of
next visit prediction because this task requires patients to
have at least two visits.

Training JointSkip-gram model
EHRs of patients from the training set were used to learn
our JointSkip-gram model. For each visit we created a
(D, N) pair. There were 54,965 such pairs in the training
data. The size T of vectors representing codes and words
was set to 200. Stochastic gradient algorithm with nega-
tive sampling maximizing (11) and (14) was set to loop
through all the training data 40 times because we empir-
ically observed that it was sufficient for the algorithm to
converge. The number of negative samples was set to 5
and the size of the window for word context in the clinical
notes was set to 5. As a result, each of the 7898 words and
752 ICD-9 codes were represented as 200-dimensional
vectors in a joint vector space. Before applying JointSkip-
gram model, we used a small fraction (∼10%) of clinical
notes to pretrain vector representations of words only, as
we observed that this improves our final representations.

To evaluate the quality of vector representations, we
performed two types of experiments: (1) phenotype and
treatment discovery by evaluating associations between
codes and words in the vector space, (2) testing the pre-
dictive power of the vector representations on the task of
predicting medical codes of the next visit.

Phenotype discovery
Text-based phenotype discovery can be viewed as finding
words representative of medical codes. For a given ICD-
9 diagnosis code, we retrieved its nearest 15 words in the
vector space. If successful, the neighboring words should
be clinically relevant to the ICD-9 code.
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As an alternative to JointSkip-gram, we used labeled
latent Dirichlet allocation (LLDA) [28], a supervised
version of LDA [29]. In LLDA, there is a one-to-one cor-
respondence between topics and labels. LLDA assumes
there are multiple labels associated with each document
and assigns each word a probability that it corresponds to
each label. LLDA can be naturally adapted to our case by
treating medical codes as labels and clinical notes as doc-
uments. For a given ICD-9 diagnosis code we retrieved 15
words with the highest probabilities and compared those
words with the 15 words obtained by JointSkip-gram.

We consulted domain experts about quality of the
extracted phenotypes. First, we selected 6 diverse ICD-9
codes from MIMIC-III that cover both acute and chronic
diseases and both common and less common conditions.
The 6 ICD-9 codes are listed in Table 1, together with
their description and frequency in the training set. Table 1
shows the list of 15 closest words by both methods to the
6 ICD-9 codes. For each ICD-9 diagnosis code, we pre-
sented the two lists in a random order to a medical expert
and asked two questions: (1) which list is a better repre-
sentative of the diagnosis code, and (2) which words in
each list are not highly related to the given diagnosis code.
We recruited four physicians from the Fox Chase Cancer
Center as medical experts for the evaluation.

The evaluation results are summarized in Table 2. As
could be seen, all 4 experts agreed that JointSkip-gram
words better represent ICD-9 codes 570, 348, and 311.
For the remaining 3 codes (174, 295, 042), the experts
were split, but in no case the majority preferred the
LLDA words. By considering the average number of words
deemed unrelated by the experts, the experts found that
JointSkip-gram was superior to LLDA for all 6 ICD-9
diagnosis codes.

For ICD-9 code “570” (acute liver failure), JointSkip-
gram finds “liver”, “hepatic”, “cirrhosis”, which are directly
related to acute liver failure. Remaining words in the
JointSkip-gram list are mostly indirectly related to liver
failure, such as “alcoholic”, which explains one of the pri-
mary reasons for liver damage. On the other hand, LLDA
captured a few related words, as evidenced by an aver-
age of 9.25 words that experts found unrelated. Among
those unrelated words we find “cooling”, “sun”, “arctic”,
“rewarmed”, “cooled”, “rewarming”, “coded”, “continue”, and
“prognosis”.

For ICD-9 code “174” (female breast cancer), “295”
(Schizopherenic disorders) and “042” (HIV), both Joint-
Skipgram and LLDA find highly related words. One
of our experts commented that several words found
by JointSkip-gram are diseases which are likely to co-
occur with the given disease. For example, JointSkip-gram
finds “melanoma” for female breast cancer and “her-
pes”, “chlamydia”, “syphilis” for HIV. This suggests that
JoinSkip-gram captures the hidden relationships between

Table 1 Most important 15 words (ranked by importance) for
ICD-9 codes “570”, “174”, “295”, “348”, “311”, “042”

570 (Acute liver failure, 1067) 174 (Female breast cancer, 139)

JointSkip-gram LLDA JointSkip-gram LLDA

Liver Arrest Metastatic Breast

Hepatic Pea Mets Pres

Cirrhosis Cooling Cancer Mastectomy

Rising Sun Breast Flap

Markedly Arctic Metastases Mets

Shock Rewarmed Malignant Ca

Lactate Cooled Metastasis Cancer

Encephalopathy Atrophine Oncologist Metastatic

Amps Dopamine Oncology Chemotherapy

Picture Rewarming Chemotherapy Malignant

Rise Cardiac Infiltrating Oncologist

Elevated Coded Palliative Polumoprhic

Cirrhotic Continue Tumor Reversible

Bicarb Prognosis Melanoma Mastectomies

AQlcoholic Ems Mastectomy Crisis

295
(Schizophrenic
disorders, 691)

348 (Conditons
of brain, 3781)

JointSkip-gram LLDA JointSkip-gram LLDA

Schizophrenia Schizophrenia Hemorrhagic Arrest

Psych Paranoid Herniation Herniation

Bipolar Psych Temporal Unresponsive

Suicide Psychiatric Cerebral Corneal

Psychiatry Disorders Brain Pupils

Kill Personality Hemorrhage Brain

Paranoid Hiss Parietal Cooling

Ideation Guardian Ganglia Posturing

Psychiatrist Psychiatry Occipital Head

Hallucinations Hypothyroidism Extension Nemorrhage

Psychosis Home Surrounding Noxious

Personality Aloe Head Family

Sitter Arrest Effacement Prognosis

Disorder Pt Ataxia Pea

Abuse Unresponsive Burr Gag

311 (Depressive
disorder, 3431)

042 (HIV, 538)

JointSkip-gram LLDA JointSkip-gram LLDA

Patient Depression Aids Aids

Abuse Tablet Viral Immunodeficiency

Hallucinations Blood Fungal Virus

Withdrawal Daily Opportunistic Human
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Table 1 Most important 15 words (ranked by importance) for
ICD-9 codes “570”, “174”, “295”, “348”, “311”, “042” (Continued)

Ingestion Campus Bacterial Viral

Questionable Mg Disseminated Load

Thiamine Garage Immuno-deficiency Cooling

Remote Capsule Tuberculosis Partner

Alcohol Building Organisms Acyclovir

Significant Parking Herpes Thrush

Overdose One Undetectable Fevers

Prior Discharge Acyclovir Induced

Apparent Normal Detectable Antigen

Depression East Chlamydia Pneumonia

Although Coherent Syphilis Blanket

Disease description and frequency are listed in the brackets

diseases, which could make it suitable for understanding
of comorbidities.

For code “311” (depressive disorder), both JointSkip-
gram and LLDA had difficulties in finding related words.
According to feedback from one of our experts, “abuse”,
“hallucinations”, “alcohol”, “overdose”, “depression” and
“thiamine” (note: depression is a common symptom of
thiamine deficiency) found by JointSkip-gram are related
to the disease, while only “depression”, “tablet”, “capsule”
found by LLDA are recognizably related to depression.
We hypothesize that for common diseases (e.g, “depres-
sion” and “hypertension”), which are rarely the primary
diagnosis or a major factor in deciding an appropriate
treatment of the main condition, physicians rarely discuss
them in clinical notes. Thus, it is difficult for any algo-
rithm to discover words from clinical notes related to such
diagnoses.

Treatment discovery
In our preliminary study [21], we used PyEnchant stan-
dard English vocabulary to filter out the typos in clini-
cal notes. However, there are many nonstandard English

Table 2 Evaluation results by clinical experts

# of experts who think the method is better than the other

ICD-9 codes 570 174 295 348 311 042

JointSkip-gram 4 2 3 4 4 2

LLDA 0 2 1 0 0 2

Average # of unrelated words across experts

ICD-9 codes 570 174 295 348 311 042

JointSkip-gram 2.25 0.75 0.75 1.25 3.25 0.75

LLDA 9.25 1.75 3 3.75 6.5 2.75

Table 3 Most important 15 words (including nonstandard
English words) (ranked by importance) for ICD-9 codes “570”

ICD-9: 570 (Acute liver failure)

Word Description

liver An organ that produces biochemicals necessary for
digestion

Renal Relating to the kidneys

Hepatorenal A life-threatening medical condition that consists of
rapid deterioration in kidney

Crrt CRRT is a dialysis modality used to treat critically ill,
hospitalized patients

Vasopressin A hormone synthesized

Shock Shock liver is a condition defined as an acute liver injury

Failure Liver failure can occur gradually

Levophed Injection

Ascites Ascites is the abnormal buildup of fluid in the abdomen

Oliguric A urine output

Pigtail Pigtail drainage is used for liver abscess

Transplant liver transplant is a surgical procedure

Rifaximin Antibiotic

Cirrhosis Cirrhosis is a late stage of scarring (fibrosis) of the liver

Hepatic Relating to the liver.

Table 4 Most important 15 words (including nonstandard
English words) (ranked by importance) for ICD-9 codes 174

ICD-9: 174 (Female breast cancer)

Word Description

Xeloda A prescription medicine used to treat people with
cancer

Tamoxifen A medication that is used to prevent breast cancer

Metastatic A pathogenic agent’s spread from an primary site to a
different site

Chemotherapy A treatment by the use of chemical substances

Cancer A disease in which abnormal cells divide
uncontrollably and destroy body tissue

Carboplatin It is used to treat ovarian cancer

Onc Abbreviations of oncologist

Oncologist A doctor who treats cancer

Taxol It belongs to a class of chemotherapy drugs is the
abnormal buildup of fluid in the abdomen

Chemo Short form of chemotherapy

Gemcitabine Gemcitabine is an anti-cancer

Mets Abbreviations of metastasis

Compazine This medication is used to treat severe nausea

Palliative A medical care for relieving pain

Metastases The development of secondary malignant growths
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terms used in medical notes to describe medical treat-
ments, medicines, and diagnoses. These nonstandard
words are not part of PyEnchant standard English vocab-
ulary we used for preprocessing, but they could have
important meaning. Hence, we repeated our experi-
ments by including all words occurring more than 50
times. The resulting vocabulary increased to 33,336
unique words.

After running our Joint-Skipgram model on the new
dataset, we looked at the representative words for each
diagnosis code. Tables 3 and 4 show the 15 near-
est clinical note words in the vector space to ICD-
9 codes “570” and “174”, respectively. We can observe
that many retrieved words are different from those in
Table 1 for codes “570” and “174”. The words that
also appear in Table 1 are marked with italic font
in Tables 3 and 4.

A close look into Tables 3 and 4 reveals that
most neighbors are specific medical terminology words
describing drugs or treatments related to the diagno-
sis. For example, words “crrt”, “levophed”, “rifaximin”,
and “transplant” in Table 3, are related to treatment
of acute liver failure. Similarly, words “xcloda”, “tamox-
ifen”, “carboplatin”, “taxol”, “compazine” in Table 4 are
related to cancer treatment. Therefore, including non-
standard words in our vocabulary enabled us to con-
nect specialized medical terms with particular ICD-9
diagnosis codes.

Predictive evaluation
In another group of experiments we constructed patient
representations and evaluated quality of the vector repre-
sentations of words and medical codes through predictive
modeling. We adopted the evaluation approach used in
[34], which predicts medical codes of the next visit given
the information from the current visit. Specifically, given
two consecutive visits of a patient, we used information
of the first visit (i.e., medical codes and clinical notes) to
predict medical codes assigned during the second visit. In
the previous work on this topic, the authors of [23, 34, 35]
used medical codes as features for prediction. In our eval-
uation, we used both medical codes and clinical notes to
create predictive features. To generate a feature vector for
the first visit, we found the average JointSkip-gram vec-
tor representation of the diagnosis codes and the average
JointSkip-gram vector representation of the words used in
clinical notes. Then, we concatenated those two averaged
vectors. We call this method Concatenation-JointSG and
compare it with the following five baselines:

Concatenation-One: The one-hot vector of medical
codes and the one-hot vector of clinical notes for a given
visit were concatenated. In the one-hot vector of each
visit, words and codes which occur in the visit were
encoded as 1, otherwise they were encoded as 0.

SVD: Singular vector decomposition (SVD) was applied
to Concatenation-One representations to generate dense
representations of visits.

LDA: Using latent Dirichlet allocation (LDA) [29], each
document was represented as a topic probability vector.
This vector was used as the visit representation. To apply
LDA, for each visit we created a document that consists
of concatenation of a list of medical diagnosis codes and
clinical notes. We note that LLDA is not suitable for this
task since its topics only contain words.

Codes-JointSG: To evaluate the predictive power of
medical codes, we created features for a visit as the aver-
age JointSkip-gram vector representation of the diagnosis
codes.

Words-JoinSG: To evaluate the predictive power of
clinical notes, we created features for a visit as the aver-
age JointSkip-gram vector representation of the words in
clinical notes.

To compare vector representations obtained by
JointSkip-gram and Skip-gram, we also trained Skip-gram
on clinical notes and on medical codes separately. The
resulting vector representations are not in the same
vector space. We used Skip-gram representations to
construct 3 more groups of features:

Codes-SG: The features for a visit were the average
Skip-gram vector representation of the diagnosis codes.

Words-SG: The features for a visit were the average
Skip-gram vector representation of the words in clinical
notes.

Concatenation-SG: We concatenated the features from
Codes-SG and Words-SG.

Given a set of features describing the first visit, we
used softmax to predict medical codes of the second visit.
Let us assume the feature vector of the first visit is xt ,
the size of code vocabulary is |C| and Z ∈ R

(|C|×|xt |)
is the weight matrix of softmax function. The probabil-
ity that the next visit yt+1 contains medical code ci is
calculated as

p(yt+1(ci) = 1) = eZi·xt
∑

ck∈C eZk ·xt

Table 5 Performance of predicting medical codes of the next visit

Model Top-20 recall Top-30 recall Top-40 recall

Concatenation-One 0.489±0.004 0.590±0.004 0.661±0.004

SVD 0.478±0.004 0.588±0.004 0.652±0.004

LDA 0.431±0.004 0.530±0.004 0.605±0.004

Codes-JointSG 0.499±0.003 0.592±0.003 0.662±0.003

Words-JointSG 0.437±0.004 0.536±0.004 0.609±0.004

Concatenation-JointSG 0.506±0.003 0.599±0.003 0.670±0.003

The average and standard error of Top-k recall (k=20, 30, 40) are provided
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We use Top-k recall [34] to measure the predictive per-
formance, because it mimics the behavior of doctors who
list the most probable diagnoses upon observation of a
patient. For each visit, softmax recommends k codes with
the highest probabilities and Top-k recall is calculated as

Top-k recall = the number of true positives in k codes
the number of all positives

In the experiment, we tested Top-k recall when k = 20,
k = 30, and k = 40.

Training details: To create features for all proposed
models (Skip-gram, JointSkip-gram, LDA, SVD), we used
the training set. To train the Skip-gram model, we used 40
iterations, 5 negative samples, and the window size 5 (the
same as for JointSkip-gram). For SVD and LDA, we set the

maximum number of iterations to 1000 to guarantee con-
vergence. For JointSkip-gram, Skip-gram, SVD and LDA,
we set the dimensionality of feature vectors to 200.

To train the softmax model, we created the labeled
set using only patients with 2 or more visits. We sort
all visits of each such patient by the admission time.
Given two consecutive visits, we use the former to
create features and the latter to create the labels. As
a result, the labeled set used to train the softmax
model had 9955 labeled examples and the test set had
2489 labeled examples. The softmax model for pre-
diction was trained for 100 epochs using a stochas-
tic gradient algorithm to minimize the categorical cross
entropy loss.

Table 5 shows the performance of softmax mod-
els that use different sets of features. A model using
Concatenation-JointSG features outperformed other
baselines on all three Top-k measures.

Fig. 3 Top-k recall (k=20, 30 and 40) for JointSkip-gram and Skip-gram. The error bars indicate the standard error
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Discussion
Predictive evaluation analysis
The results in Table 5 not only show the advantage
of our model, but also demonstrate that both medical
codes and clinical notes in Concatenation-JointSG con-
tributed to the prediction of future visit, since using
the concatenation of word representations and code
representations outperformed both Codes-JointSG and
Words-JointSG. While Codes-JointSG achieved consid-
erably high recall, Words-JointSG performed relatively
worse. The lower accuracy of Words-JointSG likely indi-
cates that using the average of word vectors might not be
the best strategy to use clinical note information. A future
direction could be to use a neural network (NN) such
as convolutional NN or recurrent NN to better capture
information contained in clinical notes.

Figure 3 shows comparison between JointSkip-gram
and Skip-gram features. From the figure, we can observe
that features generated by JointSkip-gram outperformed
those generated by Skip-gram. While the difference
between Words-JointSG and Words-SG were not large,
Codes-JointSG and Concatenation-JointSG significantly
outperformed Codes-SG and Concatenation-SG, respec-
tively. This strongly indicates that JointSkip-gram not
only captures the relationship between medical codes
and words, but also learns improved word and code
representations.

Limitations and future works
One limitation of our work is that in processing step
we removed words whose frequency are less than 50
and codes whose frequency are less than 5. We also
grouped all codes by their first three digits because rare
codes are not statistically significant enough to learn
meaningful representations. One way to use rare tokens
is to exploit the domain knowledge such as subword
information or hierarchical tree structure of medical
codes.

The future work should consider applying joint repre-
sentations to a broader range of tasks, such as cohort
identification and automatic code assignment. It would
also be interesting to explore more advanced prediction
models such as deep neural networks.

Conclusions
In this paper, we proposed JointSkip-gram algorithm to
jointly learn representation of words from clinical notes
and diagnosis codes in EHR. JointSkip-gram exploits
the relationship between diagnosis codes and clinical
notes in the same visit and represents them in the
same vector space. The experimental results demon-
strate that the resulting code and word representation
can be used to discover meaningful disease phenotypes.
They also indicate that the representations learned by

the joint model are useful for construction of patient
features.
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