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Abstract
Cognitive training and brain stimulation studies have suggested that human cognition, primarily working memory and
attention control processes, can be enhanced. Some authors claim that gains (i.e., post-test minus pretest scores) from such
interventions are unevenly distributed among people. The magnification account (expressed by the evangelical “who has
will more be given”) predicts that the largest gains will be shown by the most cognitively efficient people, who will also be
most effective in exploiting interventions. In contrast, the compensation account (“who has will less be given”) predicts that
such people already perform at ceiling, so interventions will yield the largest gains in the least cognitively efficient people.
Evidence for this latter account comes from reported negative correlations between the pretest and the training/stimulation
gain. In this paper, with the use of mathematical derivations and simulation methods, we show that such correlations are pure
statistical artifacts caused by the widely known methodological error called “regression to the mean”. Unfortunately, more
advanced methods, such as alternative measures, linear models, and control groups do not guarantee correct assessment
of the compensation effect either. The only correct method is to use direct modeling of correlations between latent true
measures and gain. As to date no training/stimulation study has correctly used this method to provide evidence in favor of
the compensation account, we must conclude that most (if not all) of the evidence should be considered inconclusive.

Keywords Training · Stimulation · Regression to the mean · Compensation effect

Introduction

In social sciences and other disciplines dealing with living
organisms (e.g., medicine, agriculture), researchers often
study the effects of interventions. Specifically, in cognitive
and developmental psychology, recent years have brought
a multitude of studies focused on the positive effects
of training cognitive abilities such as working memory,
attention, and reasoning. Although there is still heated
debate on whether the far transfer of a trained ability,
such as the increase in reasoning ability when working
memory is trained, is possible (Klingberg, 2010; Jaeggi,
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Buschkuehl, Jonides, & Perrig, 2008) or not (Colom
et al., 2013; Redick et al., 2013). There is little doubt
that in terms of near transfer, the existing cognitive
training methods are effective (Klingberg, 2010; Morrison
& Chain, 2011; Shipstead, Redick, & Engle, 2012). More
recent reports from neuroscience have even suggested the
possibility of enhancing cognitive processing via non-
invasive transcranial electrical stimulation with direct or
alternating currents (e.g., Jaušovec & Pahor, 2017; Pahor &
Jaušovec, 2014; Polanı́a, Nitsche, Korman, Batsikadze, &
Paulus, 2012; Santarnecchi et al., 2015, 2016).

Besides the sheer effectiveness of training/stimulation for
cognitive performance, a growing number of studies have
investigated whether the training/stimulation gain (i.e., the
difference in score between the performance recorded after
training/stimulation [posttest] and the baseline performance
before training/stimulation [pretest]) is distributed evenly
in the trained sample (e.g., Holmes & Gathercole, 2013;
Loosli, Buschkuehl, Perrig, & Jaeggi, 2012), or whether
some people can be trained/stimulated more effectively than
others. Two contrasting kinds of findings have been made
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with regard to the uneven distribution of such gains, and
as a result two competing theories have been developed
(see Karbach & Unger, 2014; Lövdén, Brehmer, Li, &
Lindenberger, 2012).

The magnification account (gisted by the evangelical
“who has will more be given”) predicts that the most
cognitively efficient people at pretest will show the
largest gains. Regarding cognitive training, this proposition
assumes that learning to perform better on a given task,
including acquisition of new skills and strategies, requires
substantial involvement of cognitive resources. The more
resources a person can invest in the training, the larger
the gain. However, such evidence is relatively scant, and
pertains primarily to teaching more effective cognitive
strategies to deal with a task (e.g., Bjorklund & Douglas,
1997; Brehmer, Li, Müller, von Oertzen, & Lindenberger,
2007; Kliegl, Smith, & Baltes, 1990; Kramer & Willis,
2002; Swanson, 2014, 2015; Verhaeghen & Marcoen,
1996). Only one paper (Foster, Harrison, Draheim, Redick,
& Engle, 2017) has suggested magnification effects
pertaining to regular working memory training; it reported
larger gains in people from the third than from the first
tercile of working memory capacity after 20 sessions of
either complex span or running memory task training.

In contrast to the magnification account, the compensa-
tion account of cognitive training (“who has will less be
given”) predicts that the most cognitively efficient people
at pretest already perform at ceiling and are not able to
improve (will display negligible gains). Therefore, training
will yield the largest gains in the least cognitively efficient
people, who still have room for improvement, thus allowing
them to catch up.

Probably the most widely discussed example of com-
pensation account can be found in the field of intelligence
(Lee et al., 2012, 2015; Baniqued et al., 2014). It has been
argued that training strategies have a greater impact on
performance when subjects’ baseline performance is low
(Gopher, Weil, & Siegel, 1989; Espejo, Day, & Scott, 2005).
Some other examples of compensation account come from
children’s learning (Schneider, 2012), selective attention
(Feng & Spence, 2007), executive functions (Karbach &
Kray, 2016), life span development (Baltes, 1987), and from
the field of expertise in which training can reduce differ-
ences between low- and high-aptitude experts (Bjorklund &
Schneider, 1996). The compensation effect is also proposed
as an explanation for improvements which are observed in
strong decline in frontal lobe tasks (Raz, 2000).

One form of compensation proposition is the disuse
hypothesis, which assumes that cognitive decline in
cognitive abilities (e.g., in old age) may be caused by
suboptimal use of available resources by people who have

never increased their cognitive reserve (e.g., at a younger
age). According to the disuse hypothesis, the decline can be
reduced in groups with diminished abilities by optimizing
the use of resources. However, such optimization would
have a negligible effect in groups which already function
at a near optimal level (Gatz et al., 2001; Ihle, Oris, Fagot,
Maggiori, & Kliegel, 2016; Kliegel, Zimprich, & Rott,
2004; Sorenson, 1933).

Although, there exist studies which use brain imaging to
show that cognitive training results in increased activation in
regions that are less activated in a lower performing group
(Hampstead, Stringer, Stilla, Giddens, & Sathian, 2012),
the majority of evidence (e.g., Ball, Edwards, & Ross,
2007; Chan, Wu, Liang, & Yan, 2015; Cox, 1994; Dahlin,
2011; Gaultney, Bjorklund, & Goldstein, 1996; Karbach,
Strobach, & Schubert, 2015; Kattenstroth, Kalisch, Holt,
Tegenthoff, & Dinse, 2013; Willis & Nesselroade, 1990;
Zinke, Zeintl, Eschen, Herzog, & Kliegel, 2012; Zinke
et al., 2014) for the compensation account comes from
negative correlations of baseline performance, and gains
from training.

For example, in a sample of 41 children aged 9 to 12
years (Dahlin, 2011), negative correlations were observed
(up to about −.5) between initial performance on the Span
Board, Digit Span, Stroop, and Raven Colored Matrices
tests, and a gain in performance on these tasks after five
weeks of intensive working memory training using the
RoboMemo task. Chan et al. (2015) trained 13 younger and
12 older adults for ten days on an adaptive n-back task.
They pre- and post-tested them using spatial/verbal n-back
tasks and a finger sequence learning task. The negative
correlations observed between baseline performance on the
latter tasks and the respective increase in performance after
training was as much as r = −.81. Zinke et al. (2012)
trained 20 older adults with five WM tasks over the course
of ten sessions and observed baseline—gain correlations as
strong as r = −.89. The other related studies cited above
reported at least moderate compensation effects.

In psychology, it is barely possible to observe correlation
strengths exceeding .8 (the upper limit for the strength
of correlation is defined by the square root of product of
the reliabilities of correlated tasks, and the reliability of
psychological tests rarely exceeds .8). Thus, one has to be
especially suspicious of the aforementioned evidence for the
compensation account. In fact, the aim of the present paper
is to demonstrate that calculating the correlations of pretest
scores and gain, as is commonly adopted by proponents
of this account, is a hallmark example of a statistical
artifact called “regression to the mean”, dating Francis
Galton (1886). By mathematical derivation (Section 2, see
also Johns, 1981; Lord, 1956; Wall & Payne, 1973) and
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numerical simulations (Section 2), we will show that the
strong negative correlations of the baseline performance
and gains from training are always present in the data,
and are driven by statistical properties of noisy repeated
measurements. Thus, existing evidence is not able to
support the compensation account, and the conclusions
provided by virtually all studies in this vein are disputable.

However, we note that some authors are aware of
the problems pertaining to the pretest-gain correlation
calculations, and in order to validate the compensation
effect they applied one of the two methods which
should yield more correct assessment of the magnitude
of this effect: either (a) an alternative variable for the
gain calculation in order to avoid repeated measurements
(Santarnecchi et al., 2016), (b) a formal model that includes
or excludes the baseline performance × gain interaction
(e.g., structural equation model, SEM, Guye, Simoni, & von
Bastian, 2017; Lövdén et al., 2012), or (c) comparison of
control and experimental group (e.g., Dahlin, 2011; Karbach
et al., 2015; Zinke et al., 2012, 2014). Unfortunately, not
all of these methods constitute an improvement compared
to the (naı̈ve) correlation of pretest and gain. In particular,
using a control group is effectively of no use if the variables
involved in the analysis are confounded. Only correct
application of the active control group in order to investigate
individual differences in training/stimulation effects may
give unbiased estimation of the compensation effect. All
of the aforementioned studies used the control group to
compare the influence of the pretest score on the gain
(instead of posttest) between the control and experimental
groups. As we will show, the pretest and gain are related in a
way that makes such an analysis faulty and only comparison
of the relationship between pretest and posttest in control
and experimental groups may allow biased conclusions to
be avoided.

Most of the examples of studies in which the correlation
between pretest and gain was used come from the cognitive
training domain so we will refer to this field in this
article whenever in need for an example of such a study.
However on a methodological and statistical level this field
is not specific in any way and we would like to underline
that the problem described, solutions tested, and the final
conclusions refer to every domain of empirical sciences
in which the pretest—manipulation—posttest design is
applied and the hypothesis on the relationship between
pretest and gain is tested.

The remainder of this article has four parts. First, we
show analytically that simple correlation of observed pretest
and gain cannot serve as estimation of correlation of true
pretest and gain. Second, we take a closer look at the
strength of the observed correlation, depending on several

boundary conditions. Third, we discuss possible correct
methods of estimating true correlation of pretest and gain.
Finally, we analyze sample data with both correct and
incorrect methods in order to evaluate their accuracy.

Analytical derivation of the persistent
negative correlation between pretest
and gain

In this section, we analyze the mathematical relation
between one variable (e.g., pretest score) and another
variable that is the result of linear combination of the first
variable with a third variable (e.g., the difference between
post-test and pretest scores). This kind of statistical model
is often used to detect a nonlinear relationship between
two variables. For example, in line with the compensation
account, one can predict that people with lower cognitive
ability level will benefit to a greater extent from cognitive
training than people with a higher ability level (who already
perform optimally). One can then correlate the pretest
ability test score with the difference between post-test and
pretest (i.e., gain) and interpret the negative correlation that
is usually observed in such a case as a direct confirmation
of the compensation hypothesis. It will be demonstrated
that such a method may not be the best idea. Put simply,
correlation statistics calculated in this way do not provide
reliable estimation of the true correlation between pretest
and gain.

In the present argument, we make only one assumption:
that observed measures constitute the sums of some true,
unobserved values and random independent noise. This is
definitely a very weak assumption in light of the fact that
most psychological studies do not directly tap the constructs
measured, but rely on tools (e.g., tests, questionnaires, etc.)
that show only imperfect reliability.

Let us consider two observed variables, O1 and O2. Each
is the sum of some true (unobserved) value (V1 and V2,
respectively) and random noise (ε1 and ε2, respectively).
Of interest is the relationship between true value V1 and
the difference � between true values V2 and V1. Since one
cannot directly access these true values, the relationship in
question must be estimated by using the observed values of
variables (i.e. O1 and D = O2 − O1).

Our argument can easily be generalized onto any
linear relation between variables O1 and O2 defined as
above (which obviously does not need to come from
pretests and posttest), but for the sake of simplicity we
henceforth focus on a convenient (and commonly reported
in cognitive training studies) example relation pertaining to
the difference between the two variables (gain).
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The correlation of O1 and D is a biased estimator of
the correlation of V1 and �. Specifically, the difference D

between O2 and O1 equals � + ε1 + ε2:

D = O2 − O1

= V2 + ε2 − (V1 + ε1)

= V2 + ε2 − V1 + ε1

= V2 − V1 + ε1 + ε2

= � + ε1 + ε2.

Note that −(V1 + ε1) equals −V1 + ε1 because ε1 is
independent random noise. Adding such a noise to any
variable has the same effect as subtracting it from that
variable.

Now, why is it a bad idea to estimate the correlation of V1

and � (true pretest and gain) by assessing the correlation of
V1 + ε1 and � + ε1 + ε2 (observed pretest and gain)? The
Pearson product-moment correlation coefficient rX,Y of X

and Y equals the covariance of X and Y (cov(X, Y )) scaled
by the product of the standard deviations of these variables
(σXσY ):

rX,Y = cov(X, Y )

σXσY

. (1)

As the scales are irrelevant here, the means of X and Y can
be fixed to 0 and the product of their standard deviations
(SDs) can be fixed to 1. In which case the denominator also
equals 1. Consequently, the strength of correlation between
the variables equals the covariance between them.

The covariance between X and Y is an expected value
of the product of differences between each variable and its
mean:

cov(X, Y ) = E ((X − μX)(Y − μY )) .

Because the means of X and Y both equal 0 (due to our
choice of scale), the formula can be simplified to:

cov(X, Y ) = E(XY ).

As, by assumption, both X and Y are the sums of
variables (X = A + α and Y = B + β), the latter formula
can be rewritten in the following way:

cov(X, Y ) = E ((A + α)(B + β)) ,

and rearranged to:

cov(X, Y ) = E(AB + Aβ + Bα + αβ),

which, due to the feature of linearity of expected value
equals:

cov(X, Y ) = E(AB) + E(Aβ) + E(Bα) + E(αβ). (2)

Now, let us interpret both X and Y as observed
measures, both A and B as the true unobserved value
of some psychological variable, and finally both α

and β as independent random noise. In consequence,

certain corollaries can be derived from all the previous
assumptions. First, from the zero mean of both X and Y

(because of our choice of scale), and from the zero mean of
both α and β (the intrinsic feature of noise), there follows
the zero mean of both A and B. The latter fact implies that
the expected value of the product of any pair of variables in
the formula (2) equals the covariance of these two variables,

cov(X, Y )=cov(A, B)+cov(A, β)+cov(B, α)+cov(α, β).

When two variables are independent then their covari-
ance equals 0. Thus, both cov(A, β) and cov(B, α) yield
zero because the random noise (e.g., β) of one measure (e.g.,
Y ) cannot be related to the true value of another variable
(e.g., A). Consequently:

cov(X, Y ) = cov(A, B) + cov(α, β),

therefore, the covariance of X and Y equals the covariance
of A and B if and only if the covariance of α and β equals
0. From the above, it follows that if α and β are dependent,
then cov(X, Y ) constitutes a biased estimator of cov(A, B).

Consequently, when one is computing the correlation
between observed variable O1 and the difference D between
O1 and another observed variable O2, in fact one is
computing the correlation between V1 + ε1 and � + ε1 +
ε2, even though one is aiming to estimate the correlation
between true value V1 and the difference � between true
values V2 and V1. Correlation strength computed in this way
will be different than the true strength of the relationship
in question because random terms ε1 and ε1 + ε2 are
clearly not independent. As a result, simply because of the
statistical properties of the measures used, a researcher will
likely observe an incorrect correlation strength between a
given pretest score and a relative gain in a post-test score,
compared to the true strength (if any) of the relationship
between the pretest score and the gain.

Analysis of several specific cases of incorrect
pretest-gain correlation

The strength of correlation between pretest and gain was
analyzed in several specific cases in order to assess
the magnitude of difference between the true versus the
observed correlation of these variables.

How large is the difference between true
and observed pretest-gain correlation?

First, the relationship between pretest and gain was
examined in a case in which there is no relation between
pretest and posttest and their variance is equal.

Let us remind the reader that gain (D) is the difference
between posttest (O2) and pretest (O1). Variance (σ 2) of
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the difference between variables is the sum of variances of
the variables, decreased by the covariance between them
multiplied by two (feature of covariance):

σ 2
D = σ 2

O1
+ σ 2

O2
− 2 cov(O1, O2).

Knowing σ 2
D , one can compute the covariance between

pretest and gain (feature of covariance):

cov(O1, D) = σ 2
O2

− σ 2
O1

− σ 2
D

2
, (3)

then, by putting the formula (3) into the formula (1) one can
compute the correlation between the variables. Accordingly,
when the variances of both pretest and post-test are equal
and there is zero correlation between them, the expected
value of correlation between pretest and gain equals −.71.

What determines the size of the difference between
true versus observed pretest-gain correlation?

As the correlation of two variables can be affected by a
change in the variance of one variable, given that the other
variable’s variance and both variables’ means are fixed,
next it was examined how the difference between true
versus observed correlation varied depending on the relative
disparity in variance between pretest and post-test. Figure 1
shows a decreasing hyperbolic relationship between pretest
variance (varying from 0.14 to 7.14, while the post-test
variance equaled 1) and the correlation between pretest and
gain. This very function implies that with an increasing
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Fig. 1 Relation between the ratio of pretest standard deviation (σ1) to
post-test standard deviation (σ2), and the observed correlation between
pretest and gain (r , solid line). The dotted line marks point of equal
standard deviations of pretest and post-test indicating r = −.71

range of pretest values, the size of the difference between
the true versus the observed pretest-gain correlation will
increase, approaching r = −1 (i.e., the perfect negative
correlation, while the true correlation is null) when the
pretest SD becomes at least five times larger than the
posttest SD.

What is the size of the difference between true
versus observed pretest-gain correlationwhen there
actually is a relationship between pretest and gain?

Let us assume that post-test is a linear function of pretest,
given by the formula V2 = βV1 + ζ (where β is change
due to intervention and ζ is random noise). When β

equals 1, there is no relationship between the pretest and
the gain (the change due to intervention does not depend
on base performance). For values larger than 1, there
is a positive relationship (predicted by the magnification
account). For values smaller than 1, there is negative
relationship (predicted by the compensation account).

In order to examine example cases of the relationship
between pretest and gain, we analyzed how the correlation
between these variables depends on the relationship
between pretest and post-test (β), the variance of prediction
error of pretest and post-test (ζ ), and the variance of
measurement error of pretest and post-test (ε, since O2 =
V2 + ε).

The correlation (ρ) between true pretest V1 and true gain
� can be obtained from the covariance of these variables
and their standard deviations according to formula (1). Next,
the covariance can be computed from the formula (feature
of covariance):

cov(V1, �) = σ 2
V2

− σ 2
V1

− σ 2
�

2
. (4)

The true pretest variance (σ 2
V1

) depends on the choice of

scale and can be set to 1. The true post-test variance (σ 2
V2

)

equals β2σ 2
V1

+ σ 2
ζ (which follows from the definition of

V2). The true gain variance (σ 2
�) equals σ 2

V1
+ σ 2

V2
− 2βσ 2

V1
(obvious proof of the latter claim lies beyond the scope of
this article).

Analogously, we can infer the correlation (r) between
the observed pretest (O1) and the observed gain (D). The
observed pretest variance (σ 2

O1
) equals σ 2

V1
+ σ 2

ε , the true

pretest variance (σ 2
O2

) equals σ 2
O2

+ σ 2
ε , and the observed

gain variance (σ 2
D) equals σ 2

O1
+ σ 2

O2
− 2βσ 2

V1
.

Figure 2 shows the relationship between the true and
observed correlation of pretest and gain, the regression
slope, and both types of error (ζ and ε). True correlation
(ρ) was computed according to the formula (1), whereas
covariance was provided on the basis of the formula (4).
Analogously the observed correlation (r) was computed on
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Fig. 2 True correlations (ρ) between true values (V1 and �) and
observed correlations (r) of observed values (O1 and D), as a function
of V2 regression coefficient on V1 (β), the variance (σ 2) in prediction
error (ζ ) and the variance in measurement error (ε). β smaller than
1 expresses compensation effect; β greater than to 1, magnification
effect; β equal to 1, lack of either of the effects. When variance in
prediction error is null the true correlations is perfectly negative (for
compensation) or perfectly positive (for magnification). The larger the
variance in prediction error the weaker the correlation (both true and
observed) for both these effects. When variance in measurement error
is null, r is equal to ρ for all β (not shown on the plot). The larger
the variance in measurement error the more underestimated are both
compensation and magnification effects

the basis of the formulas (1) and (3). It can be noticed that
the higher the variance of measurement error, the larger the
discrepancy between true and observed correlation. Also,
the higher the variance of prediction error, the smaller the
strength of both true and observed correlation for all values
of β.

Evaluation of alternative methods
of analysis of the relationship between
pretest and gain

Apart from the naı̈ve correlation between pretest and gain,
there are three quite straightforward statistical methods
that can be used to examine the relationship between one
variable and another variable that is a linear function of the
former. In the remainder of the paper, each such method
will be tested against artificially generated data (with and
without the compensation effect).

The mathematically simplest method is to compute
the correlation in question between the gain and another

independent measure of the true pretest score (e.g.,
Santarnecchi et al., 2016). The noise in both variables
will be unrelated, but the method requires additional data
(another measure). The second method is to test the
relative fit to data of regression models that include either
unit relationship (slope coefficient) between pretest and
post-test (no relationship between pretest and gain), or
relationship of magnitude other than 1 (positive or negative
relationship between pretest and gain). The mathematically
most complex method is to define the pretest, the gain,
and their relationship with either a graphical or a structural
equation model (e.g., Lövdén et al., 2012).

Each method requires only data from the experimental
(i.e., either trained or stimulated) group. Additionally, a
researcher may introduce the control group, and then
simply compare the compensation effects in both groups.
If the experimental group yields a significantly stronger
pretest × gain negative (underadditive) interaction than
the interaction that would (naturally) occur in the control
group, then the compensation effect due to intervention
may be validly argued for. Unfortunately, the control group
requires planning ahead, which is a substantial change to
the study’s design (e.g., doubling the sample size, defining
the active control procedure, providing that the groups differ
only in this procedure, etc.). The following analyses aim to
determine if the control group actually is or is not necessary
for any valid inferences pertaining to the compensation
effect.

Correlation with another measure

The first method is to simply use a different measure of
performance in the post-test. Such an alternative measure
will not share the measurement error with the gain based
on the original variable (or vice versa), so the resulting
observed correlation will not be a biased estimation of the
true correlation between pretest and gain.

Using regression

Alternatively, and especially when no parallel scores are
available, a linear regression model can be used. The
hypothesis that the gain is not related to pretest can be
expressed in another way: the coefficient of regression
of post-test over pretest equals 1. More specifically, the
hypothesis that a higher pretest value will yield a higher
gain value is equivalent to the hypothesis that the slope
of the regression line of the post-test over the pretest
is higher than 1. On the other hand, the hypothesis that
a higher pretest value will yield a lower gain value
is equivalent to the hypothesis that the slope of the
regression line of the post-test over the pretest is lower
than 1.
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For example, if a hypothesis states that the higher pretest
value (O1), the higher the gain value (O2 − O1), one can
fit two linear models, M1: O2 = α + O1 + ε and M2:
O2 = α + βO1 + ε (with possible restriction: β > 1),
and can compare them with a model comparison tool (e.g.,
ANOVA). If model M2 proves a significantly better fit to
data than model M1, then the hypothesis about the positive
relation can be considered corroborated.

It should be mentioned that actually one is not allowed
to use linear regression when independent variables contain
noise because in such a case linear regression’s assumption
of weak exogeneity is undermined (Chesher, 1991). But let
us acknowledge the elephant in the room: this assumptions
is hardly ever true. Most psychological studies measure
independent variables with error, and in practice this does
not preclude using linear regression and similar tools in
statistical analysis.

Using graphical and structural equationmodels

The third solution requires using a more powerful analytical
framework that allows for the direct modelling of relation-
ships between observed (manifest) and theoretical (latent)
variables. Two tools commonly used for this purpose are
graphical models (Koller & Friedman, 2009) and structural
equation models (SEM, Kline, 2016). Each avoids the pit-
falls resulting from the interaction of pretest noise and gain
noise because they allow the relationship between the true
(noise free) variances of pretest and post-test to be mod-
eled. Both graphical models and SEM can be defined in
many ways, so there is probably no established form of
model for the problem discussed here (for examples see
Section 2). Although graphical/structural equation models
are more powerful than regression models, they usually
incur the cost of using larger samples and multiple manifest
measures.

Analysis of the validity of compensation
effect detection in simulated data

A series of simulations was performed in order to establish
which (if any) of the methods described above yields an
acceptable estimate of the compensation effect (when the
effect is present in the data), or which can validly detect
the lack of the effect (when it is absent). 10,000 simulations
were run in order to achieve a level of accuracy higher
than 99%, taking into account the established variance of
the parameters of interest, the effect size and α value of
.05. (Burton, Altman, Royston, & Holder, 2006). We used
5% trimmed means of parameters estimated in simulated

data because, unlike the untrimmed mean, it is robust to
a moderate number of outliers. The measures of error
were estimated in the same way as parameters of interest
(mean value of measures in sampled datasets). This method
gave estimates identical to the ones based on measures of
standard error calculated as the standard deviations of the
simulated parameters of interest (see Schafer & Graham,
2002).

Values of p were not computed directly as trimmed
means of simulated samples because when p is close to zero
(e.g., when there is significant or near significant test result),
the distribution of this statistic tends to be visibly skewed.
Such a skewed distribution mean is vulnerable to possible
outliers which are results of sampling errors. Instead, we
sampled statistics whose distributions were more stable
(e.g., t or χ2) and computed p values based on trimmed
means of these statistics and respective degrees of freedom.

The sampling error, estimation of uncertainty, and
significance of the effects depends on the sample size. So,
in order to cover a wide range of possible expressions of the
compensation effect, we introduced several sample sizes in
the simulations. These sample sizes were chosen in order
to reflect the ones used in the studies which we referenced
as examples of questionable support for the compensation
effect. We tested the validity of the statistical methods in
small (N = 28 similarly as used by Karbach et al., 2015),
medium (N = 48 similarly as used by Chan et al., 2015),
large (N = 80 similarly as used by Zinke et al., 2014), and
huge (N = 300 as a kind of best case scenario) samples.
Note that due to the differences in the methodology and
the statistical methods used, the N values are merely based
on sample sizes used in the cited studies rather than mirror
them.

The first dataset contained a real compensation effect,
i.e., the true unobserved gain was forced to negatively
correlate with the true pretest value. In the second dataset,
the false compensation effect could only have appeared as
a result of regression to the mean as the true gain was
uncorrelated with the pretest. The third dataset used in the
analysis including a control group was composed of two
sets of data in equal proportions. The first half (imitating
the experimental group) was generated identically to first
dataset (which included covariance between pretest and
gain) while the second half (imitating the control group)
was generated identically to the second dataset (contain no
covariance between pretest and gain).

Artificially generated datasets

A sample of N data points (28, 48, 80, or 300), each defined
in two dimensions (pretest and gain), was drawn from the
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Table 1 Faulty estimation of relationships between pretest and gain, with simple correlation

Dataset 1 (real compensation) 2 (regression to the mean)

r 95%CI p r 95%CI p

N = 28 −.59 [−.79, −.29] < .001 *** −.33 [−.62, .04] .076

N = 48 −.6 [−.75, −.38] < .001 *** −.33 [−.56, −.06] .018 *

N = 80 −.6 [−.72, −.44] < .001 *** −.33 [−.51, −.12] .0026 *

N = 300 −.6 [−.67, −.52] < .001 *** −.33 [−.43, −.22] < .001 ***

bivariate normal distribution with the following covariance
matrix
[

1 −0.4
−0.4 0.5

]
.

The first vector, generated with a mean of 0 and a variance
of 1, represented the values of the true unobserved pretest
(V1). The second vector, with a mean of 0.8 and a variance
of 0.5, reflected the values of the true unobserved gain (�).
The pretest and gain were negatively correlated at r = −.57.
The mean of V1 (0) is an average pretest value; a mean of �

(0.8) is an average value of increase in post-test compared
to pretest.

Next, the values of the true unobserved post-test were
computed as the sum of the two variables (V2 = V1 + �).
Finally, the observed values of both pretest (O1 = V1 + ε1)
and posttest (O2 = V2 + ε2) were calculated, where ε1 and
ε2 were random noise drawn from the normal distribution
(N = 1000, μ = 0, σ = 0.7). In a similar way, the
alternative observed measures of the pretest (O ′

1 = V1 + ε3)
and post-test (O ′

2 = V2 + ε4) were computed.
The second dataset was generated in the same way as the

first, with the sole difference that there was no correlation
between the true pretest and the true gain. The covariance
matrix defining this dataset was as follows

[
1 0
0 0.5

]
,

thus, there was no real compensation effect in the data.

The third dataset consisted of two subsets of equal
sizes generated identically to the first and second datasets.
Each subset was respectively labeled as “experimental” or
“control” group. The sizes of the entire dataset was the same
as sizes of the first and second datasets (28, 48, 80, or 300).

Analysis of compensation effect detection

Naı̈ve correlation of pretest and gain

The correlation of pretest and gain was significant and negative
in all cases except the second dataset (spurious compen-
sation) for N = 28; this means the method incorrectly
signaled as significant a correlation that was actually null in
the cases of medium, large, and huge samples (see Table 1).
The correlation in the first dataset (all sample sizes) did not
differ significantly from the true correlation (−0.57) and the
estimation was only slightly magnified.

Correlation of gain with alternative pretest measure

In contrast to the naı̈ve correlation computed in the first
step, the correlation between the gain and the alternative
measure of pretest performance correctly detected the lack
of a significant relationship between these two variables
for all sample sizes. However, the method did not detect
the current relationship in small and medium sample of
the first dataset. In the large and huge samples, for which
the correlation was correctly identified, its strength was
underestimated (see Table 2).

Table 2 Correlation of gain with alternative pretest measure

Dataset 1 (real compensation) 2 (regression to the mean)

r 95%CI p r 95%CI p

N = 28 −.26 [−.57, .11] .15 0 [−.36, .36] .998

N = 48 −.27 [−.51, .01] .06 0 [−.28, .28] .993

N = 80 −.27 [−.46, −.053] .015 * 0 [−.22, .22] > .999

N = 300 −.27 [−.37, −.16] < .001 *** 0 [−.11, .11] > .999

* p < .05, ** p < .01, *** p < .001
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Table 3 Estimation of pretest-posttest slope with linear regression model

Dataset 1 (real compensation) 2 (regression to the mean)

B 95%CI p B 95%CI p

N = 28 0.4 [0.08, 0.72] .001 ** 0.67 [0.29, 1.05] .088

N = 48 0.4 [0.17, 0.64] < .001 *** 0.67 [0.39, 0.95] .022 *

N = 80 0.4 [0.22, 0.58] < .001 *** 0.67 [0.46, 0.88] .0028 **

N = 300 0.4 [0.32, 0.49] < .001 *** 0.67 [0.57, 0.77] < .001 ***

Note: Value of p is computed in reference to B = 1 as a null hypothesis

* p < .05, ** p < .01, *** p < .001

Linear regression model

The model Posttest = α + βPretest + ε was fit to all
the generated datasets. The estimated Shapiro–Wilk tests
results revealed that the residuals were normally distributed
in all models (the smallest W = .96, p = .5, observed for
no compensation dataset, N = 28) and the models were
homoscedastic (as revealed by the estimations of Breusch—
Pagan test results, the largest BP [1] = 0.82, p = .49,
observed for real compensation dataset, N = 28).

For the first dataset, in which the compensation effect
was present, the linear models provided slope parameters
significantly smaller than one, correctly indicating the
existence of the effect. However, for the second dataset,
in which the compensation effect was absent, the models
provided the correct result (the slope was not significantly
different from 1) only for the small sample and falsely
signaled compensation (B significantly smaller than one)
for the medium, large, and huge samples (see Table 3).

Structural equation models

Two alternative structural equation models were fitted to
each dataset. The models were based on Lövdén et al.
(2012), who tackled a similar problem of estimating the
correlation between some baseline performance and a
subsequent gain. The models belong to the latent difference
score class; this means that the difference (gain) between
the observed variables (post-test and pretest) is represented
as a latent variable, and one of the observed variables (e.g.,
post-test) is the sum of another observed variable (e.g.,
pretest) and the latent gain (McArdle, 2009). This approach
lets us directly model all parameters of the difference (i.e.,
mean, variance, covariance of the pretest with the change,
etc.). Also, in the latent difference score model we can
examine the statistical properties of the change without
actually calculating the change scores. Latent difference
score modeling is also fit for our purposes because it rests
on assumptions similar to the ones made in this article (see
McArdle & Hamagami, 2001).

Both models consisted of four manifest variables which
were scores of four observed measures (see Fig. 3), O1,
O2, O ′

1, and O ′
2, the pretest and the post-test of the

primary, and the pretest and the post-test of the alternative
measure, respectively. The residual terms of each pair
of manifest measures (i.e., primary and alternative) were
allowed to correlate. Both pretest scores were loaded by
the latent variable representing the unobserved pretest
performance (V1), and both post-test scores were loaded by

1
V1 V2

V1*

Δ*

Δ

ε1 ε'1 ε2 ε'2

ρ

π π'

σV

σΔ

σ1 σ'1 σ2 σ'2

μV

μΔ

μm μm

O1 O'1 O2 O'2

Fig. 3 Structural equation models (based on Lövdén et al., 2012).
Squares represent manifest variables (O1 is the score in the observed
pretest, O ′

1 is the score in alternative measures of the observed
pretest, and O2 and O ′

2 are scores in post-tests). Circles represent
latent variables, V1 reflects unobserved pretest performance, V2
reflects unobserved post-test performance, and � indicates gain. The
triangle represents a constant. Each solid arrow represents a nonzero
parameter. Each named arrow represents a free parameter. The models
differ only in the ρ parameter (dashed arrow), which represents
the correlation between variance of baseline performance (V1∗) and
variance of gain (�∗). In the first model ρ is fixed to 0, whereas in the
second model this parameter is free
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the unobserved post-test latent variable (V2). The post-test
variable was the sum of the pretest variable and another
latent variable reflecting gain (�). As both V1 and � were
linked to the constant term and variance of V1∗, and �∗ was
fixed to 1, their regression loadings on V1 and � equaled
the standard deviation of the variables and therefore the
covariance between V2∗ and �∗ equaled the correlation
between them. Two additional variables for V1 (V1∗) and
� (�∗, with variance fixed to 1 in both) are specified only
to have a direct estimation of the correlation between them.
If we correlated the variables directly, the models would be
mathematically equivalent to the tested ones, but we would
have a covariance estimated instead of a correlation. Also,
the mean of the alternative measure was fixed to the constant
term. The sole difference between the two models was that
the first did not allow for the correlation between variance
terms (V2∗ and �∗), whereas the second did include such a
correlation (Fig. 3, dashed line).

It must be stressed here that fitting SEM for most of
sample sizes used in this simulation is generally a very
precarious idea and should be done only in cases when
it can be demonstrated that the small sample size does
not influence the reliability of the results (Kline, 2016). In
case of described simulations, the relatively small sample
sizes are not problematic because (a) the large number of
simulation removes problem of sampling error, (b) artificial
generating of the data provides that tested models are true
and (c) that all sources of error are known and controlled.

We fitted the models with Lavaan (0.5) using unstan-
dardized input and maximum likelihood estimation. In the
first dataset (real compensation), only the first model (which
included pretest-gain correlation) achieved a satisfactory fit
for all sample sizes. The second model (which assumed no
correlation of pretest and gain) failed to meet the criteria of
acceptability for any sample size. Additionally, the param-
eter of the correlation between pretest and gain (ρ) in the
first model was significantly negative for all sample sizes. In
the second dataset (no real compensation effect), both mod-

els achieved satisfactory fit. The measures of fit were very
similar in both models, with the second model displaying
a moderate advantage (χ2 and CFI were either inconclu-
sive or slightly favored the first model; RMSEA was either
inconclusive or slightly favored the second model; AIC

and BIC slightly favored the second model). More explicit
evidence in favor of the second model was provided by esti-
mations of ρ. For all sample sizes, the parameter did not
differ significantly from zero; in fact, the estimated value
of the parameter was very close to zero. Full comparison of
the fit measures is demonstrated in Table 7. Table 4 presents
brief comparison based on the relative χ2. This measure is
used to test the hypothesis about the increase in model’s fit
as free parameters are added to the model. The model which
has more free parameters will always have better fit than the
model with lower number of free parameters because it is
more complex/flexible than the latter one but the increase
in fit does not always compensates the increase in the com-
plexity. The relative χ2 can be used to compare nested
models fitted to the same dataset taking into account both
the models’ fit and complexity. The significant difference
means that the more complex model is the better one.

Using control group

The linear regression model including the interaction
between group and pretest was fitted to the third dataset,
which contained two halves (first, including covariance
between pretest and gain—experimental group; and second,
which did not include such a correlation—control group).
The model was defined as follows: Posttest = α+βGroup+
γ Pretest + δGroup×pretest + ε. The estimated Shapiro—
Wilk test results revealed that the residuals were normally
distributed in all models (the smallest W = .96, p = .5,
observed for N = 28) and the models were homoscedastic
(as revealed by the estimations of Breusch—Pagan test
results, the largest BP [1] = 6.37, p = .19, observed for
N = 300).

Table 4 Brief of the comparison of the goodness-of-fit measures for the two structural equation models

Dataset 1 (real compensation) 2 (regression to the mean)

Relative χ2 p ρ 95%CI Relative χ2 p ρ 95%CI

N = 28 4.05 .044 * −.58 [−1, −.074] 0.89 .34 .057 [−.72, .83]
N = 48 6.33 .012 ** −.57 [−.9,−.22] 0.85 .36 .034 [−.52, .57]
N = 80 10 .0016 ** −.57 [−.82, −.31] 1.04 .37 .018 [−.39, .42]
N = 300 36.17 < .001 *** −.57 [−.69, −.44] 0.81 .37 0.0045 [−.19, .2]

Note: DF for relative χ2 equals 1

For complete comparison see Table 7 in Appendix

* p < .05, ** p < .01, *** p < .001
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Table 5 Estimation of interaction parameter (group × pretest) in linear
regression model (dataset 3)

B 95%CI p

N = 28 −0.27 [−1.02, 0.48] .45

N = 48 −0.27 [−0.8, 0.27] .31

N = 80 −0.27 [−0.67, 0.14] .19

N = 300 −0.27 [−0.47, −0.067] .0088 **

For estimation of all parameters in the model see Table 8 in Appendix

* p < .05, ** p < .01, *** p < .001

The resulting model parameters are presented in Table 8
in Appendix. Comparison of estimations of the interaction
parameter is presented in Table 5. The interaction in
question was significantly different from zero only for huge
sample size; this means that the linear model failed to detect
that the experimental group displayed a larger compensation
effect than the control group for all “realistic” sample
sizes. This fact led to the invalid conclusion that in the
experimental group the compensation effect did not consist
of anything more than the artifactual compensation effect
(as in the control group).

Conclusions

Three patterns can be observed among the results of the
application of the analysed statistical methods (see Table 6).
First, both correlation with alternative measure and analysis
of interaction using the control group seem to be able
to correctly diagnose the presence and absence of the
compensation effect, provided they have enough power.
In the analyzed datasets, the correlation with alternative
measure failed to detect the existent compensation in
small and medium samples; however, the method almost
indicated the effect in the medium sample (p = .06)
and correctly detected the effect in the large and huge
samples. Similarly, analysis of interaction using the control
group revealed a negative interaction between group and

pretest value only in huge sample, therefore the hypothesis
about a higher compensation effect in the experimental
group (both real and artifactual compensation) than in
the control group (sole artifactual compensation) was not
confirmed for all sample sizes based on real studies.
However, the estimate of the interaction was invariably
negative for all sample sizes and it was the large standard
error that made the effect insignificant. Nevertheless, the
error systematically decreased with the increase of sample
size and ultimately the interaction reached significance for
the huge sample. Therefore, one can undoubtedly expect
that if sufficient power is provided (low measurement error,
large sample, etc.) this method will correctly detect an
existing compensation effect.

Second, both the naı̈ve correlation and the linear model
appeared to be quite unreliable. On one hand, naı̈ve
correlation provided the correct diagnosis for small and
medium samples and the linear model provided correct
diagnosis for the small sample, but it is clear that neither
method falsely diagnosed the inexistent compensation effect
for the small (or medium) sample size simply due to
the large standard error of the estimation, which was
consequence of the sample size. Thus, when using these
methods, one finds oneself in an awkward situation where
the higher the power of the test, the higher the chance of
obtaining the wrong outcome.

Finally, structural equation models proved to be an
accurate tool for the task. For all sample sizes of the
first dataset, SEM unequivocally indicated the first of the
models (which assumed correlation between pretest and
gain) as better than the alternative one. Also, estimation of
the correlation parameter was definitely negative. So, the
conclusion about the existence of the compensation effect
was consistently true. In the second dataset, SEM indicated
the second model (which assumed no correlation between
pretest and gain) as better. However, the fit measures were
far less unequivocal than in the first dataset. Some of the fit
measures indicated the first model as slightly better, while
some of them were inconclusive; however, in the big picture
the second model achieved a slightly better fit for all sample

Table 6 Diagnosis of compensation effect by all tested statistical methods

Dataset 1 (real compensation) 2 (regression to the mean) 3 (combined dataset)

NC CWAM LM SEM NC CWAM LM SEM LMWI

N = 28 detected rejected detected detected rejected rejected rejected rejected not discriminated

N = 48 detected rejected detected detected detected rejected detected rejected not discriminated

N = 80 detected detected detected detected detected rejected detected rejected not discriminated

N = 300 detected detected detected detected detected rejected detected rejected discriminated

Note: Correct outcomes are printed in bold. NC—Naı̈ve correlation, CWAM – Correlation with alternative measure, LM—Linear model,
LMWI—Linear model with interaction
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sizes. Moreover, the value of the correlation parameter in
the first model was estimated as close to zero.

Thus, the best solution to the problem of testing
the compensation account is to express directly the true
(measurement error free) variables in the fitted model
(either SEM or graphical model) and test the relationship
between them. Acceptable, albeit much less trustworthy,
solutions are either to use an alternative measure of
pretest/posttest instead of the primary one in the correlation
test, or to include a control group in the study and to
compare the possible compensation effect between the
control and the experimental (trained/stimulated) group.
These methods can be used with the restriction that only a
positive outcome of these tests is credible because a negative
outcome can show that there is insufficient test power, or
that the effect is nonexistent. Finally, neither a simple linear
model test nor a naı̈ve correlation should ever be used to test
the compensation account!

Discussion

This study aimed to methodologically assess the existing
and potential evidence in favor of the popular compensation
account of cognitive training and neuronal stimulation; it
predicts the training effect size to be negatively related
to the baseline performance tested before the training.
However, most such evidence consists of negative Pearson
correlations of pretest score and training gain, the latter
expressed as the difference between post-test and pretest. A
relatively simple mathematic derivation demonstrated that
such an outcome occurs naturally when gain (treated as the
dependent variable) is the linear function of the independent
variable (pretest); that is a specific case of a more
general statistical artifact called regression to the mean.
This conclusion was supported by numerical simulations,
showing a robust tendency towards reporting negative
correlations even when the pretest and posttest scores are in
fact unrelated. As a result, one must conclude that most of
the existing evidence in favor of the compensation account
is questionable (e.g., Chan et al., 2015; Cox, 1994; Dahlin,
2011; Gaultney et al., 1996; Karbach et al., 2015; Zinke
et al., 2012, 2014).

Furthermore, using numerical simulations we exam-
ined if the four alternative methods (correlation with an
alternative pretest measure, simple linear regression model,
linear regression model including control group, and struc-
tural equation model) can validly evaluate the magnitude of
the compensation effect when it is present in data, as well
as validly report its lack when it is absent. Both the linear
regression model and naı̈ve correlation yielded false alarms,
detecting compensation whether or not it was present in

data. On the other hand, correlation with an alternative
measure failed to detect a true compensation effect in a
small sample. Also, including a control group and exam-
ining the interaction between group and pretest value did
not lead to correct discrimination between spurious and
real compensation. However, similarly to correlation with
another measure, the low power of the tests was probably the
reason that the effect was missed. The only fully valid detec-
tion of compensation was achieved by the use of an SEM,
which diagnosed properly in both datasets and for all sample
sizes.

However, the present study should not be interpreted
as an argument against the compensation account, as the
account itself might be valid. Simply, the empirical status
of this hypothesis is still indeterminate as the validity
of the methods used to corroborate it is doubtful. With
proper methods, the account may in principle be supported
by future data. Consequently, the merit of the present
study lies in stimulating methodologically valid research
on the individual differences in training and stimulation
effects. Knowledge on such differences is very important
because it informs who should be primarily targeted by
increasingly common but costly cognitive training programs
(Román et al., 2016; Schmiedek, Lövdén, & Lindenberger,
2010) or transcranial stimulation (Jaušovec & Pahor, 2017;
Santarnecchi et al., 2015), which might help various
subpopulations to improve performance. In fact, some
studies (e.g., Au et al., 2015; Santarnecchi et al., 2016) that
used methods beyond naı̈ve correlation indeed suggested
that people whose performance is worse at baseline may
especially benefit from such programs. However, the only
two studies that validly applied an SEM (Guye et al., 2017;
Lövdén et al., 2012) provided results that support both
the compensation account and the magnification account;
this suggests that both compensation and magnification can
occur, depending on the faculty trained and the procedures
applied (see Borella, Carbone, Pastore, Beni, & Carretti,
2017). More reliable future studies are definitely needed
before any firmer conclusions can be drawn. The most
important take-home message from the present analysis is
that such studies need reliable statistical methods.

Acknowledgments Tomasz Smoleń was supported by grant
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Appendix

Table 7 Comparison of the goodness-of-fit measures of the two structural equation models for the two datasets

Dataset 1 (real compensation) Dataset 2 (regression to the mean)

Model 1 Model 2 Relative fit Model 1 Model 2 Relative fit

N = 28

χ2[DF ] 1.9 [2] 6.25 [3] 4.05 [1] 1.9 [2] 3 [3] 0.89 [1]
p(χ2) .39 .1 .044 * .39 .39 .34

RMSEA[95%CI ] .057 [.0004, .338] .167 [.034, .4] — .057 [.0003, .338] .057 [.0004, .296] —

CFI .985 .908 — .99 .986 —

AIC 322 325 — 332 332 —

BIC 338 339 — 348 346 —

ρ[95%CI ] −.58 [−1, −.074] — — .057 [−.72, .83] — —

p(ρ) .11 — — .5 — —

N = 48

χ2[DF ] 1.82 [2] 8.41 [3] 6.33 [1] 1.87 [2] 2.92 [3] 0.85 [1]
p(χ2) .4 .04 * .012 * .39 .4 .36

RMSEA[95%CI ] .04 [.0001, .255] .174 [.052, .334] — .042 [.0002, .257] .042 [.0002, .224] —

CFI .992 .916 — .994 .992 —

AIC 545 550 — 562 561 —

BIC 567 570 — 585 582 —

ρ[95%CI ] −.57 [−.9,−.22] — — .034 [−.52, .57] — —

p(ρ) .04 * — — .51 — —

N = 80

χ2[DF ] 1.84 [2] 12.32 [3] 10 [1] 1.84 [2] 2.84 [3] 1.04 [1]
p(χ2) .4 .007 ** .0016 ** .4 .42 .37

RMSEA[95%CI ] .032 [.0001, .198] .185 [.079, .308] — .032 [.0001, .198] .031 [0, .17] —

CFI .995 .917 — .997 .996 —

AIC 901 909 — 929 928 —

BIC 929 935 — 958 954 —

ρ[95%CI ] −.57 [−.82, −.31] — — .018 [−.39, .42] — —

p(ρ) .004 ** — — .51 — —

N = 300

χ2[DF ] 1.8 [2] 38.2 [3] 36.17 [1] 1.77 [2] 2.78 [3] 0.81 [1]
p(χ2) .41 < .001 *** < .001 *** .41 .42 .37

RMSEA[95%CI ] .016 [0, .101] .196 [.143, .254] — .016 [0, .101] .015 [0, .087] —

CFI .999 .915 — .999 .999 —

AIC 334 338 — 345 345 —

BIC 339 342 — 349 349 —

ρ[95%CI ] −.57 [−.69, −.44] — — .0045 [−.19, .2] — —

p(ρ) < .001 *** — — .5 — —

*p < .05, ** p < .01, *** p < .001
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Table 8 Estimation of linear regression models parameters (dataset 3)

Predictor B 95%CI p

N = 28

(Intercept) 0.8 [0.19, 1.41] .01*

Group −0.006 [−0.87, 0.85] .988

Pretest 0.67 [0.15, 1.19] .01*

Group × pretest −0.27 [−1.02, 0.48] .45

N = 48

(Intercept) 0.8 [0.36, 1.25] .001 **

Group −0.0033 [−0.64, 0.63] .991

Pretest 0.67 [0.3, 1.05] .001 **

Group × pretest −0.27 [−0.8, 0.27] .31

N = 80

(Intercept) 0.8 [0.46, 1.13] < .001 ***

Group 0.0042 [−0.48, 0.48] .99

Pretest 0.67 [0.38, 0.95] < .001 ***

Group × pretest −0.27 [−0.67, 0.14] .19

N = 300

(Intercept) 0.8 [0.63, 0.97] < .001 ***

Group 0 [−0.24, 0.24] .99

Pretest 0.67 [0.53, 0.81] < .001 ***

Group × pretest −0.27 [−0.47, −0.07] .0088 **

The dependent variable is the posttest score

*p < .05, ** p < .01, *** p < .001
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