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Abstract

Purpose of Review The purpose of this review is to provide an overview of the published studies that have been used to generate
evidence on the safety of medicine use when only medication dispensing data are available.

Recent Findings Medication dispensing databases are increasingly available for research on large populations, particularly in
countries that provide universal coverage for medicines. These data are often used for drug utilisation studies to identify
inappropriate medicine use at the population level that may be associated with known safety issues. Lack of coded diagnoses,
to identify outcomes, and lack of data on confounders can limit use of these data in practice for medication safety assessment. To
overcome these issues, studies have exploited the fact that symptoms of adverse effects of medications can be treated with other
medications, for example antidepressants to treat depression or oxybutynin to treat urinary incontinence. The challenge of
unmeasured confounding has been addressed by implementing self-controlled study designs that use within-person comparisons
and provide inherent control for confounding. Prescription sequence symmetry analysis (SSA) is a within-person study design
that has been demonstrated as a useful tool for safety signal generation in dispensing data.

Summary Using medicine initiation as a proxy for the development of adverse events can help to generate evidence of the safety
of medicines when only medication dispensing data are available. Careful consideration, however, should be given to the
sensitivity and specificity of the proxy medicine for the adverse event and potential for time-varying confounding due to trends
in medicine utilisation. Data-mining approaches using dispensing data have the potential to improve safety assessments; how-
ever, the challenge of unmeasured confounding with these methods remains to be investigated.

Keywords Medication safety - Dispensing data - Self-controlled designs - Medication proxy

Introduction

Medication-related problems can lead to significant harm and
impact on quality of life. In Australia, around 2% to 3% of all
hospital admissions can be attributed to medicine-related prob-
lems while around 10% of patients visiting a medical practition-
er have experienced an adverse medication event in the last
6 months [ 1]. Efforts to improve medication safety focus on both
identification and quantification of previously unrecognised
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adverse events of medicines and the clinical risk factors for those
events, as well as identification of inappropriate medicine use in
practice. Knowledge about the safety of medicines and use of
medicines in high-risk populations can help to inform interven-
tions to improve the use of medicines.

In pharmacoepidemiology, the goal of medication safety
studies is to generate knowledge about the risks associated with
medicine use and factors that may modify that risk. Large-scale
health care administrative databases are a convenient source of
information to generate this knowledge as they contain individ-
ual patient-level data on health services claimed for many mil-
lions of patients. These data are routinely collected in many
countries with universal health systems and by large private
health insurers. Medication safety assessments using these data
can be made by linking exposure data, i.e. medicine dispensing
data, to outcome data, i.e. hospital admission data; however,
this is not always possible, practical or timely particularly if
hospital services and pharmaceutical services are subsidised
by different payers and require external linkages to bring the
datasets together. Regardless of the ability to link to other data
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sources, individual patient-level dispensing datasets are often
available in many countries [2]. These data contain information
on the medication dispensed, date of supply, quantity supplied
and dose. For example, Australia maintains a national dispens-
ing dataset of medicines subsidised under their Pharmaceutical
Benefits Scheme with the collection beginning in 1990 and
patient linked since 2002 [3]. The Nordic countries all maintain
nationwide prescription datasets [4] as does New Zealand [5],
Scotland [6], Ireland [7] and the Asian countries, Korea,
Taiwan, and Japan [8, 9] among others.

When only patient-level dispensing data are available,
there are two key opportunities for medication safety assess-
ment: medicine utilisation studies and medication safety as-
sessments. Medicine utilisation studies have long been used in
pharmacoepidemiology to identify issues with medicine use at
the population level that may be indicative of known safety
issues such as use in contraindicated populations, use outside
of indication (off-label) or subsidy restriction, inappropriate
treatment sequences, inappropriate dosing or prevalence of
interacting medicines. Medicine utilisation studies can help
to identify the potential over-use or under-use of medicines,
particularly where they can be compared with estimates of
disease prevalence or incidence for the population under
study. These studies are an effective strategy to enhance med-
ication safety as they can identify opportunity for intervention
and promotion of quality use of medicines. For example,
Polluzi et al. [10] used dispensing data across 13 different
European countries to determine the extent of use of antihis-
tamine medicines that were associated with safety signals
identified through spontaneous reports. Where use is consid-
ered to be high, this can then prompt risk minimisation activ-
ities by regulators and clinicians. In Australia, the Australian
Government Department of Veterans’ Affairs (DVA) funds an
ongoing health promotion-based program, Veterans’
Medicines Advice and Therapeutic Education Services
(Veterans” MATES), which implements interventions to im-
prove use of medicines in the Veteran community [11].
Veterans” MATES interventions are developed based on is-
sues identified in drug utilisation reviews of medication dis-
pensing data and practice change after implementation of the
intervention is evaluated [12, 13].

While medicine utilisation studies in large-scale medication
dispensing datasets are frequent, fewer studies have associated
medicine use with adverse outcomes using only these data. A
review of studies utilising the Australian PBS data [3] identified
50 studies that used individual level dispensing data. The ma-
jority of these studies (27 studies) examined trends in utilisation
and impacts of interventions while only 9 correlated medicine
use with outcomes. Similarly, a review of the use of claims data
in the Nordic countries [4] including 515 studies from Denmark,
Finland, Iceland, Norway and Sweden found that medicine
utilisation studies accounted for 44% of all studies with the
remainder investigating the effectiveness or safety of medicines;
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however, many of these linked dispensing data to other datasets
to identify outcomes. In Scotland, dispensing of medicines pub-
licly funded by the National Health Service is captured in the
Prescribing Information System. These data have been used
predominantly for drug utilisation studies [6].

There are two key barriers to generating evidence of med-
ication safety when only dispensing data are available. The
first if the lack of coded diagnosis data to identify adverse
events and the second is the lack of data on potential con-
founders. To address these issues, medication safety assess-
ments can be made by exploiting the fact that symptoms of
adverse events of medicines can be treated with other medi-
cines and self-controlled designs that eliminate the need to
numerically control for confounding can be implemented.

The aim of this article is to provide an overview of studies
that have investigated issues of medication safety using only
medication dispensing datasets. We investigate the outcomes
assessed by these studies and the medication ‘proxies’ used to
define these outcomes. We also examine the methodologies that
have been used to generate evidence of medication safety with a
particular focus on adjustment for unmeasured confounding.
Lastly, we discuss the potential for ongoing work in this area.

Medicine Safety Studies in Dispensing Data

One of the barriers to medicine safety assessment in dispensing
data is the lack of diagnosis data to identify adverse events. In
order to use dispensing data for safety assessment, one can
utilise the fact that symptoms of adverse effects of medicines
can be treated in primary care and do not always result in
hospitalisation. When the symptoms of an adverse event are
misinterpreted as the development of a new unrelated condition
and treated with another medicine, this is sometimes referred to
in the literature as a prescribing cascade [14]. Examples include
dry cough associated with angiotensin-converting enzyme
(ACE) inhibitors, which may be managed by antitussive med-
ication, and urinary incontinence associated with cholinesterase
inhibitor use for dementia, which may be managed with
oxybutynin. Prescribing cascades can be utilised in safety as-
sessments of medicines by examining the rate of initiation of
‘proxy’ medicines that can be used to treat adverse event symp-
toms, after initiation of the index medicine.

In addition to the lack of diagnosis data for medication
safety studies in dispensing data, another limitation is the lack
of available information on potential confounders. The advent
of self-controlled designs that inherently control for con-
founders that do not vary over time by making within-
person comparisons has meant that safety studies can be im-
plemented in dispensing data without requiring information
on measured confounders. Self-controlled study designs in-
clude the case-crossover [15], the self-controlled case series
[16] and sequence symmetry analysis [17]. All of these
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designs share a similar characteristic, which is that the pa-
tient’s risk of experiencing an adverse event after exposure
is compared with another time in that patient’s history (or their
future) when they were not exposed. This comparison to
one’s-self rather than another individual eliminates the need
to numerically adjust for patient characteristics that do not
vary over time such as gender, disease severity or frailty, pro-
vided the follow-up time is short.

Sequence Symmetry Analysis

Ofthe class of self-controlled designs, by far, the most frequent-
ly used in medication dispensing data has been the sequence
symmetry analysis (SSA) [17, 18]. SSA aims to identify a
pattern in medicine use that suggests a medicine indicative of
treatment of an adverse event is initiated more often after expo-
sure than prior to exposure. The statistic of interest is the se-
quence ratio, which has been described as the ratio of the rate of
events in exposed individuals compared to a similar unexposed
population in the period of time before the exposure [19]. We
identified 31 published SSA studies that used initiation of a
medicine as an indicator of an adverse event. All published
SSA studies and the indicator medicines that were used are
summarised in Table 1. Examples include initiation of antide-
pressants as an indicator of depression [17, 42, 43], initiation of
antitussives as an indicator of dry cough [49, 51] and initiation
of glaucoma eye drops as an indicator for glaucoma [53].
Initially, the method was used to explore specific hypotheses;
however, of the studies published in the last 5 years, nearly half
used a hypothesis generating approach either to determine
which medicines were associated with a specified adverse event
(e.g. urinary incontinence [26], lower urinary tract infection
[27], erectile dysfunction [31] and heart failure [33¢¢]) or to
determine potential adverse events associated with a specific
medicine (e.g. adverse events associated with novel oral anti-
coagulants (NOACs) [56¢, 57¢¢], or cholinesterase inhibitors
[55]). In the studies investigating novel oral anticoagulants, the
aim of the analysis was to use SSA as a pharmacovigilance tool
to generate safety signals with the newly marketed medicines.
In addition to bleeding or stroke events associated with
NOAC s, which have been well studied in the literature, these
studies identified potential safety signals including constipa-
tion, depression and nausea [56ee, 57¢°].

Self-Controlled Case Series
and Case-Crossover

Very few studies were identified in the literature that used either
the self-controlled case series (SCCS) or the case-crossover
design where the outcome was identified through dispensing
data only. A systematic review of applications of either SCCS

or case-crossover (CCO) [61] identified no studies that used
only dispensing data to define outcomes. One SCCS study
included in the review [62] used prescriptions to identify de-
pression associated with discontinuation of long-term use of
glucocorticoids; however, hospitalisation data was also used
in a composite outcome. Another review of case-crossover
methodologies in medication safety and effectiveness studies
[63] identified 70 empirical applications of the method, but
included only one study that used medicines dispensing data
only to define the outcome. This study [64] examined the risk
of flare of inflammatory bowel disease, defined as initiation of a
corticosteroid, associated with antibiotic use.

Discussion

In this review, we have identified that medication safety stud-
ies using dispensing data only are possible; however, identifi-
cation of a ‘proxy’ for identification of an adverse event is
required as is an appropriate study design that limits the need
to adjust for confounding. The advantage of using initiation of
medicines as a proxy for adverse events is that safety signals
may be able to be identified more rapidly than waiting for
spontaneous reports to be lodged. Additionally, dispensing
data are often more timely than other types of health claims
data. For example, dispensing data in Australia is made avail-
able to researchers with a 3-month delay while hospitalisation
data can often be delayed by a year or more. Investigating
dispensing data for adverse events has the potential to identify
less serious events that may not require hospitalisation such as
nausea and vomiting. These symptoms are often frequent and
can have a detrimental impact on patient’s quality of life,
medication adherence and persistence. We found that symme-
try analysis, a technique that analyses patterns in treatment
initiations to identify safety signals, has been used widely in
dispensing data. This technique has been used both as a tool
for directed inquiry and for hypothesis generation. Due to its
ease of implementation and minimal data requirement, the
method has been used as a tool in the development of a rapid
post-market surveillance system across the Asia-Pacific re-
gion as part of the Asian Pharmacoepidemiology Network
(ASPEN) [22, 30, 35¢, 39¢]. SSA has been shown to have
moderate sensitivity (61%) and high specificity (93%) for de-
tecting known adverse drug reactions [65] and a recent review
concluded that it is a promising method for signal detection in
administrative health databases [66°].

To enhance the validity of medication safety studies in
dispensing data, further research is required to determine the
sensitivity and specificity of the medication ‘proxy’ used for
identification of adverse events. Table 1 shows that variations
exist in the medicines used to define similar outcomes and
similar medicines are used to define different outcomes.
Since many dispensing systems do not collect reason for
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Table 1

using only dispensing data

Tabular summary of published studies using the prescription sequence symmetry analysis design to investigate issues of medication safety

Author Year

Dispensing database Exposure

Target outcome

‘Proxy’ medicine name (medicine
code/s)

Hallas [20] 1998

Bytzer [21] 2000

Pratt [22] 2013

Hachiken 2013
(23]

Fujimoto 2013
[24]

Takeda [25] 2014

Kalish Ellett 2014
[26]

Hashimoto 2015

[27]

Corrao [28] 2006

Wahab [29] 2014
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Alimentary tract and metabolism/gastrointestinal

Odense
Pharmaco-epidemiologic
database (OPED) Database;
Denmark

Odense
Pharmaco-epidemiologic
database (OPED) Database;
Denmark

Multiple Databases across
Asia, Australia, the USA and
Sweden; Asian
Pharmacoepidemiology
Network (AsPEN)

Computerised prescription
order entry system was
analysed at the National
Cerebral and Cardiovascular
Center of Japan

NR

Multiple

Multiple

Antipsychotics

Aspirin

Statin

NR Aspirin

Australian Government
Department of Veterans
Affairs Claims Database;
Australia

Platform for Clinical
Information Statistical
Information (CISA)
database; Japan

Multiple

Multiple

Cardiovascular

National Health System
reimbursable drugs of the
Lombardia Region; Italy

Fluroquinolone antibacterial agents

Australian Government
Department of Veterans
Affairs Claims Database;
Australia

Rosiglitazone

Dyspepsia

Functional
dyspepsia
Nausea

Hyperglycaemia

GI
complications

Storage lower
urinary tract
symptoms
(LUTS)

GI
complications

Urinary
Incontinence

Lower urinary
tract
symptoms

Arrhythmia

Heart failure

H2receptor blockers (NR)
Proton pump inhibitors (NR)
Bismuth preparations (NR)
Sucralfate (NR)

Cisapride (NR)
Metoclopramide (NR)

Insulin (ATC codes; A10A)

H2-receptor antagonists (NR)
Proton pomp inhibitors (NR)

Storage LUTS (NR);
solifenacin succinate
flavoxate hydrochloride
oxybutynin hydrochloride

H2-receptor antagonists (NR)
Proton pump inhibitors (NR)
Oxybutynin (ATC codes, G0O4BD04)

Urge incontinence (NR): oxybutynin,
propiverine, flavoxate

Overactive bladder (NR): flavoxate,
tolterodine, solifenacin,
imidafenacin

Abdominal pressure-induced
incontinence (NR):

Clenbuterol

Overflow incontinence (NR):
bethanechol, distigmine,
neostigmine

Dysuria associated with benign
prostatic hyperplasia (BPH) (NR):
paraprost, cernitin pollen extract,
eviprostat, tamsulosin, naftpidil,
silodosin, prazosin, urapidil,
terazosin

Enuresis imipramine (NR):
clomipramine

Nocturnal enuresis (NR): amitriptyline

Ofloxacin, ciprofloxacin, enoxacin,
norloxacin, lomefloxacin,
rufloxacin, levofloxacin

(ATC codes; JOIMA)

Frusemide (ATC codes; CO3CAO01)
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Table 1 (continued)

Author Year Dispensing database Exposure Target outcome ~ ‘Proxy’ medicine name (medicine
code/s)
Roughead 2015 Multiple Databases across Thiazolidinediones Heart Frusemide (ATC codes; CO3CAO01)
[30] Australia, Hong Kong, failure/-
Japan, Korea, Taiwan; oedema
AsPEN
Rasmussen 2015 Danish National Prescription ~ Multiple cardiovascular drugs Erectile 5-Phosphodiesterase inhibitor (ATC
[31] Registry; Denmark dysfunction codes; GO4BE)
Takeuchi 2015 Japan Medical Data Centre Co. Atypical antipsychotics Hyperlipidaemia Antihyperlipidaemia medicines (NR);
[32] Ltd.; Japan statins, fibrates ezetimibe, niacin, bile
acid sequestrants, probucol,
phytosterols, dextran sulphate
sodium sulphur, polyene
phosphatidylcholine, elastase and
eicosapentaenoic acid
Wahab [33] 2016 Australian Government Multiple Heart failure Frusemide (ATC code; CO3CAO1)
Department of Veterans
Affairs Claims Database;
Australia
Systemic hormonal preparations
Lai [34] 2013 National Health Insurance Antiepileptic drugs Hypothyroidism Thyroxine (ATC code; HO3AAO1)
Research Database; Taiwan
Pratt [35¢] 2015 Multiple databases across Amiodarone Hyperthyroidism Thyroxine (ATC code; HO3AAO1)
Australia, Hong Kong,
Japan, Korea, Taiwan;
AsPEN
Infection
Pouwels 2013 University of Groningen Angiotensin-converting enzyme Urinary tract Antibiotic; nitrofurantoin (ATC codes;
[36] ‘InterAction Database’ (ACE) inhibitors infection JO1XE)
pharmacy prescription
database; Netherlands
Van Boven 2013 University of Groningen Inhaled corticosteroids Oral candidiasis  Oral formulations (ATC codes; NR);
[37] ‘InterAction Database’ (beclomethasone, budesonide, Nystatin, miconazole, methylrosaniline
pharmacy prescription fluticasone, ciclesonide and ICS and amphotericin B.
database; Netherlands combination inhalers with
long-acting beta agonists)
Pouwels 2016 University of Groningen Statins Infection Antibiotic treatment (ATC code; JO1)
[38] ‘InterAction Database’
pharmacy prescription
database; Netherlands
Roughead 2016 Multiple databases across Proton pump inhibitors Clostridium Vancomycin (ATC code; JO1AXO01)
[39¢] Australia, Korea, Canada, difficile
Japan, Taiwan; AsPEN
Hendriksen 2017 Danish healthcare and Inhaled corticosteroids Antifungal Systemic antifungal medicines:
[40] prescription registries; ATC, ICS: RO3BA; therapy ketoconazole (ATC code;
Denmark ICS1LABA: RO3AK JO3BAO2), fluconazole (ATC code;
JO2ACO1),
itraconazole (ATC code; J02AC02)
Oral antifungal; nystatin (ATC code;
A07TAA02)
Miconazole (ATC code; AO7ACO1)
Musculoskeletal
Silwer [41] 2006 Odense Statins Muscle pain NSAIDs (ATC codes; MO1A)
Pharmaco-epidemiologic
database (OPED) Database;
Denmark
Garrison 2012 British Columbia, Canada Multiple Nocturnal leg Quinine (codes; NR)
[19] PharmaNet database; cramps
Canada

Nervous system
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Table 1 (continued)

Author Year

Dispensing database

Exposure

Target outcome

‘Proxy’ medicine name (medicine
code/s)

Hallas [17] 1996

Lindberg 1998
(42]

Hersom 2003
[43]

Takada [44] 2014

Chen [45] 2015

Takada [46] 2016

Park [47] 2018

Bytzer [21] 2000

Caughey 2010
(48]

Vegter [49] 2010

Almgvist 2012
[50]

Vegter [51] 2013

Tsiropolous 2009
[52]
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Odense
Pharmaco-epidemiologic

database (OPED) Database;

Denmark
Odense
Pharmaco-epidemiologic

database (OPED) Database;

Denmark

Quintiles Informatics Database;

USA

Japan Medical Information
Research Institute, Inc.
(JMIRI); Japan

Clinical Practice Research
Datalink; UK

Japan Medical Information
Research Institute; Japan

National Health Insurance
Service-National Sample
Cohort; Korea

Odense
Pharmaco-epidemiologic

database (OPED) Database;

Denmark

Australian Government
Department of Veterans
Affairs Claims Database;
Australia

‘InterAction Database’
pharmacy prescription
database (IADB.nl);
Netherlands

Swedish National Board of
Health and welfare
Prescribed drug Register;
Sweden

University of Groningen
‘InterAction Database’
pharmacy prescription
database; Netherlands

Odense
Pharmaco-epidemiologic

database (OPED) Database;

Denmark

Multiple cardiovascular drugs

Statins

Isotretinoin

Statins

Tramadol

Benzodiazepines

Proton pump inhibitors

Nausea/dizziness
Multiple

Multiple

Respiratory

Angiotensin-converting enzyme
(ACE) inhibitors

Antibiotics

Angiotensin-converting enzyme
(ACE) inhibitors

Data mining (multiple outcomes)

Antiepileptic

Depression

Depression

Depression

Sleep
disturbances
(insomnia)

Depression

Dementia

Dementia

Nausea

Dizziness

Dry cough

Asthma

Dry cough

Multiple

Antidepressants (ATC codes; NR)

Antidepressants (ATC code; NO6A)

Antidepressants (ATC codes; NR):
selective serotonin reuptake
inhibitors, secondary and tertiary
tricyclics

Other antidepressants

Hypnotic drugs (NR): ramelteon,
zolpidem tartrate, zopiclone,
eszopiclone, triazolam, etizolam,
brotizolam, rilmazafone
hydrochloride hydrate,
lormetazepam, nimetazepam,
flunitrazepam, estazolam,
nitrazepam, quazepam flurazepam
hydrochloride, haloxazolam

Antidepressants (NR): tricyclic
antidepressants

Anti-dementia medicines: donepezil,
galantamine rivastigmine,
memantine

Anti-dementia medicines: Medicines to
treat dementia (ATC codes; NO6D)
excluding ginkgo folium (ATC
codes; NO6DX02)

Metoclopramide (ATC codes; NR)

Prochlorperazine (ATC codes;
NO05AB04)

Antitussive agents (ATC codes; RO5D)

Asthma medications; at least 2
dispensings (ATC codes; RO3CC,
RO3AC, RO3BA, RO3AK, R0O3DC)

Antitussives (ATC codes; NR)

ATC codes; 3 and 4 digit level
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Table 1 (continued)

Author Year Dispensing database

Exposure Target outcome

‘Proxy’ medicine name (medicine
code/s)

2012 Australian Government
Department of Veterans
Affairs Claims Database;
Australia

Roughead
[53]

Lai [54] 2014 National Health Insurance
Research Database

(NHIRD); Taiwan

2017 Pharmaceutical Benefits
Scheme data; Australia

Venalainen
[55]

Hellfritzsch 2018 Odense

[S56°°] Pharmaco-epidemiologic
database (OPED) Database;
Denmark
Maura 2018 French National Healthcare
[57ee] databases (Régime Général);

France

Glaucoma eye drops Multiple

Sulpiride Multiple

Cholinesterase inhibitors Multiple

Non-vitamin K antagonist oral
anticoagulants (NOACs)

Multiple

Direct oral anticoagulants (DOACs) Multiple

Multiple conditions (ATC codes; NR)

Reactive airways disease,

Diabetes,

Ischaemic heart disease,

Chronic heart failure,

Depression

Extrapyramidal symptoms (NR):
trihexyphenidyl

Hyperglycaemia: hyperglycaemic agents

Hyperprolactinemia: prolactine
inhibitors

Cardiac arrhythmias: class 1B
antiarrythmics agents

Nausea: antiemetics (ATC codes: AO4A,
NO5AB04, AO3FA03, AO3FAO1)

Dyspepsia: histamine 2 and antacids
(ATC codes: A02BC, A02BA, A02A)

Urinary incontinence: oxybutynin
(ATC codes: G04BD04)

Seizures: anticonvulsants (ATC codes:
NO3A)

Anxiety: anxiolytics (ATC codes:
NO5B)

Insomnia: hypnotics and sedatives
(ATC codes: NO5C)

Depression:antidepressants (ATC
codes: NO6A)

All ATC codes

Major depressive disorders:
antidepressants (ATC codes; NO6A)

Antiglaucoma medications (ATC
codes; SOIEA03, SOIEAO05,
SO1EBO1, SOIEC03, SO1EC04,
SO1EDO1, SO1ED02, SO1EDO03,
SO1EDO5, SO1ED51, SO1EEO1,
SO1EEO03, SO1EE04)

Composite: drugs for acid-related
disorders (ATC codes; A02), drugs
for functional gastrointestinal
disorders and other antiemetics
(ATC codes; A03A, AO3E, AO3F
AO04AD), bile therapy (ATC codes;
AO05AX), drugs for constipation
(ATC codes; AO6A), antidiarrheals,
intestinal
anti-inflammatory/anti-infective
agents (ATC codes; A07)

Composite without drugs for
acid-related disorders: as above
without ATC code A02

Antiemetics drugs: metoclopramide
(ATC codes; AO3FAO1),
domperidone (ATC codes;
AO03FAO03), metopimazine (ATC
codes; AO4ADOS)

Drugs for constipation: (ATC codes;
A06A)
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Table 1 (continued)

Author Year Dispensing database Exposure Target outcome ~ ‘Proxy’ medicine name (medicine
code/s)
Nishtala 2017 NZ Ministry of Health Amiodarone, Lithium Multiple Hypothyroidism: thyroxine (NA)
[58] prescription database; New  Simvastatin Hyperthyroidism: carbimazole (NA)
Zealand Fluticasone Muscle cramps: quinine sulphate (NA)
Frusemide Oral candidiasis: carbimazole (NA)
Hypokalaemia: potassium (NA)
Hoang 2018 Australian Government Multiple Multiple ATC codes
[59e] Department of Veterans
Affairs Claims Database;
Australia
Hallas 2018 Odense Multiple Multiple All ATC codes
[60e°] Pharmaco-epidemiologic

database (OPED) Database;
Denmark

NR not reported

prescription, it is often difficult to determine indications for
medicines that can be used to treat multiple conditions and this
will impact on medication safety assessments. For example,
warfarin can be initiated to treat deep vein thrombosis (DVT)
or atrial fibrillation. For some medicines, the pattern of med-
ication use post initiation can help to distinguish indication,
for example in the case of warfarin, shorter-term treatment
may indicate treatment for DVT while longer-term treatment
may indicate atrial fibrillation. Safety signals generated by
SSA, when using dispensing data only, have been compared
to safety signals generated when hospital data are available.
For example, a study by Wahab et al. [33] used SSA to exam-
ine the association between medicine use and heart failure
using both initiation of frusemide as a ‘proxy’ for heart failure
and hospital admission for heart failure. Of 397 medicines in
which heart failure was not listed in the product information,
signals were generated for 12 medicines using heart failure
hospitalisation as the outcome and with 9 medicines using
frusemide as the ‘proxy’ for outcome. While there were dif-
ferences in the medicines identified, prostaglandin eye drops
were identified in both analyses. A limitation of utilising dis-
pensing data for medicine safety assessment is that there may
be no specific pharmacological treatment for some adverse
events or the initial medicine may be discontinued when an
adverse event has occurred rather than being treated with an-
other medicine. Additionally, adverse events of medicines
may be managed by treatments not recorded in claims data
such as over-the-counter treatments or treatments managed
within a health practitioner or emergency department visit,
for example an Epi-pen administered for anaphylaxis.

Future directions for developing the potential for medication
safety studies utilising dispensing data only should concentrate
on identifying valid and standardised ‘proxies’ for particular
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adverse events. Comorbidity scores that use algorithms of med-
ication dispensing to identify clinical conditions may be one
avenue to help in this pursuit. Pharmacy-based measures of
comorbidity that identify particular diseases based on patterns
of medication use have been in existence since the 1990s. The
first of these was the Chronic Disease Score (CDS) [67],
consisting of 17 comorbidity categories where medicines were
used to identify the presence or absence of the category. A
version for the US veteran population, that could be calculated
from routine dispensing claims data and was known as the Rx-
Risk-V index, was developed in 2003; it consisted of 45 cate-
gories of comorbidity [68]. Since then, an updated Rx-Risk
index [69] and other comorbidity scores that utilise dispensing
data including the Drug Derived Complexity Index (DDCI)
[70] and the Medicines Comorbidity Index [71] have all been
validated as predictors of mortality in dispensing data and may
be useful for identifying particular conditions as indicators of
adverse outcomes. Additionally, these scores have the potential
to be used to adjust for confounding in cohort studies utilising
only dispensing data.

While self-controlled designs are advantageous when data
on potential confounders are not captured, as is the case with
dispensing only data, they do have important assumptions that
must be met and these can be restrictive to their use in these
data. For example, the SCCS assumes that outcome events are
rare or independent of each other, which may not be met
where medicines are used for chronic conditions. Medicines
that can be used intermittently such as antibiotics (indicative
of infection) or intermittent pain medications may be more
suitable as outcomes for SCCS. The assumption that consec-
utive events are independent is not applicable for CCO or SSA
as only the first outcome is analysed in these studies. Another
assumption of self-controlled designs is that the occurrence of
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the outcome event should not affect the likelihood of subse-
quent exposure. This assumption is required for both the
SCCS and SSA but is not applicable to the CCO as the
CCO design only examines time before an outcome event.
In dispensing data, there may be many situations in which this
assumption will be violated. For example, if the outcome med-
icine is contraindicated after initiation of another medicine,
studies will be biased towards the null while if the outcome
medicine is usually initiated sequentially after another medi-
cine, studies will be biased away from the null. The last as-
sumption of self-controlled designs is that the occurrence of
the outcome should not censor the observation period. Again,
the CCO is robust to this assumption as only time prior to
outcome is analysed. For the SCCS and SSA, this assumption
is unlikely to be violated except where death is used as the
outcome of interest. For the SCCS, a modified analytic tech-
nique has been developed to overcome this problem [72];
however, the SSA cannot be performed at all as clearly there
will never be a sequence of events in which medication is
initiated after death. Lastly, self-controlled designs using med-
ications as a proxy for outcome will suffer from miss-
classification bias due to uncertainty around the onset date
of an insidious outcome, e.g. depression, diabetes or cancer
[61], particularly if the decision to treat with a medicine occurs
well after a condition is recognised and diagnosed, e.g. diabe-
tes which may be managed through diet.

One of the biggest threats to the use of self-controlled de-
signs for studying medication safety in dispensing data is the
assumption of no time-varying confounding. When analysing
medication treatment patterns, time-varying confounding can
be present either when specific treatments are more likely to
be initiated in a particular order as patients age or due to
underlying trends in medicine utilisation. As patients age, cer-
tain medicines may increase in likelihood of prescription in a
particular sequence. For example, anti-dementia medicines
will be more likely to be initiated at an older age and therefore
after other preventative medicines such as statins. Exposure
time trends due to marketing campaigns, new medicines en-
tering the market or removal of medicines from the market can
also affect the likelihood of specific treatment orders and can
result in spurious relationships in the absence of a casual as-
sociation. For example, if a medicine indicative of an adverse
event is increasingly used over time at the population level,
then it is more likely that it will be initiated after the medicine
of interest just by chance. All of the self-controlled designs
have techniques that can be employed to control for underly-
ing trends in medicine use overtime. In SSA, a null sequence
ratio can be calculated which estimates the sequence ratio that
would be expected due to the underlying trends in medicines
in the absence of an association [17, 52]. The effects of age or
calendar time on exposure trends can be modelled directly in
the SCCS design [73]. In case-crossover studies, a case-time-
control design [74] or case-case-time-control design [75] can

be implemented. In these designs, the odds ratio from the
CCO analysis is divided by the odds ratio for exposure in
the risk periods in matched ‘controls’, i.e. those that have
not experienced the outcome event at the same calendar time
as the case. While these techniques are available, a compari-
son of the self-controlled designs [76¢] found that results of
CCO and SSA methods were robust to exposure time trends
while SCCS had residual bias with long-term time trends in
both exposure and outcome events.

Dispensing datasets often contain information related to
patient demographics including data such as date of birth,
gender and date of death. When these data are available, it is
possible to undertake medication safety research using only
dispensing data in which the outcome of interest is death. For
example, the CCO method has been used to determine the risk
of death associated with use of selective cyclooxygenase-2
inhibitors and nonselective nonsteroidal anti-inflammatory
drugs after acute myocardial infarction [77] and the SCCS
has been used to investigate the association between
bupropion for smoking cessation and death [78].

While many of the studies included in this review used the
initiation of a medicine as a proxy for the development of an
adverse event, other studies have utilised longer-term patterns
in dispensing data to indicate safety issues. For example Joshi
et al. [79] utilised changes in drug treatment to infer disease
progression or treatment failure in cancer. Another study used
patterns of accumulation of cardiovascular diseases, indicated
by medications used to treat them, to investigate the effective-
ness of modifiable disease progression in statin initiators [80].

The Future of Medication Safety Studies
in Dispensing Data: Hypothesis-Free
or Purposeful Inquiry?

As has been the trend in many areas, data-mining approaches
have been used to interrogate dispensing data. Hallas et al. [60¢¢]
published a hypothesis-free approach to signal detection using
prescription sequence symmetry analysis in which every medi-
cine was tested against every other medicine. The results of this
experiment showed that while many signals were generated,
over half represented already known drug reactions, common
treatment pathways or simply good clinical practice. This high-
lights a limitation of hypothesis-free screening which is the gen-
eration of a large volume of non-informative associations that
require further clinical review. To address this problem, a study
by Hoang et al. [59+¢] used a supervised machine learning ap-
proach to predict potential adverse drug reactions in which
models were trained on positive and negative control associa-
tions and using domain knowledge databases (e.g. Drug Bank
and SIDER). Hoang et al. linked each drug in the dispensing
data with the Structured Indications from DrugBank via the
medicine ATC Code. The indications were then linked to

@ Springer



366

Curr Epidemiol Rep (2018) 5:357-369

hierarchies in the medical dictionary for regulatory activities
(MedDRA). Supervised ADR classifiers were then used to pre-
dict whether sequences of medicine use were potential ADRs
given the domain knowledge. The gradient boosting classifier
was found to have improved performance over SSA, improving
sensitivity by 21% compared to SSA without any loss of spec-
ificity. While hypothesis-free approaches to safety signal detec-
tion that machine learning allows are likely to enhance detection
of medication safety issues, the probabilities produced may be
more difficult for clinicians and regulators to interpret and do not
provide quantification of the extent of the harm. Machine learn-
ing techniques may have a place with dispensing data by rank-
ing the probabilities of signals, thus enabling triage for directed
enquiries using other methods, such as cohort studies in linked
data in which hospitalisation or diagnosis data are available.

Conclusion

Medication safety assessment in dispensing data has the po-
tential to provide timely evidence to complement spontaneous
reports particularly as medicines enter the market. To enhance
the validity of medication safety studies, research should focus
on validating patterns of medication dispensing as indicators
ofadverse event occurrence. Self-controlled designs are likely
to be the most appropriate approach to generating this evi-
dence as they eliminate the need for confounding adjustment;
however, their application may be limited due to their strict
assumptions and their potential for bias due to time-varying
confounding due to trends in medicine utilisation. While ma-
chine learning approaches are likely to be of value in the
exploration of safety signals in dispensing data, research
should investigate the ability of these techniques to control
for confounding. Incorporating electronic domain knowledge
bases has the potential to help train machine learning algo-
rithms as well as aid in filtering the large volumes of spurious
signals likely to be generated by these analyses.

While generation of evidence of previously unknown safe-
ty issues with medicine use are of value, medicine utilisation
studies in dispensing data should not be overlooked as a pow-
erful tool to identify patterns of use that may be indicative of
already known safety concerns. This evidence can be effective
in informing strategies to promote more appropriate prescrib-
ing so that harms are avoided.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflicts of
interest.

Human and Animal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any of
the authors.

@ Springer

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Papers of particular interest, published recently, have been
highlighted as:

+ Of importance

*« Of major importance

1. Australian Commission on Safety and Quality in Health Care.
Literature review: medication safety in Australia. Sydney:
ACSQHC; 2013.

2. Milea D, Azmi S, Reginald P, Verpillat P, Francois C. A review of
accessibility of administrative healthcare databases in the Asia-
Pacific region. ] Mark Access Health Policy. 2015;3.

3. Pearson SA, Pesa N, Langton JM, Drew A, Faedo M, Robertson J.
Studies using Australia’s Pharmaceutical Benefits Scheme data for
pharmacoepidemiological research: a systematic review of the pub-
lished literature (1987-2013). Pharmacoepidemiol Drug Saf.
2015;24(5):447-55.

4.  Wettermark B, Zoega H, Furu K, Korhonen M, Hallas J, Norgaard
M, et al. The Nordic prescription databases as a resource for
pharmacoepidemiological researcha literature review. Pharma
coepidemiol Drug Saf. 2013;22(7):691-9.

5. Horsburgh SMM, Norris P, Harrison-Woolrych M, Tordoft J,
Becket G, Heerbison P, et al. Prescribing and dispensing data
sources in New Zealand: their usage and future directions.
Dunedin: School of Pharmacy; 2009.

6. Alvarez-Madrazo S, McTaggart S, Nangle C, Nicholson E, Bennie
M. Data resource profile: the Scottish National Prescribing
Information System (PIS). Int J Epidemiol. 2016;45(3):714-5f.

7. Sinnott SJ, Bennett K, Cahir C. Pharmacoepidemiology resources
in Ireland-an introduction to pharmacy claims data. Eur J Clin
Pharmacol. 2017;73(11):1449-55.

8. Lai EC, Man KK, Chaiyakunapruk N, Cheng CL, Chien HC, Chui
CS, et al. Brief report: databases in the Asia-Pacific region: the po-
tential for a distributed network approach. Epidemiology. 2015;26(6):
815-20.

9. Kimura T, Matsushita Y, Yang YH, Choi NK, Park BJ. Pharma
covigilance systems and databases in Korea, Japan, and Taiwan.
Pharmacoepidemiol Drug Saf. 2011;20(12):1237-45.

10. Poluzzi E, Raschi E, Godman B, Koci A, Moretti U, Kalaba M,
et al. Pro-arrhythmic potential of oral antihistamines (H1): combin-
ing adverse event reports with drug utilization data across Europe.
PLoS One. 2015;10(3):e0119551.

11. Roughead EE, Kalisch Ellett LM, Ramsay EN, Pratt NL, Barratt
JD, LeBlanc VT, et al. Bridging evidence-practice gaps: improving
use of medicines in elderly Australian veterans. BMC Health Serv
Res. 2013;13:514.

12.  Pratt NL, Kalisch Ellett LM, Sluggett JK, Gadzhanova SV, Ramsay
EN, Kerr M, et al. Use of proton pump inhibitors among older
Australians: national quality improvement programmes have led
to sustained practice change. Int J Qual Health Care. 2017;29(1):
75-82.

13.  Pratt NL, Kalisch Ellett LM, Sluggett JK, Ramsay EN, Kerr M,
LeBlanc VT, et al. Commitment questions targeting patients



Curr Epidemiol Rep (2018) 5:357-369

367

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.e

promotes uptake of under-used health services: findings from a
national quality improvement program in Australia. Soc Sci Med.
2015;145:1-6.

Rochon PA, Gurwitz JH. The prescribing cascade revisited. Lancet.
2017;389(10081):1778-80.

Maclure M. The case-crossover design: a method for studying tran-
sient effects on the risk of acute events. Am J Epidemiol.
1991;133(2):144-53.

Farrington CP. Relative incidence estimation from case series for
vaccine safety evaluation. Biometrics. 1995;51(1):228-35.

Hallas J. Evidence of depression provoked by cardiovascular med-
ication: a prescription sequence symmetry analysis. Epidemiology.
1996;7(5):478-84.

Lai EC, Pratt N, Hsieh CY, Lin SJ, Pottegard A, Roughead EE, et al.
Sequence symmetry analysis in pharmacovigilance and pharma
coepidemiologic studies. Eur J Epidemiol. 2017;32(7):567—-82
Describes details of major databases containing medicine dis-
pensing data across the Asia-Pacific Region that are available
for pharmacoepidemiology research.

Garrison SR, Dormuth CR, Morrow RL, Carney GA, Khan KM.
Nocturnal leg cramps and prescription use that precedes them: a
sequence symmetry analysis. Arch Intern Med. 2012;172(2):120-6.
Hallas J, Bytzer P. Screening for drug related dyspepsia: an analysis
of prescription symmetry. Eur J Gastroenterol Hepatol. 1998;10(1):
27-32.

Bytzer P, Hallas J. Drug-induced symptoms of functional dyspepsia
and nausea. A symmetry analysis of one million prescriptions.
Aliment Pharmacol Ther. 2000;14(11):1479-84.

Pratt N, Andersen M, Bergman U, Choi NK, Gerhard T, Huang C,
et al. Multi-country rapid adverse drug event assessment: the Asian
Pharmacoepidemiology Network (AsPEN) antipsychotic and acute
hyperglycaemia study. Pharmacoepidemiol Drug Saf. 2013;22(9):
915-24.

Hachiken H, Murai A, Wada K, Kuwahara T, Hosomi K, Takada M.
Difference between the frequencies of antisecretory drug prescrip-
tions in users of buffered vs. enteric-coated low-dose aspirin thera-
pies. Int J Clin Pharmacol Ther. 2013;51(10):807—15.

Fujimoto M, Higuchi T, Hosomi K, Takada M. Association of statin
use with storage lower urinary tract symptoms (LUTS): data mining
of prescription database. Int J Clin Pharmacol Ther. 2014;52(9):
762-9.

Takada M, Fujimoto M, Hosomi K. Difference in risk of gastroin-
testinal complications between users of enteric-coated and buffered
low-dose aspirin. Int J Clin Pharmacol Ther. 2014;52(3):181-91.
Kalisch Ellett LM, Pratt NL, Barratt JD, Rowett D, Roughead EE.
Risk of medication-associated initiation of oxybutynin in elderly
men and women. J Am Geriatr Soc. 2014;62(4):690-5.
Hashimoto M, Hashimoto K, Ando F, Kimura Y, Nagase K, Arai K.
Prescription rate of medications potentially contributing to lower
urinary tract symptoms and detection of adverse reactions by pre-
scription sequence symmetry analysis. J Pharm Health Care Sci.
2015;1:7.

Corrao G, Botteri E, Bagnardi V, Zambon A, Carobbio A, Falcone
C, et al. Generating signals of drug-adverse effects from prescrip-
tion databases and application to the risk of arrhythmia associated
with antibacterials. Pharmacoepidemiol Drug Saf. 2005;14(1):31—
40.

Wahab IA, Pratt NL, Kalisch LM, Roughead EE. Comparing time
to adverse drug reaction signals in a spontaneous reporting database
and a claims database: a case study of rofecoxib-induced myocar-
dial infarction and rosiglitazone-induced heart failure signals in
Australia. Drug Saf. 2014;37(1):53-64.

Roughead EE, Chan EW, Choi NK, Kimura M, Kimura T, Kubota
K, et al. Variation in association between thiazolidinediones and
heart failure across ethnic groups: retrospective analysis of Large
Healthcare Claims Databases in six countries. Drug Saf.

31

32.

33 00

34.

35..

36.

37.

38.

39..

40.

41.

42.

43.

2015;38(9):823-31 Asian Pharmacoepidemiology Network
(ASsPEN) study to examine the association between rosigl
itazone and pioglitazone and frusemide, as a marker of heart
failure. Study identified a potential variation in response in
Caucasian and Asian populations consistent with differences
in prevalence of metabolizing enzymes between the ethnic
groups.

Rasmussen L, Hallas J, Madsen KG, Pottegard A. Cardiovascular
drugs and erectile dysfunction - a symmetry analysis. Br J Clin
Pharmacol. 2015;80(5):1219-23.

Takeuchi Y, Kajiyama K, Ishiguro C, Uyama Y. Atypical antipsy-
chotics and the risk of hyperlipidemia: a sequence symmetry anal-
ysis. Drug Saf. 2015;38(7):641-50.

Wahab IA, Pratt NL, Ellett LK, Roughead EE. Sequence symmetry
analysis as a signal detection tool for potential heart failure adverse
events in an administrative claims database. Drug Saf. 2016;39(4):
347-54 Describes the potenial for sequence symmetry analysis
to be used as a tool for medication safety signal detection.
Identifies new safeyy signals for medicines potentially associat-
ed with development of heart failure using indicator of
frusemide. Compares to signals generated when dispensing da-
ta linked to hospitalisation data.

Lai EC, Yang YH, Lin SJ, Hsieh CY. Use of antiepileptic drugs and
risk of hypothyroidism. Pharmacoepidemiol Drug Saf. 2013;22(10):
1071-9.

Pratt N, Chan EW, Choi NK, Kimura M, Kimura T, Kubota K, et al.
Prescription sequence symmetry analysis: assessing risk, temporal-
ity, and consistency for adverse drug reactions across datasets in
five countries. Pharmacoepidemiol Drug Saf. 2015;24(8):858-864.
Asian Pharmacoepidemiology Network (AsPEN) study to com-
pare the consistency of the association between amiodarone and
thyroid dysfunction across multiple datasets. Identified a con-
sistent association between amiodarone and thyroxine, as a
marker of hypothyroidism.

Pouwels KB, Visser ST, Bos HJ, Hak E. Angiotensin-converting
enzyme inhibitor treatment and the development of urinary tract
infections: a prescription sequence symmetry analysis. Drug Saf.
2013;36(11):1079-86.

van Boven JF, de Jong-van den Berg LT, Vegter S. Inhaled cortico-
steroids and the occurrence of oral candidiasis: a prescription se-
quence symmetry analysis. Drug Saf. 2013;36(4):231-6.

Pouwels KB, Widyakusuma NN, Bos JH, Hak E. Association be-
tween statins and infections among patients with diabetes: a cohort
and prescription sequence symmetry analysis. Pharmacoepidemiol
Drug Saf. 2016;25(10):1124-30.

Roughead EE, Chan EW, Choi NK, Griffiths J, Jin XM, Lee J, et al.
Proton pump inhibitors and risk of Clostridium difficile infection: a
multi-country study using sequence symmetry analysis. Expert
Opin Drug Saf. 2016;15(12):1589-95 Asian Pharmacoepide
miology Network (AsPEN) study to examine the association
between PPIs and vancomycin, as a marker of Clostridium
difficile infection.

Henriksen DP, Davidsen JR, Christiansen A, Laursen CB, Damkier
P, Hallas J. Inhaled corticosteroids and systemic or topical antifun-
gal therapy: a symmetry analysis. Ann Am Thorac Soc. 2017;14(6):
1045-7.

Silwer L, Petzold M, Hallas J, Lundborg CS. Statins and nonsteroi-
dal anti-inflammatory drugs-an analysis of prescription symmetry.
Pharmacoepidemiol Drug Saf. 2006;15(7):510-1.

Lindberg G, Hallas J. Cholesterol-lowering drugs and
antidepressants—a study of prescription symmetry. Pharmacoepi
demiol Drug Saf. 1998;7(6):399-402.

Hersom K, Neary MP, Levaux HP, Klaskala W, Strauss JS.
Isotretinoin and antidepressant pharmacotherapy: a prescription se-
quence symmetry analysis. ] Am Acad Dermatol. 2003;49(3):424—
32.

@ Springer



368

Curr Epidemiol Rep (2018) 5:357-369

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.e°

5700

58.

59,00

Takada M, Fujimoto M, Yamazaki K, Takamoto M, Hosomi K.
Association of statin use with sleep disturbances: data mining of a
spontaneous reporting database and a prescription database. Drug
Saf. 2014;37(6):421-31.

Chen T, Chen L, Knaggs RD. Prevalence of antidepressants pre-
scribed to tramadol users in the UK primary care setting - a pre-
scription sequence symmetry analysis. Value Health. 2015;18(7):
A661.

Takada M, Fujimoto M, Hosomi K. Association between benzodi-
azepine use and dementia: data mining of different medical data-
bases. Int J Med Sci. 2016;13(11):825-34.

Park SK, Baek YH, Pratt N, Kalisch Ellett L, Shin JY. The uncer-
tainty of the association between proton pump inhibitor use and the
risk of dementia: prescription sequence symmetry analysis using a
Korean healthcare database between 2002 and 2013. Drug Saf.
2018;41(6):615-24.

Caughey GE, Roughead EE, Pratt N, Shakib S, Vitry Al Gilbert
AL. Increased risk of hip fracture in the elderly associated with
prochlorperazine: is a prescribing cascade contributing?
Pharmacoepidemiol Drug Saf. 2010;19(9):977-82.

Vegter S. Misdiagnosis and mistreatment of a common side-effect—
angiotensin-converting enzyme inhibitor-induced cough. Br J Clin
Pharmacol. 2010;69(2):200-3.

Almgqvist C, Wettermark B, Hedlin G, Ye W, Lundholm C.
Antibiotics and asthma medication in a large register-based cohort
study - confounding, cause and effect. Clin Exp Allergy.
2012:42(1):10411.

Vegter S, de Boer P, van Dijk KW, Visser S, de Jong-van den Berg
LT. The effects of antitussive treatment of ACE inhibitor-induced
cough on therapy compliance: a prescription sequence symmetry
analysis. Drug Saf. 2013;36(6):435-9.

Tsiropoulos I, Andersen M, Hallas J. Adverse events with use of
antiepileptic drugs: a prescription and event symmetry analysis.
Pharmacoepidemiol Drug Saf. 2009;18(6):483-91.

Roughead EE, Kalisch LM, Pratt NL, Killer G, Barnard A, Gilbert
AL. Managing glaucoma in those with co-morbidity: not as easy as
it seems. Ophthalmic Epidemiol. 2012;19(2):74-82.

Lai EC, Hsieh CY, Kao Yang YH, Lin SJ. Detecting potential ad-
verse reactions of sulpiride in schizophrenic patients by prescription
sequence symmetry analysis. PLoS One. 2014;9(2):e89795.
Venalainen O, Bell JS, Kirkpatrick CM, Nishtala PS, Liew D,
Ilomaki J. Adverse drug reactions associated with cholinesterase
inhibitors-sequence symmetry analyses using prescription claims
data. ] Am Med Dir Assoc. 2017;18(2):186-9.

Hellfritzsch M, Rasmussen L, Hallas J, Pottegard A. Using the
symmetry analysis design to screen for adverse effects of non-
vitamin K antagonist oral anticoagulants. Drug Saf. 2018;41(7):
685-95 Describes the use of symmetry analysis as a tool to
complement post-market surveillance of newly marketed med-
icines. Identifies asssociations between NOACs and laxatives,
benzodiazepines, topical corticosteroidsfor treatment of
haemorrhoids/anal fissures and antidepressants.

Maura G, Billionnet C, Coste J, Weill A, Neumann A, Pariente A.
Non-bleeding adverse events with the use of direct oral anticoagu-
lants: a sequence symmetry analysis. Drug Saf. 2018. Similar to
the Hellfritzsch study, this study describes the use of symmetry
analysis as a tool to complement post-market surveillance of
newly marketed medicines. Identifies asssociations between
NOAC:S and gastrointestinal medicines, antiemetic drugs, drugs
for consitipation and antidepressants.

Nishtala PS, Chyou TY. Exploring New Zealand prescription data
using sequence symmetry analyses for predicting adverse drug re-
actions. J Clin Pharm Ther. 2017;42(2):189-94.

Hoang T, Liu J, Roughead E, Pratt N, Li J. Supervised signal de-
tection for adverse drug reactions in medication dispensing data.
Comp Methods Prog Biomed. 2018;161:25-38 The first study to

@ Springer

60.e¢

61.

62.

63.

64.

65.

66.¢

67.

68.

69.

70.

71.

72.

73.

74.

compare results of symmetry analysis for signal detection of
safety issues in dispensing data to machine learning models
trained on domain knowledge databases. Finds a 21% im-
provement in sensitivity over SSA with no impact on specificity.
Hallas J, Wang SV, Gagne JJ, Schneeweiss S, Pratt N, Pottegard A.
Hypothesis-free screening of large administrative databases for un-
suspected drug-outcome associations. Eur J Epidemiol. 2018. The
first study to perform a sequence symmetry analysis for every
combination of medicines for every ATC code. Of 186,758 as-
sociations tested with 29,891,212 incident drug therapies, 43,
575 (23.3%) showed meaningful effect size. 47% of the top
200 drug associations represented unknown associations.
Demonstrates usefulness of sequence symmetry analysis as a
signal detection tool however will require significant post-hoc
review of signals.

Gault N, Castaneda-Sanabria J, De Rycke Y, Guillo S, Foulon S,
Tubach F. Self-controlled designs in pharmacoepidemiology in-
volving electronic healthcare databases: a systematic review.
BMC Med Res Methodol 2017;17.

Fardet L, Nazareth I, Whitaker HJ, Petersen 1. Severe neuropsychi-
atric outcomes following discontinuation of long-term glucocorti-
coid therapy: a cohort study. J Clin Psychiatry. 2013;74(4):¢281-6.
Consiglio GP, Burden AM, Maclure M, McCarthy L, Cadarette
SM. Case-crossover study design in pharmacoepidemiology: sys-
tematic review and recommendations. Pharmacoepidemiol Drug
Saf. 2013;22(11):1146-53.

Aberra FN, Brensinger CM, Bilker WB, Lichtenstein GR, Lewis
JD. Antibiotic use and the risk of flare of inflammatory bowel
disease. Clin Gastroenterol Hepatol. 2005;3(5):459-65.

Wahab IA, Pratt NL, Wiese MD, Kalisch LM, Roughead EE. The
validity of sequence symmetry analysis (SSA) for adverse drug
reaction signal detection. Pharmacoepidemiol Drug Saf.
2013;22(5):496-502.

Arnaud M, Begaud B, Thurin N, Moore N, Pariente A, Salvo F.
Methods for safety signal detection in healthcare databases: a liter-
ature review. Expert Opin Drug Saf. 2017;16(6):721-32 Provides a
comprehensive overview of signal detection methods including
a detailed discussion on the assumptions of the methods.

Von Korff M, Wagner EH, Saunders K. A chronic disease score
from automated pharmacy data. J Clin Epidemiol. 1992;45(2):197—
203.

Sloan KL, Sales AE, Liu CF, Fishman P, Nichol P, Suzuki NT, et al.
Construction and characteristics of the RxRisk-V: a VA-adapted
pharmacy-based case-mix instrument. Med Care. 2003;41(6):761—
74.

Pratt NL, Kerr M, Barratt JD, Kemp-Casey A, Kalisch Ellett LM,
Ramsay E, et al. The validity of the Rx-Risk Comorbidity Index
using medicines mapped to the Anatomical Therapeutic Chemical
(ATC) classification system. BMJ Open. 2018;8(4):e021122.
Robusto F, Lepore V, D’Ettorre A, Lucisano G, De Berardis G,
Bisceglia L, et al. The Drug Derived Complexity Index (DDCI)
predicts mortality, unplanned hospitalization and hospital
readmissions at the population level. PLoS One. 2016;11(2):
¢0149203.

Narayan SW, Nishtala PS. Development and validation of a
Medicines Comorbidity Index for older people. Eur J Clin
Pharmacol. 2017;73(12):1665-72.

Farrington CP, Whitaker HJ, Hocine MN. Case series analysis for
censored, perturbed, or curtailed post-event exposures.
Biostatistics. 2009;10(1):3—16.

Whitaker HJ, Farrington CP, Spiessens B, Musonda P. Tutorial in
biostatistics: the self-controlled case series method. Stat Med.
2006;25(10):1768-97.

Suissa S. The case-time-control design. Epidemiology. 1995;6(3):
248-53.



Curr Epidemiol Rep (2018) 5:357-369

369

75.

76.¢

77.

Wang S, Linkletter C, Maclure M, Dore D, Mor V, Buka S, et al.
Future cases as present controls to adjust for exposure trend bias in
case-only studies. Epidemiology. 2011;22(4):568-74.

Takeuchi Y, Shinozaki T, Matsuyama Y. A comparison of estima-
tors from self-controlled case series, case-crossover design, and
sequence symmetry analysis for pharmacoepidemiological studies.
BMC Med Res Methodol. 2018;18(1):4 Examines the potential
for bias in estimated treatment effects when there are trends in
exposure and outcome events over time. Suggest self-controlled
case series will be biased when there are both exposure and
outcome trends over the long-term.

Gislason GH, Jacobsen S, Rasmussen JN, Rasmussen S, Buch P,
Friberg J, et al. Risk of death or reinfarction associated with the use
of selective cyclooxygenase-2 inhibitors and nonselective

78.

79.

80.

nonsteroidal antiinflammatory drugs after acute myocardial infarc-
tion. Circulation. 2006;113(25):2906-13.

Hubbard R, Lewis S, West J, Smith C, Godfrey C, Smeeth L, et al.
Bupropion and the risk of sudden death: a self-controlled case-se-
ries analysis using the Health Improvement Network. Thorax.
2005;60(10):848-50.

Joshi V, Adelstein BA, Schaffer A, Srasuebkul P, Dobbins T,
Pearson SA, et al. Validating a proxy for disease progression in
metastatic cancer patients using prescribing and dispensing data.
Asia-Pac J Clin Oncol. 2017;13(5):E246-ES52.

Lavikainen P, Korhonen MJ, Huupponen R, Helin-Salmivaara A.
Accumulation of cardiovascular and diabetes medication among
apparently healthy statin initiators. PLoS One. 2015;10(2):
¢0117182.

@ Springer



	Assessment of Medication Safety Using Only Dispensing Data
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Medicine Safety Studies in Dispensing Data
	Sequence Symmetry Analysis
	Self-Controlled Case Series and Case-Crossover
	Discussion
	The Future of Medication Safety Studies in Dispensing Data: Hypothesis-Free or Purposeful Inquiry?
	Conclusion
	References
	Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance



