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Abstract
Purpose of the Review As the science of the microbiome advances, social epidemiologists can contribute to understanding how
the broader social environment shapes the microbiome over the life course. This review summarizes current research and
describes potential mechanisms of the social epidemiology of the microbiome.
Recent Findings Most existing literature linking the social environment and the microbiome comes from animal models, focused
on the impact of social interactions and psychosocial stress. Suggestive evidence of the importance of early life exposures, health
behaviors, and the built environment also point to the importance of the social environment for the microbiome in humans.
Summary Social epidemiology as a field is well poised to contribute expertise in theory and measurement of the broader social
environment to this new area, and to consider both the upstream and downstream mechanisms by which this environment gets
“under the skin” and “into the gut.” As population-level microbiome data becomes increasingly available, we encourage inves-
tigation of the multi-level determinants of the microbiome and how the microbiome may link the social environment and health.

Keywords Microbiome . Socioeconomic factors . Health disparities . Psychosocial stress . Social epidemiology . Population
health . Built environment . Social relationships . Socioeconomic status . Race/ethnicity

Introduction

Social and biological processes interact across the life course
to produce health outcomes, including persistent health in-
equalities by socioeconomic status (SES) [1]. Even while
keeping their eye keenly on the upstream determinants of
these health inequalities, social epidemiologists’ interest in
how social conditions “get under the skin” has grown rapidly

over the past two decades, leading to novel insights into the
biology of disadvantage ranging from cortisol responses to
epigenetic gene expression [2, 3]. As biological science ad-
vances, social epidemiology can leverage this experience to
conceptualize and measure how the social environment
shapes new areas of biology. This review focuses on the
new science of the human microbiome—the trillions of mi-
crobes that inhabit the human body and their genes—that are
believed to have profound implications for human health [4].
Indeed, we are estimated to have at least as many microbial
cells as human cells in our body [5], challenging traditional
notions of the human “self” and pushing us to understand how
humans interact with microbes throughout our lives [6]. Early
findings of racial/ethnic and socioeconomic variation in the
gut, oral, and vaginal microbiome [7–13, 14•] have led to calls
for investigation into the potential role of the microbiome in
health disparities [15].

We underscore the need for robust inquiry into the social
epidemiology of the microbiome in the early days of this new
scientific area. The mechanisms through which social and
demographic factors shape the microbiome over the life
course are not well understood, but their importance has been
highlighted by recent findings that genetic factors explain little
variation in the gut microbiome, leaving “environmental”
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factors as the predominant determinant [16•]. But what con-
stitutes the “environment” with respect to the microbiome? A
broader consideration of how the social, physical, and psycho-
social environments shape the microbiome over the life course
is needed to understand individual and population level vari-
ation in the microbiome and ultimately how to intervene on it
[17]. In this review, we assess the nascent research on poten-
tial mechanisms linking social factors to the microbiome in-
cluding early life exposures, psychosocial stress, social rela-
tionships, the built environment, health behaviors, and socio-
economic status (outlined in Fig. 1) and suggest the most
promising areas for future investigation.

Early Life

Birth and early post-partum life are critical periods for
microbiome acquisition and development, and periods strongly
influenced by one’s social environment. Whether organisms
pass into the fetus from the placenta is still an open question,
though the most thorough study to date is consistent with pla-
cental sterility [18]. Babies delivered vaginally acquire bacterial
communities similar to their mother’s vaginal microbiota,
whereas C-section infants resemble those found on the skin
surface as well as the surrounding environment [19, 20].
Exclusively breasted infants have increased taxa in their gut
that are used in probiotics such as B. longum, while formula-
fed infants have elevated levels of the more negatively
connotated C. difficile [20, 21]. The microbiome of human
breastmilk itself has been shown to differ by factors such as
maternal obesity and elective vs. non-elective C-sections [22].
Using amultiple body site metagenomic approach following 25
mother-baby pairs, Ferreti et al. recently documented the strong
influence of maternal-child vertical transmission on the infant
gut microbiome and found that this seeding from maternal

sources is a continuous process, highlighting both the impor-
tance of the composition of maternal microbiome itself as well
as maternal-child interactions in the development of the infant
microbiome [23••]. In the USA, older mothers, those reporting
stressful life events prior to conception, and those who were
obese prior to pregnancy had higher risks of non-elective C-
sections, though no independent association with SES or race/
ethnicity factors was found adjusting for these factors [24].
Breastfeeding initiation rates and duration vary by maternal
education and race/ethnicity in the USA, with non-Hispanic
black mothers the least likely to initiate and maintain
breastfeeding [25]. Thus, differences in mode of delivery, feed-
ing practices, and maternal health are all potentially important
mechanisms through which the social environment shapes mi-
crobial exposures from the first day of life.

Psychosocial Stress

A significant body of research implicates the physiologic re-
sponse to chronic and repeated stressful life events in health
inequalities (see [26] for a systemic review). Broadly defined,
stress is a disruption to homeostasis, which can be real or
anticipated, physical or psychological in nature [27]. The
physiologic response to stress involves the nervous, immune,
and endocrine systems; systems whose development and
functioning are increasingly understood to be influenced by
the gut microbiota [28]. Conversely, exposure to stress can
impact the structure and function of the microbiota itself
[29]; therefore, a central focus of research on social factors
and the microbiome will likely be unraveling the role of so-
cially determined stress, psychological trauma, and adverse
life events, in shaping microbiota structure and function.

Indirectly, psychosocial stress has long been observed to
impact gastrointestinal tract functioning, dating back at least
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to the nineteenth century, when reduced gastric acid secretion
was observed in a gastric fistula patient during periods of fear
[30].

Stress and the Microbiome in Animal Models

The concept that stress and its mediators can directly alter the
gut microbiome is more recent. Specifically, neuroendocrine
mediators of stress, particularly norepinephrine, directly im-
pact microbial bacterial growth in the gut [31], including en-
hancing growth of bacteria such as E.coli [32] and the expres-
sion of different types of virulence factors that increase the
severity of the disease [33]. Communication between the brain
and gut microbiota is complex and bidirectional, occurring
most primarily via the vagus nerve, which enervates nearly
the entire digestive tract and can receive information about the
state of enteric microbial communities [34].

In mice, exposure to social stressors has been repeatedly
shown to cause important alterations to the gut microbiome, in
ways that alter microbiota-immune system interactions, in-
crease susceptibility to infection, and promote inflammatory
mediators [35]. For example, acute exposure to a stressor has
also been shown to select for anaerobic gut organisms and
decrease richness [29], and a model of chronic social defeat
was likewise associated with decreased gut richness and di-
versity [36••]. In an early-life stress model, maternally sepa-
rated mice had a compositionally altered gut microbiome rel-
ative to controls [37]. These models have also explored the
role of maternal stress on offspring outcomes-maternal stress
during pregnancy altered proteins related to vaginal immunity
and abundance of Lactobacillus in dams, which in turn de-
creased the abundance of this bacterium in the gut microbiota
of their offspring [38]. Moreover, changes to the murine gut
microbiota in response to stress have clear health implications:
They appear to fully mediate stress-related immune cytokine
production [31] and lead to downregulation of short chain
fatty acid and neurotransmitter pathways [36••], with orally
administered Bifidobacterium conferring resistance to some
of these effects [39]. Some of these findings have been repli-
cated in primates as well. In captive rhesus monkeys, maternal
separation stress induced reductions in lactobacilli in intestinal
microflora and higher rates of opportunistic enteric infection
[40]. In rhesus monkeys whose mothers were exposed to star-
tle stressors during pregnancy, lactobacilli levels in the gut
microbiota were lower during the first 6 months of life, which
in turn disrupted the development of natural resistance to the
enteric pathogen Shigella flexneri [41].

Stress and the Microbiome in Humans

Few studies have yet examined the interplay between the mi-
crobiota and stress in humans. One study evaluated the gut
microbiota of 73 soldiers before and after a multiple-stressor

military training environment, finding an increased intestinal
permeability, greater alpha diversity, and changes in relative
abundance of > 50% of 16S taxa identified in stool samples
[42]. A reduction in lactobacilli shed in stool was also found
for college students during final exams when levels of per-
ceived daily and weekly stress were higher, although the con-
founding effects of changing diet could not be ruled out [43].
In the oral microbiome, experimentally induced acute
stressors in humans have been shown to increase the saliva-
mediated adherence of microbes including H. pylori and
Streptoccocus gordonii, suggesting one mechanism by which
stress may affect mucosal microbiota and susceptibility to
infections [44]. Recent work shows that human oral
microbiome samples treated with the stress hormone cortisol
display selection for oral pathogens and an altered transcrip-
tional profile consistent with periodontal disease, suggesting
direct effects as well [45].

Studies of psychosocial influences on the microbiome will
clearly be a growth field in the near future, likely using exper-
imental models in animals and humans that have been suc-
cessful in understanding other areas of stress biology. One
important area will be to identify the developmental periods
most sensitive to stress and how reversible stress-related alter-
ations to the microbiome might be. As microbiome data be-
comes available in longitudinal human population studies
[46], it will be possible for social epidemiologists to examine
the impact of more naturalistic social and economic stressors
such as early life adversity and unemployment on the
microbiome and test whether the microbiome may mediate
stressful life events and health outcomes across the life course.

Social Relationships

Social relationships are well-established predictors of overall
health and mortality [47], and social interactions have long
played an important role in the transmission of pathogenic
microbes [48, 49]. Thus, it is likely that social interactions
are important in the acquisition and maintenance of commen-
sal microbiota. Indeed, evidence is accumulating from both
animals and human studies that social organization and behav-
ior are associated with the diversity and composition of the gut
microbiota, though evidence is still mixed on the exact fea-
tures of sociability that are most important.

Social Relationships and the Microbiome
in Non-human Primates

In one of the first studies of its kind, Tung et al. found that
social group membership among baboons in Kenya predicted
the taxonomic structure and function of the gut microbiome,
even taking account of diet, kinship, and shared environments
[50••]. The authors suggested this as evidence of direct
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transmission of microbes through physical contact with social
partners. Grienesen et al. extended this analysis on the same
groups of animals, testing measures of alpha and beta diversity
along different dimensions of social group and organization
[51]. They confirmed that members of the same social group
had more similar gut microbiomes and identified this for both
the core (more stable) and non-core (more variable)
microbiome. More diverse gut microbiomes are believed to
be “healthier” than less diverse microbes, providing stability
and redundancy within the system, and more social contacts
may contribute to this diversity [52]. Members of the larger of
the two social groups were found to have higher alpha diver-
sity in their guts, but this was not true for individuals with the
most “social grooming” partners, suggesting in contrast to the
Tung et al. conclusion that indirect transmission of microbes
may be more important for shaping diversity than direct trans-
mission via physical contact.

Similar associations have been identified in other primate
species. Utilizing 8 years of behavioral observations from
chimpanzees in Tanzania, Moeller et al. found evidence that
increased social contact contributed to higher diversity of the
gut microbiome at the individual level but contributed to in-
creased similarity among interacting chimps at the group level
[53]. Again, these increases in similarity did not seem to be
due to the consumption of more similar diets and are believed
to result from direct contact or indirect transfer from feces
deposited in the environment. Moeller et al. also found that
the inheritance of gut microbial communities across genera-
tions appeared not to happen vertically from parent to off-
spring but rather from horizontal transfer from socially
interacting hosts, with similarities among unrelated group
members similar to those of family members. There has been
variation in findings across studies and species—Amato et al.
for instance found among black howler monkeys that closely
related individuals had marginally less similar gut microbial
communities than non-related individuals, but those who
spent more time in direct contact and close proximity had
more similar gut microbial communities [54].

Raulo et al., using social network analysis of red bellied
lemurs, found that family group identity was the most impor-
tant factor explaining variation in gut microbial profiles [55].
Associations between breeding pairs were as similar as off-
spring, suggesting that these similarities are not primarily due
to shared genetics. Contrary to expectations, they found that
group size was not correlated with alpha diversity, and indi-
vidual sociability was negatively correlated with alpha diver-
sity. They speculate that this could be due to confounding by
stress, which lowers diversity and increases affiliative behav-
ior in primates, or possibly due to enrichment of certain bac-
teria within a given community that lowers overall weighted
alpha diversity measures. In another wild primate study of
Verreaux’s sifaka (a medium-sized primate in the lemur fam-
ily), Perofsky et al. show that social groups with denser

grooming networks have more homogeneous gut microbial
communities, and the most gregarious individuals within so-
cial groups have the greatest microbial diversity [56].
Interestingly, Grienesen et al. also found that “immigrant”
male animals who had lived longer with their social group
had more similar microbiomes to the other group members
than more recent arrivals to the group. Given that changes in
the microbiome due to shared diet are believed to take place in
a matter of days [57], this was taken as evidence of other
modes physical or social transmission. Previous work from
chimpanzees found that long-term immigrants to new social
groups harbored the most distinctive gut microbiota and main-
tained gut microbiome signatures from both groups [58].

Overall, the non-human primate literature supports the no-
tion that gut microbial composition depends on social interac-
tions much more than shared genetics and that direct physical
contact is an important mechanism in addition to the potential
role of shared diet and physical environments. Some of this
literature draws on a life course ecology framework, suggest-
ing that the benefits of social transmission of gut microbiota
for enhancing immunity may have played a role in the evolu-
tion of sociality [55]. Moeller et al. notes that the social dy-
namics of the human pan-microbiome have not been investi-
gated because of a “lack of longitudinal monitoring of human
social groups,” highlighting an opportunity for social scien-
tists and epidemiologists moving into this area.

Social Relationships and the Human Microbiome

While studies of long-term social networks and the
microbiome in humans are currently lacking, shorter term
studies have begun to lay the groundwork for understanding
how humans impact the microbiome of those around them.
Humans have been found to emit upwards of 106 biological
particles per hour, with Meadow et al. demonstrating that in-
dividuals release their own personalized microbial cloud via
airborne release [59]. They suggest that recently emitted air-
borne microbes might more readily colonize other humans
compared to those found on surfaces since they are more
likely to be physiologically active. Such opportunities for
transmission indeed seem to translate into more similar
microbiomes among cohabitating individuals. Using data
from seven families, Lax et al. found that humans sharing
homes had more similar microbial communities of the nose,
feet, and hands compared to those not sharing a home, likely
due to skin shedding, respiratory activity, and skin-surface
contact [60]. Song et al. extended this work by surveying
fecal, oral, and skin microbiota from 60 families, finding that
household members shared more of their microbiota than with
individuals not in their household, and this effect was stronger
for the skin microbiota than for oral or fecal microbiota [61].
Dog ownership also significantly increased the shared skin
microbiota in cohabiting adults. Ross et al. also found that
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the skin microbiome of cohabitating couples was much more
similar than by chance [62], and the similarity of the oral
microbiota among couples has been associated with the self-
reported frequency of intimate kissing [63].

Given modern hygienic practices, the mechanism bywhich
the gut microbiome is transferred is less intuitive, leading
Shaffer et al. to test for the presence of fecal and oral microbes
on the hands of members of the 73 families that were also used
in the Song et al. study [64]. The authors found a “surprisingly
high” incidence of fecal material on hands that could specifi-
cally be tracked to that of family members and oneself.
Women who were parents had more oral microbes on their
hands than non-parent women, though no difference was seen
for men by parenting status. The study lends credence to the
hands as an important vector for the transfer of fecal and oral
microbes within families, consistent with the primate evidence
that sharing ofmicrobial composition is not exclusively driven
by shared diets.

The Built Environment

Humans are born, nurtured, educated, and live out their
lives in buildings. From birth, microbes inside buildings
seed, colonize, and transiently occupy our bodies.
Whether intentional or not, the design of buildings me-
diates microbial exposures and shapes the human
microbiome [65].

Humans are estimated to spend up to 90% of their time in-
doors in industrialized nations [66], and the quality of the
indoor environment and neighborhoods in which we reside
is strongly socially patterned. Indoors, we interact with mi-
crobes left on surfaces, in dust that we perturb, and emissions
in the air from our breath, clothes, skin, and hair [59]. In the
Lax et al. study discussed above, if the families moved, their
microbial signature followed them to the new home, and in-
dividuals who left the home for several days saw a decline in
their contribution to the home microbiome, suggesting a rapid
and dynamic process of human influence on their microbial
environment [60].

Beyond the impact of humans on the microbiome of the
built environment, differences in geography, ventilation,
building design, and even prior flood damage can impact the
types of bacteria and fungi found within homes [67]. Barberan
et al. investigated the fungi and bacteria found in the dust of
1200 homes in the continental USA with a broad range of
home designs, degrees of urbanization, and climatic zones.
Compared to fungal community composition, bacterial com-
munities were less associated with geographical location and
climatic variables, and more dependent on the occupants of
the home, particularly whether a home had dogs or cats. Using

a machine learning technique, the authors could predict with
92% accuracy whether a home had a dog based on the indoor
bacterial phylotypes alone, highlighting this predictable influ-
ence of pets on the home. While the sociodemographics of pet
ownership are not well-characterized, a UK study found that
those with the highest education levels are less likely to own
pets [68]. Barberan et al. also found that the total number of
inhabitants and the female/male ratio of occupants was asso-
ciated with microbial composition. Two skin associated taxa
(Corynebacterium and Dermabacter) and one fecal-
associated taxa (Roseburia) were relatively more abundant
in homes with fewer women, possibly driven by differences
in body size and hygiene practices. Lactobacillus, associated
with lower risk of allergies and asthma, was more abundant in
homes with women. Miletto et al. investigated airborne bac-
teria in 29 homes in the San Francisco Bay Area, finding that
community composition was associated with the number of
residents and pets, activity levels, frequency of cooking and
vacuum cleaning, ventilation, and abundance and type of veg-
etation surrounding the building [69]. It is plausible that air-
borne microbes can enter the gut, as inhaled organisms with
aero-dynamic diameter greater than 5 μm are caught in the
upper respiratory tract and cleared through mucociliary clear-
ance into the gastrointestinal system [65].

Modern environments characterized by increasing urbani-
zation and less exposure to green space have been implicated
in changes in exposure to microbes that may be altering hu-
man microbiomes over time, as well as contributing to differ-
entials in access to green space by socioeconomic status [70].
Ruiz-Calderon et al. studied the association of architectural
design and urbanization and microbial composition of homes
in South America, finding that the microbial community struc-
ture differs significantly across the urbanization gradient [71].
Despite lower occupant density, “humanization” of the micro-
bial composition of the indoor environment also increased
with urbanization.

Overall, studies of built environment and the microbiome
consistently find that indoor spaces often harbor unique mi-
crobial communities whose source is dominated by humans
and pets. Building occupants and surfaces affect each other in
both directions, and building design and operation can influ-
ence indoor microbial communities [72•]. Little is currently
known about the long-term health implications of human in-
teractions with indoor microbiota, but we expect this to be an
important area for future investigation, especially as urbaniza-
tion continues to increase around the world.

Health Behaviors

Differences in health behaviors such as diet, smoking, and
medication use may play an important role in mediating asso-
ciations between social factors and the microbiome [73, 74].
Such behaviors are shaped by social status across the life
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course, are likely socially transmissible [75], and modified by
social support and stress [76]. Indeed, health behaviors con-
tribute significantly to observed socioeconomic disparities in
mortality and major morbidities in developed countries
[75–77], and the impact of these behaviors on the microbiome
may explain some of these links.

Nutrition

Diet is believed to be a strong determinant of gut microbiome
composition and diversity, capable of altering the microbiome
both rapidly [57] and in the long term [78]. In general, diets
high in animal fat and protein tend to increase abundance of gut
bacteria associated with systemic inflammation, reduced insulin
sensitivity, and higher LDL cholesterol [79]. In contrast, fiber
and resistant starch and the antioxidant polyphenols found in
fresh fruits and vegetables, seeds, tea, cocoa, and wine promote
beneficial commensals such as Bifidobacterium, Lactobacillus,
and Eubacterium, which reduce inflammation and contribute to
gut barrier formation [79]. There are well-known differences in
dietary intake by socioeconomic factors and race/ethnicity in
the USA [80]. Dietary fiber intake, for instance, is lower among
lower income and non-Hispanic Black Americans [81], and
total and saturated fat intake is higher among non-Hispanic
blacks [82]. Dietary patterns also vary geography and time in
ways that likely impact the microbiome at the population level,
something social epidemiologists are well-positioned to explore
[83].

Tobacco

There are strong educational gradients in cigarette smoking
that have grown more pronounced over time [84]. Numerous
studies in mice suggest that smoking alters the gut microbiota,
leading to dysbiosis, enrichment of pathogens, and an inflam-
matory microenvironment in the intestine (reviewed by [85]).
In humans, among people with Crohn’s disease, smokers have
higher Bacteroides vs. Prevotella, a pro-inflammatory feature
[86], a condition which appears to reverse following cessation,
along with increases in Firmicutes and Actinobacteria phyla
[87]. In addition to indirect pathways including altered gastro-
intestinal pH gradient and oxidative stress pathways [85], to-
bacco may directly alter the microbiome through direct trans-
mission [88]. Several human studies suggest that tobacco
smoking also alters the oral microbiome, with structural
changes consistent with increased anaerobiosis [89] along
with proliferation of pathogens and decreased colonization
resistance in oral biofilms [90].

Alcohol

The relationship between alcohol and SES is complex, such
that low SES individuals [91] and individuals reporting low

social support [92] are less likely to drink in general, but more
likely to engage in episodic heavy drinking. Similarly, alcohol
use varies by racial/ethnic subgroup, with non-Hispanic
Whites in the USA frequently reporting the highest rates, but
individuals of non-white ethnicity experiencing more social
and health harms related to drinking [93]. The impact of alco-
hol on the oral and gut microbiome is not as well characterized
as tobacco, but evidence is beginning to emerge. A subgroup
of alcoholics was found to have colonic dysbiosis character-
ized by lower Bacteroidetes and higher Proteobacteria (a phy-
lum high in pathogens) and by decreased network connectiv-
ity of the microbiome, which persisted after a period of sobri-
ety [94]. The oral microbiomes of heavy drinkers were found
to have greater richness and a different microbial profile, com-
pared to non-drinkers, in a large cross-sectional sample [95].

Antibiotic and Other Prescription Drug Use

Social variation in medication use and how this may impact
the microbiome is not yet well characterized. Studies from the
USA suggest that non-Hispanic white children aremore likely
than other race/ethnicities to receive antibiotics for a viral
infection [96] and that black children were less likely to re-
ceive antibiotics for an infection that justified antibiotics [97].
Opioids are also prescribed most frequently for whites and
higher SES individuals [98]. Antibiotic exposure is a well-
known determinant of gut microbiota characteristics, leading
to depleted diversity and altered composition with lasting ef-
fect (reviewed in [99]). A study in mice showed that opioid
treatment significantly altered gut microbiota composition
with greater abundance of Gram-positive pathogens, lower
abundance of bile-deconjugating bacteria, and lower bile acid
levels, which was reversed by fecal transplantation by non-
treated mice [100]. Numerous other commonly used drugs,
including proton pump inhibitors (PPIs), metformin, statins,
nonsteroidal anti-inflammatory drugs (NSAIDs), and antipsy-
chotics, are all associated with changes in the gut microbiome
[101]. Although the associations of intake of these medica-
tions with socioeconomic factors is not well documented, each
of these drugs are largely prescribed for conditions with
marked socioeconomic inequalities: diabetes, cardiovascular
disease, arthritis, and mental health disorders, respectively
[102, 103].

Overall, there is growing evidence that many of the health
behaviors already known to be associated with social factors,
especially smoking and nutrition, likely have important im-
pacts on the microbiome. Nonetheless, there may be influ-
ences on the microbiome such as alcohol consumption and
prescription drug use that operate in ways counter to tradition-
al social gradients, with those in more advantaged groups
being exposed to more negative impacts on the microbiome.
It will therefore be important to understand how the
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interaction of multiple exposures both influence the
microbiome and are shaped by social factors across the life
course.

Socioeconomic Status

The evidence presented suggests that markers of socioeco-
nomic status, reflecting access to resources that shape expo-
sures to the physical, social, and psychosocial environments,
is likely associated with differences in the composition of the
microbiome over the life course. Thus far, two studies have
examined sociodemographic factors and the oral microbiome.
Belstrom et al. found significant differences in the bacterial
profiles of the oral microbiome by area-level socioeconomic
status in the Danish Health Examination Survey (DANHES)
[11]. Notably, these differences were substantial in magnitude
(20% of variation), compared to no significant differences
found by other salient predictors including age, gender, alco-
hol consumption, body mass index, or dietary intake. Renson
et al. found a significant number of differentially abundant
taxa by individual level education, income, and race/
ethnicity in the oral microbiome of a diverse sample from
the 2013–2014 New York Health and Nutrition Examination
Study (NYC-HANES) [14•]. Many of the taxa identified have
known associations with oral health and other chronic dis-
eases in the direction that would be consistent with a mecha-
nism underlying health disparities in these conditions. Only
one study to our knowledge has examined associations be-
tween social factors and the gut microbiome. Miller et al.
found that higher neighborhood SES was associated with
greater alpha diversity in the colonic microbiota of 44 healthy
volunteers from Chicago, as well as greater abundance of
Bacteroides and a lower abundance of Prevotella [12].
Overall, examination of the limited population level data on
socioeconomic suggests the plausibility that SES is associated
with characteristics of the microbiome and that the importance
of these associations for health disparities in chronic condi-
tions should be explored.

Conclusion

While work establishing the importance of the microbiome for
human health continues apace, thus far, research on how the
social environment shapes the microbiome, especially in
humans, is limited. Social epidemiology as a field is well
poised to contribute expertise in theory and measurement of
the broader social environment to this new area, and to con-
sider both the upstream and downstream mechanisms by
which this environment gets “under the skin,” “into the gut,”
and onto every other body site. Social epidemiology can also
bring a much needed population perspective [104] to the study

of the microbiome. Changes in population level exposures
such as C-section rates, antibiotic use, food policy, and urban-
ization may have important influences on the microbiome
across time and cohorts, something not easily elucidated
through a focus on microbiology and micro-level exposures.
For example, it was recently found that trehalose, a food ad-
ditive whose use by commercial food industry has dramatical-
ly increased since the late 1990s, contributes to the selection of
more virulent strains of the dangerous intestinal microbe C.
difficile and may have contributed to the upsurge in C. diff
hospital infections [105]. As population-level microbiome da-
ta becomes increasingly available, we encourage future inves-
tigation of the multi-level determinants of the microbiome and
how the microbiome may link the social environment and
health.
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