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Abstract

Purpose of Review Liquid biopsy analyses based on circulating cell-free nucleic acids, circulating tumor cells or other diseased
cells from organs, and exosomes or other microvesicles in blood offer new means for non-invasive diagnostic applications. The
main goal of this review is to explain the importance of preserving whole blood specimens after blood draw for use as liquid
biopsies, and to summarize preservation solutions that are currently available.

Recent Findings Despite the great potential of liquid biopsies for diagnostics and disease management, besides non-invasive
prenatal testing (NIPT), only a few liquid biopsy applications are fully implemented for routine in vitro diagnostic testing. One
major barrier is the lack of standardized pre-analytical workflows, including the collection of consistent quality blood specimens
and the generation of good-quality plasma samples therefrom. Broader use of liquid biopsies in clinical routine applications
therefore requires improved pre-analytical procedures to enable high-quality specimens to obtain unbiased analyte profiles
(DNA, RNA, proteins, etc.) as they are in the patient’s body.

Summary A growing number of stabilizing reagents and dedicated blood collection tubes are available for the post-collection
preservation of circulating cell-free DNA (ccfDNA) profiles in whole blood. In contrast, solutions for the preservation of
circulating tumor cells (CTC) that enable both, enumeration and molecular analyses are rare. Solutions for extracellular vesicle
(EV) populations, including exosomes, do not yet exist.

Keywords Liquid biopsy - Circulating cell-free DNA (ccfDNA) - Circulating tumor cells (CTC) - Extracellular vesicles -
Exosomes, pre-analytics - Pre-analytical workflows, standardization

Introduction

Circulating cell-free DNA (ccfDNA) was first described by
Mandel and Metais in 1948 [1]. Later, elevated levels of
ccfDNA were found to be associated with pathophysiological
conditions and diseases such as systemic lupus erythematosus,
rheumatoid arthritis, and certain cancer types (reviewed in
[2]). Stroun and coworkers [3] were the first to identify
ccfDNA originated from tumors, which eventually led to the
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term “liquid biopsy” for the use of blood plasma for purifica-
tion and analysis of tumor-derived DNA. Since then, it has
been demonstrated that circulating tumor DNA (ctDNA) can
be analyzed to investigate or monitor pathological changes in
the tumor genome—from chromosomal aberrations such as
microsatellite alterations, rearrangements, amplifications,
and copy number variations—down to single nucleotide ex-
changes and epigenetic changes (reviewed in [4¢]). ctDNA in
whole blood reflects the tumor genome heterogeneity, includ-
ing primary tumor and distant metastasis. Analyzing ctDNA
for diagnosis and therapy monitoring could be a way for non-
invasive early detection of new upcoming or resistance-
mediating driver mutations [4e].

Existence of cell-free fetal DNA (cffDNA) circulating in
the maternal bloodstream was initially published by Lo and
colleagues [5]. They were also among the first to recognize the
potential of using ccfDNA for noninvasive prenatal testing
(NIPT), such as determination of rhesus factor [6], and
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detection of aneuploidy [7] and single gene disorders [8]. For
NIPT, cffDNA analyses have meanwhile become routine clin-
ical practice. For example, Denmark and The Netherlands
have implemented nationwide prenatal screening for fetal
RhD-positive maternal plasma based on quantitative PCR
(qPCR) [9]. Analysis of fetal chromosomal aberrations is of-
fered by numerous companies and is already implemented or
will be implemented in the healthcare systems of many coun-
tries. In addition, ccfDNA analysis has been described as a
potential complement to existing diagnostic approaches for
numerous other clinical areas, like myocardial infarction, sep-
sis, trauma, diabetes, and transplantation medicine [2, 10].

The major source for ccfDNA are mono-nucleosomal
DNA fragments originating from apoptotic and necrotic cells
[11]. Furthermore, extracellular DNA is also present as
vesicle-bound apoptotic bodies, microparticles, microvesicles,
exosomes or histone/DNA complexes, nucleosomes, and
virtosomes [12, 13]. In addition, cell-free RNA is present in-
side exosomes and other extracellular vesicles (EVs). EVs
have been shown to contain various small RNA species, in-
cluding miRNA, piRNA, tRNA (and fragments thereof), vault
RNA, Y RNA, fragments of rRNA, as well as long non-
coding RNA, and apparently fully intact mRNA [14, 15].
From a clinical perspective, ccfRNA analysis appears prom-
ising for disease detection and patient stratification and mon-
itoring, particularly with respect to detection of fusion tran-
scripts and splice variants.

In contrast to tumor-derived circulating nucleic acids and
exosomes, circulating tumor cells (CTCs) are considered “liv-
ing” liquid biopsy species of cancer that most likely represent
the seeds of metastasis [16]. CTCs are tumor-derived cells that
circulate in cancer patients’ blood, in contrast to disseminated
tumor cells (DTCs), which are found in bone marrow.
Morphologically, CTCs are often described as epithelial-like
cells expressing cytokeratins and epithelial markers like
EpCAM [17]. These cells can be differentiated from PBMCs
because they are usually larger than leukocytes and negative
for CD45 [18]. More recently, other subtypes of CTCs have
been described which lose their epithelial origin and undergo
epithelial to mesenchymal transition (EMT) and tumor stem-
like phenotype changes. Such cells are potentially negative for
cytokeratins but express EMT markers [19, 20]. These EMT
or stem cell-like CTCs are discussed to represent a therapy-
resistant subtype that correlates to metastasis formation [21].

Since Cristofanilli et al. [22] demonstrated the prognostic
meaning of CTCs in metastatic breast cancer using the
CellSearch device (Menarini Silicon Biosystems, Castel
Maggiore, Italy) for CTC enumeration, such prognostic value
has been demonstrated for several solid cancer entities like
prostate, ovarian, and colorectal cancer [23]. In addition to
enumeration, it is meanwhile well-known that further molec-
ular characterization of CTCs provides valuable information
about the CTC metabolism in the context of therapy resistance
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mechanisms [24ee, 25¢] and phenotype changes like EMT and
tumor stem cell formation [26]. CTCs reflect the tumor com-
plexity that emerges during tumor progression. In addition to
the prognostic value of CTC identification and counting in
cancer progression, molecular characterization of CTCs can
guide treatment decisions and improve patient outcome.

Preservation Solutions for Improving
and Standardizing Pre-Analytical ccfDNA
Workflows for Liquid Biopsy Analyses

Known and Unknown about ccfDNA

Although ccfDNA has been investigated for a long time in
many applications, surprisingly, few details are known about
its origin and function, both under physiological and patho-
physiological conditions. In healthy donors, ccfDNA is usu-
ally of low concentration in plasma with a median of about
5 ng/ml, but differs between individuals (Fig. 1a). In general,
increased ccfDNA content in blood can be seen as an indicator
of unusually high cell death linked to different pathological
conditions [10, 27]. In cancer, the concentration of ctDNA can
vary drastically, depending on tumor size, stage, location, and
other factors, with a proportion of ctDNA between 0.01 and
90% (reviewed in [4<]). High ctDNA load can be associated
with poor prognosis (reviewed in [28]). There is some dis-
agreement about the size of ctDNA. In most reports, ctDNA
is described as more fragmented compared to ccfDNA from
normal tissues [29, 30]. This factor might even be used for
enrichment [29]. Others, on the contrary, found that integrity
of certain tumor-derived fractions increased in some cancer
types [31, 32]. The predominate size of about 166 bp [29,
33-35] corresponding to the size of mono-nucleosomal
DNA fragments supports the assumption that apoptosis is
the major source for ccfDNA [11]. Longer circulating DNA
might also occur especially in the case of cancer patients,
originating from necrosis of tissue surrounding the tumor [35].

In pregnant women, cffDNA is supposedly derived from
trophoblasts in the placenta [36], but according to Lui et al.
[37] and others, the main sources for ccfDNA in healthy sub-
jects are hematopoietic cells with the DNA deriving from
apoptotic but not necrotic cells [38]. However, if blood cells
were the main source for ccfDNA in healthy subjects, there
should be a correlation between white blood cell (WBC) count
and ccfDNA yield, which we were unable to find, analyzing
blood samples from more than 150 healthy subjects (Fig. 1b).
Others have reported that all living cells actively release DNA
into circulation [39, 40]. Extracellular DNA might be part of a
physiological pathway for horizontal gene transfer between
distant cells [12]. The uptake of ctDNA by normal cells in
cancer reportedly can trigger distant metastasis, a process
called genometastasis [41, 42].
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Fig. 1 ccfDNA yield in K2-EDTA blood and correlation to white blood
cell (WBC) count. a Yield of ccfDNA per milliliter plasma from K2-
EDTA blood quantified with Qubit 2.0 (Thermo Fisher). Blood samples
from 152 healthy donors were processed within 2 h after venipuncture

Pre-Analytical Workflow of ccfDNA

In contrast to NIPT and in spite of its potential and broad
application spectrum, analysis of ctDNA from tumor patients
has not yet become standard in healthcare but is mostly re-
stricted to biomedical and clinical research. Until now, only
two assays for ctDNA analysis have received FDA approval
(Epi proColon from Epigenomics, Berlin, Germany, and
cobas EGFR Mutation Test from Roche Molecular
Diagnostics, Basel, Switzerland). Concordantly, many authors
have pointed out the lack of workflow standardization and
protocol harmonization for pre-analytics [4e, 43, 44, 45,
46¢, 47]. This shortcoming along with insufficient knowledge
about the origin and function of ctDNA are the main reasons
why ctDNA analyses have not found their way into clinical
routine [46e, 47].

The pre-analytical workflow for analysis of ccfDNA in-
cludes all steps from venipuncture to preparation of the isolat-
ed ccfDNA for downstream analysis. These workflow steps
include blood collection and preservation, blood storage and
transport conditions, time elapsed between specimen collec-
tion and processing for plasma generation, plasma storage
and/or transport conditions, ccfDNA isolation, and storage
(Table 1). Each step of the pre-analytical workflow can affect
or even falsify the analytical outcome, leading to contradictory
study results and reports (reviewed in [46¢]). In particular,
dilution of ccfDNA with genomic DNA released from apopto-
tic and lysed leukocytes after blood draw constitutes one of
the most prominent challenges in ccfDNA analysis.

Via the European Committee for Standardization (CEN)
and its specific Technical Committee 140 for in vitro diagnos-
tic medical devices (CEN/TC 140), the European Union’s FP7
consortium project SPIDIA (www.spidia.eu) initiated for the
first time pan-European evidence-based standard documents
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and ccfDNA isolated with the QIAsymphony DSP Circulating DNA Kit
(QIAGEN); depicted is the scatter plot with mean and standard deviation.
b Correlation between ccfDNA yield per milliliter EDTA plasma plotted
and WBC count; depicted are trend line and R-squared value

for covering all pre-analytical workflow steps for dedicated
molecular in vitro diagnostics. Nine such standard documents
were released as CEN Technical Specifications (CEN/TS) in
European countries by their National Standard Bodies in
2015. Eight of these are expected to become ISO
International Standards in 2018 or 2019, including that for
ccfDNA pre-analytical workflows. In the specific CEN/TS
for ccfDNA pre-analytical workflows, usage of dedicated
blood collection tubes with a ccfDNA stabilization reagent is
recommended [48¢¢]. In the event that no ccfDNA stabiliza-
tion collection tube is available, the CEN/TS as well as Lam
et al. [49] suggest that EDTA is preferred as anticoagulant
over citrate and heparin because of a more moderate release
of genomic DNA within the first 24 h after blood collection.
Most authors recommend plasma processing from EDTA
anticoagulated blood within 2 to 6 h after collection [44e,
49, 50, 51¢], and the consensus is that plasma is preferred over
serum for purification of ccfDNA because of ex vivo release
of DNA during the clotting process [51°, 52-54].

The plasma generation protocol also has an impact on
ccfDNA yield [44e, 55, 56]. Two consecutive centrifugation
steps to generate plasma are applied in many if not most lab-
oratories, a procedure that dates back to Chiu et al. [55].
Modifications to this protocol may be required if a stabiliza-
tion reagent such as formaldehyde is added to the blood spec-
imen [57¢] or when a dedicated blood collection tube with a
stabilization reagent is used. Once plasma is separated, it
should be stored frozen at —20 °C or even at —80 °C and
repeated freeze-thaw cycles should be avoided [44¢, 51°].

The method of extraction can have a profound impact on
DNA yield, which is crucial for, e.g., the detection of rare
somatic mutations or correct quantification [43, 45, 58—60].
In general, verification and validation of the ccfDNA isolation
method is a required component of the verification and
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Table 1 Pre-analytical factors that can influence outcomes of ccfDNA analysis

Pre-analytical step Challenge Recommendation Quote

affecting ccfDNA

Blood collection tube Ex vivo release of genomic DNA from Use of a dedicated ccfDNA stabilization tube [48e]

leukocytes; PCR inhibition

Time between blood
collection and plasma
processing

Ex vivo release of genomic DNA from
leukocytes

Plasma or serum Ex vivo release of genomic DNA from
leukocytes
Incomplete separation of cellular fraction;

mechanical lysis of blood cells

Plasma processing protocol

Reduction of yield; increased
fragmentation

Plasma storage

DNA purification method Suboptimal compatibility with blood
collection tube; low yield due to DNA
loss; isolated ccfDNA lengths bias

DNA quantification Over quantification due to impurities and
detection limit in spectrophotometry

DNA storage Reduction of yield

Increased fragmentation

Use of EDTA tube, in case no dedicated ccfDNA  [49]
stabilization tube is available

Must be verified and validated in combination
with downstream application

In case of unstabilized EDTA blood, processing
should be performed within 2 to 6 h

Use of plasma

[44s, 48+, 50, 51¢]

[48+¢, 52, 53, 54]

For EDTA blood, use double centrifugation
protocol with low and high speed centrifugation
Follow ccfDNA tube manufacturer’s instructions
Do not store plasma at 2—8 °C for longer than
24 h

Freeze at —20 °C or — 80 °C

Avoid repeated freezing/thawing cycles
Validation and verification of DNA purification
method

Use of an integrated system of kit and tube
Follow ccfDNA tube manufacturer’s instructions
Use of gPC- based methods rather than
spectrophotometry

Store ccfDNA at —20 °C or below

Avoid repeated freezing and thawing

[44+, 48+, 55, 56]

[44¢, 48+, 51¢]

[43, 48++, 58-60]

[43, 48+, 59]

[48es, 51¢]

validation of the whole diagnostic workflow. In case that a
dedicated collection and stabilization tube i1s used, manufac-
turer’s recommendations should be followed [48¢¢], which
can for instance include a prolongation of proteinase K diges-
tion steps if a blood collection tube with a stabilization reagent
that leads to cross-linked molecules is used. For quantifica-
tion, gPCR-based methods are preferred over spectrophotom-
etry because impurities might interfere with spectrophotomet-
rical measurements and their reliability usually declines in the
lower DNA concentration range [45]. Finally, isolated
ccfDNA should be stored frozen at —20 °C or below and
repeated freeze-thaw cycles should be avoided [S1¢].

Stabilization Solutions for ccfDNA

The challenge of rapid ex vivo release of genomic DNA in
native blood after collection requires preservation of blood
cells. In case that logistics do not allow to tightly control
storage durations and conditions between phlebotomy and
plasma generation, use of a fixative or a dedicated blood col-
lection tube with a ccfDNA stabilization reagent is recom-
mended [48¢¢]. This is especially the case in clinical trials or
in clinical routine whenever blood samples are collected at
external sites, away from the molecular laboratory, and blood
processing for plasma generation at the point of collection is
not feasible.

@ Springer

Dhallan et al. [57¢] proposed to preserve maternal blood
cells by adding neutral buffered formaldehyde (NBF) to
EDTA-anticoagulated maternal blood directly after blood col-
lection in combination with a gentle centrifugation protocol.
They suggested that formaldehyde reduces cell lysis through
cell membrane stabilization and inhibition of nucleases, and
reported a substantial increase of the relative percentage of
fetal-derived cffDNA over total ccfDNA. Despite no agree-
ment about this increase (confirmation by Benachi et al. [61],
contradiction by Chung et al. [62] and Chinnapapagari et al.
[63]), the stabilizing effect of formaldehyde to impede cell
lysis is accepted and occasionally employed for analysis of
plasma DNA [64]. But the need to open each blood collection
tube directly after phlebotomy to add formaldehyde is an ad-
ditional handling step that is difficult to standardize and im-
plement at specimen collection sites. Furthermore, formalde-
hyde is toxic [65], and because of its potential carcinogenicity,
formalin was recently reclassified in the EU (category 2/3 to
category 1B/2) and must now be labeled as carcinogenic and
mutagenic [66]. Formaldehyde’s mode of action is
crosslinking and chemical modification of biomolecules,
which leads to non-reproducible DNA sequence alterations
or loss of PCR products [67].

Streck Inc. (Omaha, USA) was the first to include a cell-
stabilizing reagent into a blood collection tube (BCT), the
Cell-Free DNA BCT (Streck Tube), intended to stabilize
ccfDNA levels by preventing gDNA release from blood cells
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[68e+]. Following Streck’s published intellectual property, the
active component in the BCT reagent is most likely a
formaldehyde-releasing substance like diazolidinyl urea (US
2010/0209930 A1, US 2010/0184069 A1) and K3-EDTA as
anticoagulant. Streck reported that free formaldehyde cannot
be detected in the BCT reagent by carbon-13 nuclear magnetic
resonance analysis [69] and that the reagent neither causes
damage to DNA nor has any negative effect on DNA ampli-
fication [70]. Nevertheless, components within the BCT re-
agent react with semi-quantitative MQuant Formaldehyde test
strips (EMD Millipore Corporation, MA, USA) and the size
profile of ccfDNA shows a shift toward higher molecular
weight compared to unmodified ccfDNA from EDTA blood
when analyzed on the Agilent Bioanalyzer (unpublished re-
sults). This shift could indicate chemical DNA modification
by a crosslinking substance which was not reverted during
DNA isolation.

The Streck Tube was evaluated for NIPT applications by
different groups. Hidestrand et al. [71] found no significant
difference in total maternal ccfDNA from Streck Tubes
shipped for 72 h at room temperature versus matched samples
from EDTA blood processed immediately. They noted, how-
ever, an increase in total ccfDNA and consequently a signifi-
cant decrease in the cffDNA fraction in samples shipped at
lower temperatures with cool packs. Wong et al. [72] con-
firmed that Streck Tubes stabilize cell integrity and the
cffDNA fraction in maternal blood, but they also reported a
post-collection increase in total ccfDNA yield after 14 days
storage at room temperature or 1 day at elevated temperatures
of 37 °C to 40 °C. Usability of Streck Tubes for mutation
detection by qPCR in cancer-related applications was shown
by Denis et al. [73] for melanoma and by Sherwood et al. [74]
for NSCLC patients using the therascreen BRAF and KRAS
RGQ PCR Kits (QIAGEN, Hilden, Germany), respectively.
More recently, mutation detection with ctDNA from Streck
Tubes was demonstrated with droplet digital PCR (ddPCR)
by Sacher et al. [75] and with BEAMing and Safe-Sequencing
by Diaz et al. [76]. Some unclarity exists about the compati-
bility of the stabilization technology in Streck Tubes with
epigenetic tests requiring bisulfite treatment prior to qPCR.
Schmidt et al. [77¢¢] mentioned that the Streck Tube does
not seem to work for this application. According to Distler
et al. [78], methylated SEPT9 colorectal cancer screening
marker can be detected with almost 100% sensitivity in blood
from EDTA tubes stored at 2-8 °C for a maximum of 24 h, as
well as in blood from CPDA tubes stored at 18-25 °C for up to
48 h using the Epi proColon (Epigenomics, Berlin, Germany)
colorectal cancer screening test. Sensitivity dropped to 7%
when using blood from Streck Tubes stored for 7 days at
25-30 °C.

In 2016, PreAnalytiX (Hombrechtikon, Switzerland)
launched the integrated PAXgene Blood ccfDNA System.
This system consists of the PAXgene Blood ccfDNA Tube

(PAXgene Tube) and a ccfDNA purification kit for automated
extraction of ccfDNA on the QIAsymphony SP instrument
(QIAGEN) or manual extraction using the QIAamp
Circulating Nucleic Acid Kit (QIAGEN). According to the
manufacturer, the stabilization reagent in the PAXgene
Blood ccfDNA Tube prevents blood coagulation, lysis of red
blood cells, and apoptosis of white blood cells. The stabiliza-
tion reagent in the tube is free of cross-linking or cross-linker-
releasing substances (www.preanalytix.com) and hence does
not chemically modify ccfDNA. Schmidt et al. [77¢¢]
evaluated the PAXgene Blood ccfDNA System, including
manual and automated extraction, for the quantification of
methylated mSHOX2 plasma DNA in lung cancer patients.
They found that total yield of ccfDNA was stabilized in
PAXgene tubes when samples were stored for 7 days at
room temperature and quantification of methylated
mSHOX2 sequence by qPCR following bisulfite treatment
was possible. Warton and colleagues [79¢] compared K2-
EDTA, Streck, and PAXgene tubes for ccfDNA stabilization
and fragment size. They found that in contrast to EDTA, both
Streck and PAXgene tubes stabilized ccfDNA level when
stored for 4 days at room temperature. They noticed
contamination with DNA of high molecular weight in Streck
Tubes after 4 days of storage, which did not change the ratio
between a long and short amplicon of Alu sequences
determined by qPCR. They speculated that this high
molecular weight DNA in Streck Tubes contains chemical
modifications such as cross-linked proteins and is therefore
less amenable to PCR.

Concurrently, with PreAnalytiX, Ariosa Diagnostics,
Inc. (San Jose, USA, acquired by Roche Diagnostics,
Basel, Switzerland) launched the Cell-Free DNA
Collection Tube (Roche Tube). Information about the
composition of the proprietary reagent in this tube is not
available. Recently, two groups independently published
comparison tests using Streck, PAXgene, and Roche
tubes. Alidousty et al. [80] spiked blood directly after
venipuncture with DNA of the T790M mutated EGFR
gene fragmented by sonication. After 7 days storage at
room temperature, they were able to detect mutated
DNA equivalent to 40 gene copies per milliliter plasma
from all tubes by qPCR. When the spike-in was reduced
to approximately 20 gene copies per milliliter plasma,
only PAXgene and Roche tubes allowed reliable detection
of the mutated DNA after 1 day of storage. In contrast,
Nikolaev et al. [81¢] found the performance of PAXgene
and Streck tubes to be superior to that of Roche tubes
when compared in a time course validation study.
Whereas PAXgene and Streck tubes efficiently prevented
plasma contamination with genomic DNA when blood
was stored for 7 days with temperature cycles between
22 °C and 30 °C, high molecular weight DNA appeared
in Roche tubes after 5 days, as determined by qPCR.
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In 2017, additional dedicated blood collection tubes with
proprietary ccfDNA stabilizing reagents were launched, but
these have not gained attention in peer-reviewed journals so
far (Table 2).

Preservation of Circulating Tumor Cells
CTC Isolation for Enumeration and Staining

CTCs are a very rare cell population with 0-500 cells per
10 ml blood. Especially in early disease, they can, e.g.,
amount to less than 10 cells per 10 ml blood, representing a
ratio of approx. 1:107 CTCs to WBCs. Therefore, pre-
enrichment seems to be required for most analytical down-
stream assays. Current technologies for enrichment of CTCs
include antibody-based enrichment methods like AdnaTest
(QIAGEN, Hilden, Germany), CellSearch System (Menarini
Silicon Biosystems, Castel Maggiore, Italy), and Gilupi
CellCollector (Gilupi, Potsdam, Germany), as well as label-
free enrichment methods based on physical properties of
CTCs like size, deformability, and adhesion (ClearCell Fx
from Clearbridge BioMedics, Singapore; Parsortix from
ANGLE ple, Guildford, UK; and VTX-1 from Vortex
BioSciences, Menlo Park, USA). Taking into account low
CTC numbers, the risk of post-collection changes in CTC
analyte profiles during all workflow steps including enrich-
ment, and the tendency of CTCs to degrade, the importance of
proper pre-analytical steps becomes evident. Such steps in-
clude sample collection, preservation, transport, and storage,
as well as sample preparation including enrichment for the
analytical assay. There are differences in pre-analytical pres-
ervation requirements of the various downstream analyses
performed, such as CTC counting, or CTC transcriptome, ge-
nomic, and proteomic analyses by advanced staining.

The only CTC enumeration system that has obtained FDA
clearance so far is the CellSearch System consisting of the

Table 2

CellSave preservative blood collection tube (CellSave BCT),
the CTC kit, and the autoprep and analyzer instruments. The
system is intended to provide independent prognostic infor-
mation in several cancer entities. However, for prognostic
information on disease-free survival and overall survival,
CTC counting alone is meanwhile regarded as insufficient
for medical decisions and therapy optimization [82]. Instead,
a comprehensive molecular characterization of CTCs is in-
creasingly requested, especially with a focus on predictive
information that may allow better therapy planning or the
identification of actionable molecular candidates for targeted
therapy strategies [83].

In CTC counting and staining procedures, cell preservation
must ensure cell integrity during blood specimen transport,
storage, and sample batching to generate reproducible results
[84-86]. Furthermore, intracellular proteins as well as cell
surface antigens must be preserved to enable efficient
antibody-mediated enrichment and detection by immunofluo-
rescence. Staining procedures for cell counting do not require
live cells but can start from non-viable cells only if the CTC
morphology is sufficiently preserved and CTC damage and
degradation are avoided. The CellSearch system is the most
commonly used platform for these applications. The CellSave
BCT was developed for the indicated purpose to allow a delay
of up to 72 h at room temperature between blood collection
and sample processing [87]. Another CTC stabilizer for enu-
meration is contained in TransFix tubes [88] (Caltag
Medsystems, Ltd., Buckingham, UK), claiming to stabilize
CTCs for up to 72 h at room temperature when subsequently
enriched using the ScreenCell Cyto device (ScreenCell,
Westford, USA) followed by whole genome amplification
(WGA) and sequencing.

Molecular Analyses of CTCs

Recent publications have shown that mutational analysis is
possible using single isolated CTCs from blood samples

Blood collection tubes with dedicated ccfDNA stabilization reagent

Blood collection tube Manufacturer

Draw volume References

Cell-Free DNA BCT® Streck, Omaha, USA 10.0 ml [54, 68+, 70-76, 78, 80, 81¢]
PAXgene® Blood ccfDNA Tube PreAnalytiX GmbH, Hombrechtikon, Switzerland 10.0 ml [77ee, 80e, 81°]

cfD Tube Roche Diagnostics (Schweiz) AG, Basel, Switzerland 8.5 ml [80e, 81¢]

LBgard™ Blood Tube Biomatrica, Inc., San Diego, USA 8.5 ml -

Blood Stasis™ 21-ccfDNA Tube Mabio Genomics, Inc., Gaithersburg, USA 9.0,6.0,3.0 ml -

cf-DNA Preservative Tube Norgen Biotek, Corp., Thorold, Canada 8.3 ml -

Nice® Check cfDNA Tube EONE-DIAGNOMICS Genome Center, Incheon, Korea 8.0 ml -

Blood Exo DNA ProTeck® Tube  CFGenome LLC, Denver, USA nm -

ImproGene Cell Free DNA Tube Improve Medical Instruments Co., Ltd., Guangzhou, China ~ 10.0 ml -
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stabilized for counting [89e, 90¢], as well as using viable CTCs
isolated from EDTA blood [89, 91]. Shaw et al. were able to
identify Pi3K, ESRI1, P53, and KRAS mutations in breast
cancer patients on a single-cell level using a combination of
the CellSearch platform, including CellSave BCT samples,
and the DEParray instrument [90]. Kidness-Sigal et al. report-
ed mutational analysis with viable CTCs isolated from EDTA
blood [91].

For valid, reliable, and reproducible CTC transcriptome
analyses, minimizing post-collection ex vivo gene expression
changes is essential, as RNA profiles can change significantly
by, e.g., gene induction, gene downregulation, and RNA deg-
radation. Using fixatives developed for cell staining and
counting (i.e., the CellSave BCT) is inappropriate in this con-
text because they seem to completely inhibit or at least dete-
riorate access to intact mRNA [92¢, 93]. For specific analytical
tests using the AdnaTest System (QIAGEN), a commercially
available platform for CTC transcriptional characterization of
selected tumor-associated genes rather than cell enumeration,
ACDA (acid citrate dextrose formula A) is recommended as
an anticoagulant with an acceptable stabilizing effect on the
specific RNA molecules analyzed by the so far developed
assays for at least 30 h transport under cold conditions (4—
8 °C; internal data, not shown). Using the AdnaTest in com-
bination with ACDA-anticoagulated blood, Aaltonen et al.
demonstrated molecular changes in CTC metabolism under
systemic therapy pressure [94]. Luk et al. compared ACD
and K2-EDTA tubes, Cell-Free DNA and Cell-Free RNA
BCTs (Streck), and Cyto-Chex BCT (Streck) in a prostate
CTC setting, analyzing androgen receptor variant 7 (ARv7)
with a ddPCR assay after CTC enrichment on the AutoMaCS
Pro Separator (Miltenyi, Bergisch Gladbach, Germany) [92¢].
They found that the CTC AR v7 transcript remains stable in
EDTA or ACD-anticoagulated blood for 48 h at room temper-
ature, whereas mRNA detection in all the three Streck BCT
tubes dropped directly after blood collection and was impos-
sible to measure after any transport time. Wong et al. were able
to analyze a panel of 26 genes related to the androgen receptor
metabolism as well as EMT and proliferation markers from
CTCsusing EDTA blood stored for 72 h at 4-8 °C. They used
a hematologic cell depletion, microfluidic technology called
CTC-iChip [95]. The possibility of achieving sufficient CTC
preservation for up to 96 h in EDTA tubes followed by flow
sorting and RNA profiling was studied by Apostolou et al.
[96¢]. They reported only minimal alteration in the expression
of specific genes (16 genes as well as 18srRNA and 28
stRNA) for up to 72 h under refrigerated conditions (4—
8 °C) and positive microscopic detection of CTCs following
immunomagnetic enrichment up to 96 h after collection.

However, keeping blood samples under controlled, cooled
conditions during the entire pre-analytical workflow, includ-
ing limiting the time needed for sample collection, transport,
and storage prior to processing in the receiving laboratory, is a

significant logistical challenge and difficult to standardize.
Achieving and verifying a closed cooling chain is time and
resource consuming. Furthermore, cooling of samples may
not prevent transcript changes for all targets, and may limit
the selection of appropriate target transcripts for CTC detec-
tion already at the beginning of new CTC assay or biomarker
development. Novel stabilization technologies for preserving
CTCs and their analyte profiles (e.g., DNA, RNA, proteins) in
whole blood across all pre-analytical workflow steps from
collection and storage to enrichment are still needed.

Preservation of Cell-Free RNA, Exosomes,
and Other Extracellular Vesicles

Due to high endogenous RNase activity in blood plasma and
serum, any cell-free RNA that is not already protected in vivo
is degraded very rapidly. While the existence of a stable cell-
free population of miRNAs associated with Argonaute pro-
teins [97¢] and perhaps other protective proteins [98, 99] has
been demonstrated, no such protective proteins have been
identified for mRNA and other long RNAs. Thus, these spe-
cies have been found almost exclusively within EVs. EVs are
remarkably stable, both in vivo and after isolation, with the
same stability also conferred to their RNA content [100].
Consequently, protection from endogenous RNases is not a
problem for the preservation of cell-free RNA profiles. In
contrast, the continuous production, release, and uptake of
existing EVs by various blood cells is an issue that must be
considered whenever there is a substantial delay between
blood collection and preparation of plasma or serum ([101]
and own unpublished observations). Similarly, apoptosis and
necrosis of blood cells after sample collection will result in
release of cellular RNA which can lead to unwanted back-
ground. While mRNA and other long RNA species released
in that way are rapidly degraded by endogenous RNases,
miRNA associated with Argonaute proteins can persist in
plasma for prolonged periods [97¢].

Existing preservation solutions for ccfDNA profiles de-
signed to prevent cell lysis and apoptosis also minimize re-
lease of non-vesicular miRNA after blood collection.
However, they are not effective in shutting down the release
of new EVs from blood cells [own unpublished observations].
Currently, there is no preservation technology published or
commercially available to keep the concentration and popula-
tion of EVs in blood constant after venipuncture. According to
IP filings, Cell-Free RNA Blood Collection Tubes from
Streck seem to contain aurintricarboxylic acid as an RNase
inhibitor. As outlined above, inhibition of RNases is not re-
quired to protect existing cell-free RNA, but may slow down
degradation of RNA released during or after blood collection
by blood cell necrosis or apoptosis, thereby potentially even
increasing unwanted background RNA. Thus, in the absence
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of effective solutions to block EV production and uptake, the
best advice remains to process blood samples into plasma as
quickly as possible, ideally within 30 min after venipuncture
[101, 102¢]. Plasma is preferable over serum because, similar
to ex vivo release of ccfDNA during the clotting process,
coagulation has also been shown to be accompanied by the
release of EVs, particularly from platelets [102e, 103, 104].

Stabilization Solutions for Multi-Modality
Applications

The volume of blood that can be drawn from cancer patients
during therapy is often tightly restricted. Collection of blood
into multiple different tubes with dedicated stabilization solu-
tions for different analytes is therefore limited. A number of
groups investigated if the CellSave BCT, currently regarded as
the gold standard for CTC enumeration, can also be used for
ccfDNA extraction. Kang et al. [105] found the CellSave BCT
to stabilize ccfDNA equivalently to EDTA and Streck Cell-
Free DNA Tubes for up to 6 h after venipuncture. However,
after 48 h storage at room temperature, they also noticed a
moderate decrease in yield as determined by ddPCR. Van
Dessel et al. [106] reported that ccfDNA yield from
CellSave BCT processed within 96 h at room temperature is
comparable to Streck Tubes, and that mutation detection and
allele frequency determination by ddPCR is not affected by
the stabilization reagent. A similar finding was published be-
fore by Rothwell et al. who found ccfDNA from CellSave
BCT plasma was preserved for up to 96 h at room temperature
and suitable for NGS applications [89¢]. For a combined anal-
ysis of CTC and ccfDNA from 1 sample, they proposed split-
ting blood from 1 tube (i.e., 7.5 ml for CTC isolation with the
CellSearch System and the remaining 1 to 2.5 ml for isolation
of ccfDNA). The difficulty with this approach is that both
analyses require the highest possible sensitivity. For most ap-
plications, splitting a 10 ml blood sample is not likely a viable
option. Several providers of blood collection tubes with stabi-
lization reagents for liquid biopsy applications have claims for
ccfDNA and CTC preservation (e.g., Streck Cell-Free DNA
BCT and Biomatrica LBgard Blood Tube), but as long as there
is no convincing preservation and enrichment concept avail-
able for parallel isolation of all required liquid biopsy compo-
nents from 1 blood sample, there seems to be no alternative to
using different tubes for different purposes.

Conclusions
The use of liquid biopsies in routine healthcare and biomarker
discovery and development holds great promises. Advances

in sequencing technologies have made it possible to recon-
struct the whole tumor genome from ctDNA, and molecular
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characterization of the genome, transcriptome, and proteins of
CTCs enables elucidation of tumor complexity and heteroge-
neity on a single-cell level. Analyses of biomarkers from lig-
uid biopsies have the potential to become an indispensable
tool for diagnosis, prognosis, early detection of therapy resis-
tance, and overall cancer patient care. Currently seen as a
complementary tool, liquid biopsies might even replace some
more invasive techniques such as core needle biopsies in spe-
cific situations.

Despite this high potential, until now, liquid biopsies have
fully fulfilled expectations only in the field of NIPT. Besides a
better understanding of origin and function, improvements
and standardization of complete diagnostic workflows will
be key for broader use of CTCs, as well as other circulating
cells and free-circulating or vesicle-bound nucleic acids, in
patient management. The whole diagnostic workflow includes
all steps performed such as specimen collection, preservation,
transport, storage, processing, analyte enrichment and/or iso-
lation and storage, execution of the analytical assay, data man-
agement, and interpretation including bioinformatics. Only if
all relevant workflow components and individual steps are
fully verified and validated in the context of the intended use
of the analytical test, results can have the reliability and statis-
tical power to be the basis for a therapeutic decision.

The indispensable first step of workflow development and
its standardization is the collection and preservation of the
specimen. As shown by many researchers, analysis of specific
molecular targets from liquid biopsies is possible using non-
stabilized blood samples, i.e., EDTA-anticoagulated blood.
However, post-collection ex vivo changes in sample molecular
profile make high levels of pre-analytical workflow controls in
terms of steps durations and conditions imperative when work-
ing with unpreserved blood. Cooling, sample processing needs
at the point of collection, and short transport and storage dura-
tion are very challenging and may even be impossible to main-
tain in routine healthcare settings. Therefore, use of dedicated
stabilization solutions seems to be highly recommendable.

Analysis of free-circulating RNA or EV-bound nucleic
acids is still mainly restricted to biomedical or clinical research,
partly because technical solutions for specimen and sample
preservation are not sufficiently available yet. They are urgent-
ly needed to move the field toward clinical applications.

Use of CTC preservation reagents, such as in the CellSave
BCT, has been shown to stabilize CTCs for enumeration and
might become a complementary part of conventional cancer
treatment decision-making and therapy monitoring. However,
the full potential for CTC analysis must include molecular anal-
yses. For transcriptional profiling of specific individual targets
analyzed by specific analytical assays, viable cells isolated from
blood anticoagulated via EDTA or Citrate (ACD) can be used if
processed within a short time after phlebotomy or if transported
under controlled cooled conditions. Broader use of CTC enrich-
ment, enumeration, and molecular testing, including the
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transcriptome, and less cost-intensive sample transport, and
storage at ambient temperatures, is currently hindered by the
lack of suitable sample preservation technologies.

Via the CEN/TC 140, the European Union’s HORIZON
2020 SPIDIA4P consortium project with 19 partners from
11 countries (2017-2020, www.spidia.eu) has started to
develop CEN/Technical Specifications for pre-analytical
workflows addressing different CTCs, exosomes, and other
EVs, as well as ccfRNA applications. The consortium is
working together with various other international consortia
and professional societies to achieve broad consensus on these
pre-analytical workflow requirements and recommendations.
One key SPIDIA4P collaborator is the CANCER-ID consor-
tium, a European consortium with 40 industry and academic
partner from 14 countries and supported by the European
Union’s Innovative Medicines Initiative (IMI), focusing as
well on pre-analytical workflows for CTCs and other liquid
biopsies (www.cancer-id.eu).

The situation is different for ccfDNA analysis. Since Streck
introduced the Cell-Free DNA BCT, many other dedicated
blood collection tubes with ccfDNA stabilizing reagents be-
came commercially available. In addition to the Streck tube,
the PAXgene Blood ccfDNA Tube (PreAnalytiX) and the cfD
Tube (Roche) have been recently scrutinized in comparison
tests and validation studies. The growing number of technical
solutions, validation, and standardization efforts can be seen
as an indicator that in the field of cancer, broad routine use of
ctDNA to complement existing procedures is coming soon.
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