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Abstract
Myocardial infarction triggers infiltration of several types of immune cells that coordinate both innate and adaptive immune 
responses. These play a dual role in post-infarction cardiac remodeling by initiating and resolving inflammatory processes, 
which needs to occur in a timely and well-orchestrated way to ensure a reestablishment of normalized cardiac functions. 
Thus, therapeutic modulation of immune responses might have benefits for infarct patients. While such strategies have shown 
great potential in treating cancer, applications in the post-infarction context have been disappointing. One challenge has 
been the complexity and plasticity of immune cells and their functions in cardiac regulation and healing. The types appear in 
patterns that are temporally and spatially distinct, while influencing each other and the surrounding tissue. A comprehensive 
understanding of the immune cell repertoire and their regulatory functions following infarction is sorely needed. Processes 
of cardiac remodeling trigger additional genetic changes that may also play critical roles in the aftermath of cardiovascular 
disease. Some of these changes involve non-coding RNAs that play crucial roles in the regulation of immune cells and may, 
therefore, be of therapeutic interest. This review summarizes what is currently known about the functions of immune cells 
and non-coding RNAs during post-infarction wound healing. We address some of the challenges that remain and describe 
novel therapeutic approaches under development that are based on regulating immune responses through non-coding RNAs 
in the aftermath of the disease.
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Introduction

Cardiovascular diseases (CVDs) remain the leading cause 
of death world-wide, accounting for 31% of all fatalities in 
2016 (WHO, June 2016). An important contributing factor 
is our incomplete understanding of the processes by which 
tissue is remodeled after a myocardial infarction (MI). One 
hallmark of the disease is the recruitment of a diverse range 
of immune cells which are recruited into the infarcted heart 
and modulate both innate and adaptive immune responses 
[111]. During the initial phase after MI, for example, 

inflammation plays a causal role in remodeling the left ven-
tricle (LV) and is accompanied by a rearrangement of myo-
cytes, extracellular components and vessels [67].

Infiltrating cells exhibit specific patterns of spatiotem-
poral distribution and activity [212] while carrying out an 
active, sequential crosstalk with each other and other cardiac 
cells. This creates a highly complex regulatory landscape 
[132, 142] that plays an important role in proper post-MI 
cardiac healing [149]. Inflammatory processes may also 
cause hypertrophy, fibrosis and other types of cardiac dam-
age which can subsequently lead to heart failure [102]. 
Optimum recovery, thus, requires a timely and selective 
modulation of inflammation [48, 49], but the heterogeneity 
and functional diversity of immune cells pose challenges 
in attempts to target inflammation as a therapeutic strategy. 
Successful approaches will require a more comprehensive 
understanding of the spatiotemporal coordination of immune 
responses in post-MI tissue.
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Here, we highlight the temporal dynamics of immune 
cells during post-MI LV wound healing and consider the 
therapeutic potential of engineering such cells. We focus 
particularly on recent findings regarding the roles of noncod-
ing RNAs (ncRNAs) in regulating immune cell functions. 
An additional focus is the growing list of molecules known 
to participate in the recruitment, activation and polarization 
of immune cells after MI, opening new avenues for pharma-
ceutical manipulation that may lead to improved forms of 
immunotherapy for MI patients.

Inflammatory responses post‑MI 
and ncRNAs derived from immune cells

In the aftermath of MI, monocytes, lymphocytes and other 
immune cells sequentially orchestrate wound healing proce-
dures that are crucial in preserving cardiac functions [48]. 
In the infarcted myocardium, the death of massive numbers 
of cardiomyocytes leads to damage-associated molecular 
patterns (DAMPs) or inflammasomes [47]. These serve as 
danger signals that are recognized by the Toll-Like Receptor 
(TLR) or Nod-Like Receptor (NLR) families, which recruit 
immune cells to the region of the infarct and activate an 
inflammatory response [89, 144, 176, 181]. There has been 
increasing evidence that heart failure alters the expression 
of specific ncRNAs, suggesting that they play a role in the 
development and aftermath of cardiovascular diseases [122, 
211]. ncRNAs comprise diverse RNA molecules that are 
not translated into proteins. The two predominant types 
are microRNAs (miRNA) (generally defined with a size of 
22–23 nts) and long non-coding RNAs (lncRNA) (> 200 
nts). A study has described an association between non-
coding RNAs and post-MI disease status; interestingly, the 
strongest associations found in this study involved non-cod-
ing RNAs implicated in processes related to inflammation 
and immunity, suggesting that they play important roles in 
post-MI immune responses [107].

Neutrophils

Neutrophils (polymorphonuclear granulocytes; PMNs) are 
leukocytes that play a crucial role in innate immunity by 
eliminating foreign pathogens through degranulation, oxida-
tive mechanism, and other mechanisms. An accumulation 
of neutrophils is characteristic of the acute inflammatory 
response [93], and an increase in the number of circulat-
ing leukocytes has been considered a hallmark of systemic 
inflammation in MI patients [137]. Leukocyte numbers 
are strongly associated with high mortality rate in patients 
following MI [124], suggesting that these cells are linked 
to adverse cardiac remodeling. Neutrophils are recruited 
into the infarct myocardium as CD11b+Ly6G+F4/80 − for 

mice and CD11b+CD16+CD62L+ for humans [147, 207] 
(Table 1).

PMNs are the first immune cells to infiltrate the infarcted 
myocardium after MI [229]. They migrate into the infarct 
within hours after permanent coronary occlusion in mice, 
reaching a peak at days 1–3 and dropping to normal level 
at days 5–7 post-MI [117, 118] (Fig. 1). After infiltration, 
PMNs are activated through the expression of recognition 
receptors such as TLRs or NLRs. Once active, PMNs can 
digest pathogens through several mechanisms which subse-
quently initiate inflammatory responses. These include the 
secretion of antimicrobial granule contents such as reactive 
oxygen species (ROS) or matrix-degrading proteinases, or 
by forming neutrophil extracellular traps (NETs), in addi-
tion to other microbicidal mechanisms that are capable of 
mediating tissue injury [5, 118, 142, 229]. An increased 
neutrophil–lymphocyte ratio (N/L ratio) has been identified 
as a marker for adverse outcomes in patients suffering from 
ST-segment elevation post myocardial infarctions (STEMI) 
[90, 137]. Recent findings from Nalbant et al. offer insights 
into this ratio and adverse cardiac remodeling post-MI: MI 
patients exhibit elevated neutrophil counts compared to 
healthy counterparts, while these groups display no differ-
ences in lymphocyte counts [134]. These findings suggest 
that neutrophil infiltration might be a promising therapeutic 
target for better outcome post-MI. Neutrophils also play an 
important role in the recruitment and activation of mono-
cytes/macrophages at later post-MI time points, suggesting 
that their role in wound healing goes beyond directly killing 
pathogens [50].

Neutrophil derived ncRNAs

Recent studies have shown that ncRNAs produced by neu-
trophils have regulatory effects on their functions during 
inflammatory responses [82, 204]. An example is miR-223, 
the most abundant miRNA in neutrophils, which is critical 
for their differentiation from precursor cells [83, 204]. The 
expression of this microRNA has not been studied specifi-
cally in neutrophils that infiltrate cardiac tissue, though high 
levels of its expression are highly correlated with the devel-
opment of heart failure [199]. In heart samples from both 
human patients who have experienced heart failure and a 
hypertrophic mouse heart model [achieved through the use 
of transverse aortic constriction (TAC)], this miRNA is mas-
sively up-regulated compared to healthy controls [199]. The 
systemic over-expression of miR-223 in mice has a negative 
impact on several pathogenic parameters in vivo, including 
the expression of genes linked to cardiac stress, heart size 
and levels of interstitial fibrosis [199]. The fact that miR-223 
is known to have inflammatory effects [175] suggests that 
these disease phenotypes are at least partially influenced by 
a dysregulation of inflammatory processes.
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miR-5192-5p, which is linked to atherogenesis, is 
expressed at significantly higher levels in circulating neutro-
phils from patients with MI compared to those derived from 
a healthy group [198]. Neutrophils also highly express miR-
15b, which has been shown to exhibit anti-apoptotic effects 
on cells during cardiac remodeling after MI [74, 112, 209]. 
Like other cellular systems that regulate gene expression, 
miRNAs can play either beneficial or detrimental roles in 
processes of health and disease, depending on the molecule 
involved and its range of targets in a specific developmental 
or pathological context. While a function for miR-15b in the 
context of a cardiac-specific inflammation has not yet been 
described, it has been shown to regulate a system inflamma-
tory response following Japanese Encephalitis infections, 
which is strongly suggestive of a direct link [222]. Other 
noncoding RNAs that are abundant in neutrophils and have 
been implicated in cellular dysfunction include miR-491-3p, 

miR-34b, miR-595, miR-328, miR-1281 and miR-483-3p, all 
of which exhibit alterations in expression in the senescent 
state [204].

In addition to the intrinsic effects of miRNAs on the 
neutrophils that produce them, they can be transferred 
through micro-vesicles to endothelial cells in a process that 
affects atherogenesis. miR-150 and -223 have been shown 
to undergo this type of transfer [58]. This suggests a novel 
potential strategy for treatment based on targeting micro-
vesicles as ncRNAS are delivered from cell to cell.

lncRNAs produced specifically by granulocytes, such as 
HOXA cluster antisense RNA 2 (HOXA-AS2) and Morrbid, 
are also of interest due to their association with neutrophil 
survival through the regulation of apoptosis [180]. These 
molecules prolong the lifespan of neutrophils by regulat-
ing TNF-related apoptosis (HOXA-AS2) and the transcrip-
tion of the pro-apoptotic gene Bcl2l11 (Morrbid) [96]. As 

Table 1   The expression phenotype and their function of Immune cell subsets during cardiac remodeling post-MI

LncRNA (lnc-) long non coding RNA, miRNA (mir-) microRNA, PBMC peripheral blood mononuclear cells, DC dendritic cells

Human subset Mouse subset Function Strain References

Neutrophil CD11b+, CD16+, 
CD66b+HLA-DR

CD11b+, Ly6G+, F4/80− Digest pathogens C57BL/6 [147, 207]

Monocyte
 Mo1 CD14 high, CD16−CCR2+ Ly6Chigh Homing, initiation of 

inflammatory process
C57BL6, apoE−/− [133, 155, 159]

 Mo2 CD14 high, CD16+CCR2+ Phagocytosis, vascular 
repair.

 Mo3 CD14 low, CD16+CCR2− Ly6Clow Anti-inflammatory 
response, tissue repair, 
angiogenesis

Macrophage
 M1 Ly6hiCD206−CD204− MHCIIhiCD11chiCCR2hi Pro-inflammatory. ECM 

digestion
C57BL/6, Trib1−/− [51, 162]

 M2 Ly6clow, CD206+CD204+ CD206+, F4/80+, CD11b+ Anti-inflammatory, 
fibrosis

Dendritic cell Plasmacytoid CD68, 
CD303+

CD11c+CD11b− Ag presenting cell, induce 
T-cell immunity

C57BL/6 [228]

Myeloid DCs CD1C+

Myeloid DCs CD141+

Lymphocyte
 Th1 CD3+, CD4+, IFN-γ+ CD3+, CD4+, IFN-γ+ Differentiation of infil-

trated monocytes
C57BL/6, CBAIJ, 

BALB/c
[228]

 Th2 CD3+, CD4+, IL-4+ CD3+, CD4+, IL-4+ Inducing B-cell antibody 
isotype, anti-inflamma-
tory response

BALB/c ByJ, B10.D2 
mice

[43]

 Th17 CD3+, CD4+, IL-17A+ CD3+, CD4+, IL-17A+ Pro-inflammatory 
response

C57BL/6, BALB/c, 
DO11.10 TCR-trans-
genic mice

[168]

 Treg CD3+, CD4+, CD25, 
CD127

CD3+, CD4+, CD25, 
Foxp3

Suppressor T cell, balanc-
ing immune response

C57BL/6 [160, 228]

 B cells CD3−, CD19+ CD3−, CD19+ Mediate humoral immune 
response by producing 
antibodies

C57BL/6J, CD45.1 [212, 230]
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neutrophils’ survival is strongly associated with prolonged 
inflammation following MI, cardiac neutrophil-specific 
expression of these lncRNAs could be of interest. Jiang 
et al. have shown that the expression of lncRNAs produced 
by neutrophils can be influenced by disease: in a compari-
son between groups of patients suffering from arthritis and 
those experiencing clinical remission on medication (CRM), 
they found a differential expression of 38 lncRNAs [82]. 
Although the functions of these lncRNAs are largely not 
known, this suggests that gene regulation by lncRNAs may 
mediate and fine-tune neutrophilic transcriptional action for 
specific inflammatory responses, potentially including MI.

Monocytes and macrophages

Abnormal levels of blood mononuclear cells (PBMCs) 
including monocytes, macrophages and lymphocytes have 
been associated with adverse inflammatory responses follow-
ing MI [46]. Of these, monocytes are the most abundant, and 
not only serve as a source of myeloid for the differentiation 
of macrophages and dendritic cells, but also present antigens, 
regulate other immune cells, and serve additional functions 
[80]. They make up 10% of the total human and 4% of mouse 
blood leukocytes and are major players in the innate immune 
system [42]. Mice have two subsets (inflammatory Ly6Chigh 
and anti-inflammatory Ly6Clow phenotypes) exist [133], 
while humans possess three subtypes of monocytes, classi-
fied by the relative expression of CD14, CD16 and CCR2: 
Mon1 (classical; CD14highCD16−CCR2+), Mon2 (inter-
mediate; CD14highCD16+CCR2+) and Mon3 (non-classical; 
CD14lowCD16+CCR2−) [133] (Table 1). Classical human 
and Mon1 mouse monocytes induce pro-inflammatory 

responses and exhibit high phagocytosis, whereas non-
classical/Mon3 monocytes express anti-inflammatory 
mediators [155, 159]. In the steady state, the inflammatory 
circulating forms account for 50–60% of the total circulat-
ing monocytes in mice (Ly6ChiCCR2highCX3CR1lowCD62 
L+) and 80–90% in humans (CD14highCD16−) [116]. MI 
stimulates adrenergic signaling that triggers the bone mar-
row and spleen to produce new monocytes that are recruited 
into the heart [42]. Within 24 h post-MI, the weight of the 
spleen decreases by 50% accompanied by a depletion of 
monocyte numbers as a result of their departure from the 
spleen’s monocyte reservoir [116, 171]. Chemokine recep-
tors induce the recruitment of monocytes into the infarct 
region; inflammatory Ly6chi monocytes are recruited early 
on post-MI in a CCR2-dependent manner, whereas anti-
inflammatory Ly6clow monocyte recruitment is dependent 
on Cx3cr1 and occurs later. These monocytes differentiate 
into macrophages or dendritic cells (DCs) in response to 
various chemokines and growth factors released from the 
injured tissue [172, 212].

Macrophages are our body’s primary phagocyte, indis-
criminately destroying a huge variety of pathogens and also 
clearing debris from apoptotic cells. They also trigger an 
immune cascade through both antigen presentation and 
the release of signaling molecules and enzymes [59]. Mac-
rophages play crucial roles during LV remodeling post-MI 
due to their involvement in every stage of the wound healing 
process, including inflammation, resolution, and maturation 
phases [63, 79, 99]. Infiltration begins at day 1 and peaks at 
3–5 days post-MI (Fig. 1) [212]. Four subsets of cardiac mac-
rophages are distinguished in mice through the presence of 
surface markers: Ly6C, MHCII, CD11c and CCR2 [44]. To 

Fig. 1   Temporal dynamic of 
immune cells during post-MI 
healing
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date, most studies have oversimplified the character of mac-
rophages into either pro-inflammatory M1 or anti-inflam-
matory M2 phenotypes. Mouse MHCIIhiCD11chiCCR2hi 
cells are described as M1 and CD206+F4/80+CD11c+ as 
M2 [162]. In humans, Ly6hiCD206−CD204− are described 
as M1 and Ly6clowCD206+CD204+ macrophages as M2 phe-
notypes [51]. Immediately after MI, there is a predomination 
of M1 inflammatory macrophages which secret pro-inflam-
matory cytokines and MMP (matrix metalloproteinases), 
but over time this phenotype gradually switches to that of 
M2 macrophages which promote repair. Later during the 
maturation phase, these macrophages regulate the activa-
tion of fibroblast and endothelial cells [111]. This plasticity 
of macrophages has attracted many researchers to strate-
gies involving immune reprogramming; therapeutic inter-
ventions, however, would need to carefully consider factors 
such as the time point post MI and the desired M1/M2 ratios. 
These issues may contribute to our poor understanding of 
the clinical outcome of such approaches (Fig. 2).

ncRNAs derived from monocytes or Macrophages

Paahuleva et al. reported differences in the expression of 
miRNAs in circulating monocytes between patients with 
MI and healthy controls. MI patients exhibited an upregu-
lation of miR-143 and -145, involved in macrophage dif-
ferentiation and activation, from peripheral blood mono-
cytes [220, 221]. Interestingly, miR-143 has been shown 
to have anti-inflammatory effects during allergic rhinitis 

by inhibiting IL-13 secretion, suggesting a similar role 
in cardiac monocytes or macrophages [177]. Monocyte-
derived miRNAs also influence neighboring cells, as the 
expression of miR-126 in circulating monocytes is highly 
linked to angiogenesis and vascular inflammation [76]. 
Furthermore, miR-126 circulating in plasma has been 
proposed as a diagnostic marker for myocardial infarc-
tion [114]. An additional miRNA, miR-155, was elevated 
in cardiac macrophages in injured hearts, and its upregu-
lation had a direct impact on fibroblast proliferation in 
post-MI remodeling [197]. The depletion of miR-155 
in macrophages is correlated with decreased levels of 
CCL2, a chemokine that recruits monocytes, suggesting 
that macrophage-derived miR-155 expression might serve 
as a therapeutic target which could suppress both fibrosis 
and inflammatory responses [135]. Monocyte activation 
leads to an upregulation of miR-9, miR-9*, lnc-IL7R and 
THRIL, which suppress several genes that serve as regula-
tors of the inflammatory response in immunity [12, 30]. Of 
further interest is NF-κB, a transcription factor that plays 
one of the most important roles in activating inflamma-
tory genes. Enhanced NF-kB signaling in macrophages 
is associated with excessive inflammations and higher 
rates of mortality post-MI. A recent study from Covarru-
bias et al. used CRISPR/Cas-based screening to identify 
macrophage-derived lncRNAs Cox2 and AK170409 as 
NF-kB regulators. Knocking down these lncRNAs result 
in a significant reduction of proinflammatory gene expres-
sion [26]. Reprograming macrophages with these ncRNAs 

Fig. 2   Immune cell-derived 
ncRNAs. miRNA (mir-) 
microRNA, Linc (linc-) long 
intergenic noncoding RNAs, 
DC dendritic cells, Treg regula-
tory T cells
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could provide a novel therapeutic approach toward fine-
tuning the transcription of numerous inflammatory genes 
following infarction.

Dendritic cells

DCs represent the other major cell type derived from mono-
cyte differentiation. They phagocytose pathogenic material 
and migrate to the lymph nodes, where they present antigens 
to CD4+ T-helper cells, a key step in establishing immu-
nological memory [10]. There is increasing evidence for a 
role for DCs during post-MI wound healing. Significantly 
reduced numbers of circulating DC precursors have been 
observed in patients with MI, presumably due to a correlated 
increase in DC recruitment into the infarct myocardium [97, 
214]. In humans, higher numbers of DCs were observed in 
the myocardium of a patient who died due to MI compared 
to that of a patient who died by car accident, suggesting that 
DC infiltration correlates with post-MI mortality rates [97].

DCs originate from the bone marrow, but unlike mac-
rophages, they do not have a dedicated phagocytic char-
acter, and their lifespan is short [10]. An accumulation of 
CD11c+ CD11b+ DC in the infarct was shown to peak at 
7 days after ligation in both mouse and rat models with per-
manent occlusion [10, 228] (Fig. 1). A tripartite subdivision 
of the human DC lineage cells in blood has been proposed: 
one plasmacytoid group (CD68 CD303+) and two myeloid 
group types (CD1C+ and CD141+) [228] (Table 1). As effi-
cient antigen-presenting cells (APC), DCs play an important 
role in linking innate and adaptive immune responses, and 
thus activate T-cell-induced immunity [37]. Recent studies 
have observed an association of DCs with increased num-
bers of macrophages and lymphocytes including T cells [97]. 
This indicates that DCs play a crucial role in the recruitment 
and activation of immune cells in the myocardium residing. 
Here, their numbers must be carefully balanced to mount 
an effective immune response without causing excessive 
further damage to cardiac tissue following MI. DCs affect 
macrophage polarization and lymphocyte differentiation, 
two functions that should be considered when contemplat-
ing approaches that target them therapeutically, particularly 
given their potential impact on the immune microenviron-
ment [69, 109].

ncRNAs derived from dendritic cells

miR-155 is one of the most abundant and crucial miRNAs 
in the hematopoietic system. It can regulate the expres-
sion of other DC miRNAs such as miR-455 and is involved 
in the activation of the cells [40]. In a manner similar to 
macrophages, the depletion of DC-derived miR-155 inhib-
its inflammatory responses because cells fail to produce 
CCL2. DCs highly express a number of lncRNAs that play 

important roles in DC differentiation and DC-mediated T 
cell activation [200]. Upon exposure to endotoxins, DCs 
release exosomes enriched in miRNAs into the spleen and 
initiate an inflammatory response [205]. Few studies have 
been devoted to the effects of DC-derived ncRNAs on post-
MI remodeling.

Lymphocytes

The lymphocyte family is comprised of T cells, B cells and 
natural killer cells which arise from a common lymphoid 
progenitor. Unlike immune cells derived from the myeloid 
lineage, T cells and B cells have a major influence on adap-
tive immunity, tailoring a unique immune response through 
cell-mediated and humoral (i.e., antibody-related) mecha-
nisms [210]. T cells can again be further categorized into 
CD4+ helper T cells, CD8+ cytotoxic T cells, and regulatory 
T cells (Treg). In contrast to observations for neutrophils and 
monocytes, the absence of lymphocytes is associated with 
worse outcome in MI patients [137]. Decreased CD4+ count 
strongly contributes to a drop in lymphocytes following MI.

A significant decrease in the CD4+–CD8+ ratio can be 
shown 24 h after MI and can be used to predict poor out-
comes in patient with MI [13]. The depletion of CD4+ T 
cells results is characterized by increased inflammation and 
fibrosis, suggesting they play a role in repairing wounds 
post-MI [70]. B lymphocytes interact with monocytes after 
MI and accelerate their infiltration and migration into the 
infarct, which injures the tissue [230]. Natural killer (NK) 
cells are another pivotal player in innate immunity that have 
been shown to be involved in post-MI healing. NK cells 
are generally downregulated following infarction; their sus-
tained presence results in reduced inflammation, however, 
suggesting a protective role in wound healing post-MI [7, 
84].

ncRNAs derived from lymphocytes

Many miRNAs are clustered with other miRNAs which are 
produced from a single primary transcript; interestingly, one 
third of human miRNAs are clustered. The most well-known 
miR-cluster, miR-17–92 cluster (miR-17, -18, -19, -20, -92) 
is expressed at high levels during B- and T cell development 
and promotes the survival of lymphocytes and has been asso-
ciated with autoimmune pathologies [210]. It has also been 
implicated in a wide range of cardiovascular pathologies 
including myocardial infarction, where miR-19 and other 
components are thought to stimulate cardiomyocyte pro-
liferation following the injury [60]. MiR-155, an abundant 
hematopoietic miRNA, is associated with T-cell differentia-
tion. It has beneficial effects on these cells, in contrast to its 
effects on macrophages and DCs, which indicates that the 
customization of miRNAs as therapeutic targets will require 
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taking into account cell-specific aspects of their functions. A 
deficiency in the production of miR-155 impairs the devel-
opment of Th17 and Treg cells, indicating that miR-155 is 
crucial for CD4+-mediated immune suppression alongside 
its roles in neutrophils and monocytes/macrophages [14, 
92]. Higher level of miR-155 in aged miR-146 KO mice has 
been associated with an accumulation of activated T cells 
[73]. In the same study, Ruozhen Hu et al. created mice with 
T-cell-specific miR-155 deficiencies (Cd4-cre Mir155fl/fl) to 
determine its role in these immune cells. They discovered 
that the expression of the miRNA was specifically required 
for the proper development of T-cell lineages in the spleen 
and lymph nodes [73]. miR-155-driven immune regulation 
might have a protective effect on the injured myocardium 
following tissue death by diversifying its immune cell reper-
toire [110]. Another cluster named miR-23a, which includes 
miR-27a, and miR-24, is highly expressed in B cells along-
side miR-34a to regulate their differentiation and maturation 
[94, 151]. miR-23a’s pro-hypertrophic role involves NAFTc3 
signaling in cardiomyocytes and has been linked to cardiac 
pathologies [108].

lncRNAs that appear to be specifically regulated in lym-
phocytes include Nest (Nettoie Salmonella pas Theilers’s) 
and Linc-MAF-4. Both are expressed in T cells and NK 
cells, and are important for Th1 lineage differentiation [192]. 
lincCcr2-5′ and Th2LCRR promote Th2 polarization [6, 68], 
whereas a Treg-specific lncRNA called Flicr disturbs cel-
lular activity and promotes autoimmunity by regulating the 
key transcription factor FoxP3 [216]. It is unclear whether 
the activities of these ncRNAs change in lymphocytes 
following cardiac injury, but the question is cleary worth 
pursuing.

Strategies for therapeutic interventions 
that target immune cells

Inhibiting inflammatory responses

Suppressing the recruitment of immune cells

Recruitment of neutrophils  Recent studies have established 
a positive correlation between the infiltration of neutrophils 
into damaged cardiac tissue and the severity of phenotypes 
seen in patients with MI [137, 227]. MI triggers an infil-
tration of these immune cells into the tissue [193]. Their 
recruitment is triggered by elevated levels of the chemokines 
macrophage inflammatory protein-2α (MIP-2α) and leukot-
riene B4 (LTB4) [91]. Increased numbers of neutrophils 
and their secretory molecules are strongly associated with 
adverse cardiac remodeling and the size of the infarct post-
MI, suggesting that the modulation of their infiltration might 
be a promising strategy to regulate inflammation [138, 157].

Limitations of neutrophil infiltration can be achieved 
through the administration of metoprolol, a β1-adrenergic-
receptor (ADRB1) antagonist, which is widely used in 
treating ischemic reperfusion (IR) damage. This effectively 
reduces the size of the infarct and protects against cardiac 
dysfunction [4, 136]. A recent study from García-Prieto et al. 
demonstrated that treatment with metoprolol did not change 
infarct size in a neutrophil-depleted model, indicating that 
the post-MI effects of the drug are dependent on these 
cells [53]. Treatment with the JAK3 inhibitor JANEX-1 
[4-(40-hydroxyphenyl)-amino-6,7-dimethoxyquiazoline], 
attenuated the migration and infiltration of neutrophils, and 
resulted in a decreased infarct size with improved post-MI 
cardiac function [139]. A specific inhibitor of Nicotinamide 
phosphoribosyltransferase (Nampt), FK866, has also been 
shown to impair CXCL2-induced neutrophil recruitment 
and neutrophil-mediated inflammatory responses, reducing 
infarct size after MI [127].

Macrophage recruitment/macrophage migration  Mac-
rophages are major effector cell types in the inflammatory 
response after ischemic insults. Several studies have estab-
lished a direct link between high numbers of macrophages 
in the infarct and adverse LV remodeling post-MI [86, 92, 
187]. This has led to methods to visualize inflammatory 
status along with cardiac remodeling by assessing mac-
rophage states based on their stimulators or the molecules 
they secrete [32]. Chemokine receptors including CCR2, 
CXCR6, and the macrophage migration inhibitory factor 
(MIF) contribute to the recruitment of macrophages into 
the ischemic myocardium, and levels of these molecules 
have been associated with adverse ventricular remodeling 
and cardiac dysfunction following infarction [19, 52, 87]. 
Accordingly, strategies to inhibit macrophage infiltra-
tion into the infarct myocardium have revealed successful 
results in an in vivo model after MI. CCR2 knock out mice 
showed significant decreases in inflammation along with 
better remodeling post-MI [87]. The deletion of MIF also 
results in reduced infarct size and cardiomyocyte apop-
tosis [19, 52]. Splenic monocytes also contribute to the 
infiltration of macrophages into the myocardium post-MI. 
Increased levels of circulating inflammatory monocytes in 
the blood and macrophages in the heart have been associ-
ated with a prolonged inflammatory response and adverse 
LV remodeling in Hmox1−/− mice. Conversely, splenecto-
mized Hmox1−/− mice exhibited improvements in cardiac 
function post-MI. This suggests that the modification of 
splenic monocytes might serve as a means of blocking the 
recruitment of macrophages [182]. These results suggest 
that interfering with macrophage recruitment through the 
regulation of chemokines or other means might be of inter-
est as a therapeutic strategy for MI. This would entail risks, 
however, since a depletion of macrophages unexpectedly 
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leads to cardiac dysfunction post-MI because they appar-
ently play a crucial role during cardiac remodeling.

Dendritic cell recruitment  Atherosclerosis, MI, and other 
cardiovascular diseases are accompanied by an increase in 
the infiltration of DCs into the injured myocardium; their 
influence appears to be exclusively beneficial [212]. Num-
bers of these cells are significantly reduced in the infarct 
area in patients with cardiac rupture post-MI, suggesting 
that DCs might help to inhibit ruptures [130]. These cells 
also balance proportions of M1 and M2 macrophages in 
the regulation of inflammatory responses. Low DC counts 
in patients with rupture are accompanied by a heightened 
pro-inflammatory phenotype and impaired fibrosis [130]. 
As APCs, DCs also play a crucial role in linking the innate 
and adaptive immune response [166]. Increased numbers 
of DCs correlate with MHC II expression and T-cell con-
tacts post-MI, suggesting that they help to regulate adap-
tive immune responses during wound healing post-MI [97]. 
Deeper insights into these diverse roles of DCs might be 
useful in promoting post-MI wound healing.

Despite these findings, clinical trials based on inhibit-
ing inflammatory cell infiltration in MI patient have so far 
failed to improve cardiac functions or reduce the size of 
infarcts. There are several possible explanations: (1) ani-
mal models might not sufficiently mimic patient physiology, 
(2) these methods might fail to prevent the assembly of the 
terminal complement complex in STEMI patients undergo-
ing Primary Percutaneous Coronary Intervention (PPCI), or 
(3) interactions with other organs or other complex aspects 
of the disease are not present in the studies [141]. These 
findings suggest that targeting the inflammatory response 
requires more than simply inhibiting the recruitment of spe-
cific types of immune cells.

Regulating the maturation of immune cells

Dendritic cell maturation  The maturation of DCs occurs 
in a step-wise manner involving (1) the uptake of an anti-
gen (Ag), (2) Ag presentation (APC), (3) migration and 
(4) interactions with T cells. Steady-state blood contains 
numerous immature DCs, called circulating dendritic cell 
precursors (DCPs) [10]. Immature DCs can take up antigens 
through phagocytosis or endocytosis, but they lack the abil-
ity to activate T cells. During pathological processes, patho-
gen- or damage-associated molecules (PAMPs or DAMPs) 
trigger an expression of chemokine receptors such as CCR1, 
CCR2 and CXCR1 on the surfaces of DCs. Interactions with 
their partner chemokines stimulate the TLR signaling path-
way, which causes DCs to mature from Ag-capturing cells 
to APCs which are capable of interacting with T cells [10]. 
This maturation is accompanied by changes in morphology 
and functions and cells’ phagocytic capacity disappears [10, 

170]. Under hypoxic conditions, mature DCs stimulate the 
inflammatory response and affect cardiomyocyte apoptosis 
[225].

Mature DCs can migrate into lymphoid tissue, where 
they become resident cells and present Ags to T cells 
[103]. CCR7 and CXCR4 play key roles in homing DCs 
to the regional lymph node [36, 150, 156]. There mature 
DCs activate T cells through orchestrated signals, includ-
ing increased Ag presenting molecules (MHC class I or II), 
costimulatory molecules (CD40, CD86) and adhesion mol-
ecules (CD11a,b, CD50, CD54) [10, 33, 170]. Mature DCs 
act as master regulators of T-cell auto-reactivity in the heart. 
Quantities of Th1 and Th17 cells increase in the presence of 
conventional DC (cDC1) post-MI, while Treg cells accumu-
late in the presence of a different dendritic subtype (cDC2) 
in the steady state [186]. cFos is an important regulator of 
DC maturation, which in turn regulates the activation of T 
cells. A c-Fos treatment group exhibited reduced infarct size, 
which might be due to a resaturation of DC maturation [41, 
218]. Recent work from Liu et al. has documented a pro-
cess by which exosomes released from mature DCs induce 
a proliferation of T helper cells (CD4+ T cells) in the infarct 
at days 5–7 post-MI, leading to improved cardiac function 
[109]. The regulation of mature DCs and their secretome 
is crucial for a balanced immune response, making them 
popular targets for therapy.

Resolution of inflammation

Clearance of apoptotic cells

Neutrophil apoptosis  The influence of neutrophils in MI has 
received little attention due to their low numbers and short 
life spans in ex vivo conditions (5–10 h for human and 4 h 
for mouse PMNs) [164]. A recent study by Pillay’s group, 
however, has demonstrated a prolonged lifespan for PMNs 
under in vivo conditions (5.4 days for human and 8–10 h 
for mouse neutrophils) [146]. The differences in these two 
experimental conditions suggest that inhibitory signals may 
prevent neutrophil apoptosis in vivo conditions. Following 
the clearance of pathogens, neutrophils undergo cell death 
through either necrosis or apoptosis. Neutrophilic apopto-
sis is a constitutive process that plays an important role in 
resolving inflammations [16]. Well-known proinflamma-
tory cytokines such as tumor necrosis factor (TNF)-α and 
interleukin (IL)-1β inhibit apoptosis, leading to prolonged 
survival of PMNs in MI [28]. Prolonged PMN lifespans led 
to adverse healing in a patient with chronic heart failure 
(CHF), involving an increase in endothelial damage [183]. 
Accordingly, inhibiting MMP-12 diminishes neutrophilic 
apoptosis, causing a similar progression with exaggerated 
inflammations in mice after infarction. This supports a 
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strong association between neutrophilic apoptosis and the 
effective post-MI wound healing [78].

Dying PMNs release “eat me” signals that lead to their 
engulfment by macrophages, initiating repair and healing 
processes post-MI [16]. Apoptotic PMNs secrete molecules 
such as lactoferrin and annexin A1 that further inhibit PMN 
infiltration and induce macrophage recruitment. The secre-
tion of lactoferrin by PMNs suppresses the release of NET 
and the recruitment of immune cells into the inflammatory 
sites, which mitigate secondary damage [105, 140]. Elevated 
levels of lactoferrin have been considered as a strong predic-
tor of higher risk for fatal ischemic heart disease in patients 
with diabetes [191]. It is still unclear whether an increase 
in lactoferrin release acts as a compensatory signal in bal-
ancing pro- and anti-inflammatory responses. Another mol-
ecule secreted by PMNs, Annexin A1, can regulate further 
inflammatory events by inhibiting the infiltration of leuko-
cytes and activating apoptosis in neutrophils. This factor 
simultaneously promotes the clearance of apoptotic cells by 
macrophages [169].

The degradation of apoptotic neutrophils by macrophages 
induces an anti-inflammatory response in which mac-
rophages polarize to the reparative phenotype (M2) and the 
resolution of inflammation accelerates [165]. While there are 
some benefits to a decrease in neutrophil infiltration, their 
depletion led to an unexpected worsening of cardiac function 
and an increase in fibrosis. Inflammation was exaggerated 
due to significantly decreased levels of phagocytotic markers 
[16, 71]. This indicates the importance of the engulfment of 
apoptotic neutrophils by macrophages, particularly in resolv-
ing post-MI inflammation. At the same time, this compli-
cates attempts to target the pathogenic functions of neutro-
phils, because of their beneficial roles in healing infarcts. A 
potential solution might be the administration of neutrophil 
gelatinase-associated lipocalin (NGAL), a component of 
the apoptotic neutrophil secretome which can restore mac-
rophage phagocytosis in neutrophil-depleted mice post-MI 
[120]. This suggests that the regulation of inflammation by 
managing or mimicking neutrophil apoptosis might be a use-
ful strategy in the treatment of MI patients.

Macrophage phagocytosis  Apoptotic and necrotic cells and 
debris are engulfed through phagocytosis, as a major func-
tion of macrophages during LV remodeling post-MI and a 
key mechanism for resolving inflammation. Mouton et  al. 
analyzed macrophage physiology over the duration of MI, 
determining that macrophages isolated from mice 3  days 
post-MI exhibited an enriched phagocytic and proliferative 
phenotype [129]. A depletion of MertK, a specific marker of 
phagocytosis, correlates with prolonged inflammations due 
to an insufficient clearance of apoptotic cells [196]. MMP-
9, the most efficient metalloproteinase during MI insults, 
decreases macrophage phagocytosis through the degrada-

tion of the cell surface antigen CD36. Neutrophils in the 
infarct have prolonged survival, causing a sustained inflam-
mation that increases LV dilation [35]. Thus, macrophage 
phagocytosis is required to resolve inflammation.

Recent studies have shown that the M2 phenotype of mac-
rophages is strongly correlated with the cells’ phagocytic 
ability. Mice in which M2 macrophages have been system-
atically depleted experience impairments in the clearance 
of inflammatory cells in the infarcted myocardium, asso-
ciated with poorer LV remodeling after MI, as well as a 
reduced ejection fraction (EF) and increase in the size of the 
infarction [104]. The uptake of dead cells or debris by mac-
rophages induces a release of anti-inflammatory cytokines 
such as IL-10 and TGF-β, which are M2 macrophage 
polarization markers. This is in contrast to a decrease in 
the expression of inflammatory markers such as TNF-α and 
IL-1β, suggesting that apoptosis contributes to resolving 
the inflammatory response. Overall, enhanced phagocy-
tosis results in improved cardiac function with decreased 
LV dilation post-MI [65]. The modulation of macrophage 
phagocytosis could, thus, be a promising therapeutic avenue 
for patients with MI [65].

Inflammatory cells polarization

Neutrophil polarization  PMNs contribute to the reparative 
phase and homeostasis at later post-MI time points. Unex-
pected results have emerged from experiments in which 
neutrophils have been depleted: in mice at day 7 post-MI, 
this led to an increase in LV dimensions with reduced ejec-
tion fraction (EF) and massive fibrosis [71].

Ma et al. were the first to report a possible polarization of 
neutrophils during post-MI LV remodeling. Similar to mac-
rophages, neutrophils exhibit one of the two distinct pheno-
types. The N1 phenotype associates with a pro-inflammatory 
response and predominates at an early time point, then polar-
izes over time towards the N2 phenotype, associated with a 
post-MI anti-inflammatory response [117].

After permanent occlusion in mice, neutrophils express 
pro-inflammatory cytokines (Tnf-α, Il-1β, Il-12a) or matrix 
proteinases (Mmp9, Mmp12). These features are charac-
teristic of N1 neutrophils and described as Ly6G+CD206−. 
During post-MI wound healing, N1 phenotypes are induced 
in neutrophils by the presence of DAMPs and initiate inflam-
mation, which leads to post-MI wall thinning. At 5–7 days 
post-MI, neutrophils express an increased number of anti-
inflammatory cytokines, suggesting a switch in their pheno-
type during post-MI healing. N2 neutrophils are activated as 
Ly6G+CD206+ and their numbers gradually increase, peak-
ing at day 7 post-MI. N2 neutrophils are locally activated, 
hinting at signals that cause a switch between the N1 and N2 
phenotypes. This plasticity of neutrophils can be exploited 
to develop new strategies to modulate inflammation [117], 
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but achieving this will require a more profound study of the 
exact role N2 neutrophils play in LV remodeling post-MI.

Modifying the  microenvironment/macrophage polariza‑
tion  Macrophages are versatile cells which present diverse 
phenotypes and functions depending on their microenvi-
ronments [22]. Following MI, cardiac macrophages in the 
infarcted area exhibit time-dependent changes in the state of 
their polarization, associated with both an early pro-inflam-
matory phase (M1 phenotype) and late reparative phase (M2 
phenotype), respectively [45, 55, 129, 212]. A timely reso-
lution of inflammation is crucial for optimal wound healing, 
which suggests that manipulating the M2/M1 ratio might 
be a strategy to prevent further damage after an infarct. 
Modifying the microenvironment has been a strategy used 
to exploit this plasticity and trigger a switch of phenotypes 
from M1 to M2. In recent work from our group, the admin-
istration of IL-10 triggered an increased polarization of M2 
macrophages and led to better LV remodeling, improved 
cardiac function and stable fibrosis post-MI [86].

Macrophage activation can also be modulated by spe-
cific transcription factors with beneficial effects on post-
MI LV remodeling. The progression of heart failure can 
be attenuated through a suppression of interferon regula-
tory factor 5 (IRF5), a crucial transcription factor in car-
diac macrophages, which is downregulated in M1 cardiac 
macrophages [25]. Wnt signals, which are involved in the 
differentiation of macrophages, are also induced in the cells 
by cardiac stress or injury. Inhibiting these signals polarizes 
macrophages to the M2 anti-inflammatory phenotype, lead-
ing to improved cardiac repair [145].

Above, we described the contributions of splenic mono-
cytes on macrophage infiltration into the infarct. Splenic 
leukocytes, and to a lesser extent macrophages, also play a 
role in resolving inflammation by producing and delivering 
specialized proresolving mediators (SPMs) into the infarcted 
LV [63]. SPMs are generally derived from lipid mediators, 
and changes in lipid signaling can alter immune kinetics in 
a way that leaves inflammations unresolved. Lipid metabolic 
enzymes such as COX and LOX have been shown to play a 
role in resolving inflammation and its relevant cardioprotec-
tive effect on post-MI cardiac healing [88]. The glycoprotein 
Semaphorin3A (Sema3A), which is secreted by circulating 
monocytes, can also influence macrophage polarization. 
Expression of Sema3A significantly increases during later 
time points following MI, and this is correlated with an up-
regulation in the expression of Cx3CR1, a marker for repara-
tive monocytes. Sema3A heterozygotes exhibit poor post-
MI progression, which strongly suggests the importance of 
immune resolution for proper post-MI wound healing [153]. 
Regulatory T cells (Tregs) are also involved in regulating 
monocyte/macrophage differentiation. Treatment with anti-
CD28 monoclonal antibody (CD28-SA) activates Tregs and 

promotes the differentiation of macrophages into the M2 
phenotype, with positive effects on post-MI LV remodeling 
[206].

A growing body of evidence suggests that macrophage 
activation is accompanied by a metabolic shift [100]. While 
LPS-induced M1 macrophages rely on glycolysis for ATP 
production, IL-4-induced M2 macrophages incorporate oxi-
dative phosphorylation for the efficient production of energy 
[27, 184]. A recent study by Van den Bossche et al. suggests 
that regulating mitochondrial functions could provide novel 
approaches to reprogramming macrophage polarity. Inhibit-
ing iNOS improved mitochondrial function and prompted 
the repolarization of macrophages from M1 to M2, poten-
tially an exciting approach toward regulating the cells’ phe-
notype and post-MI activity [185].

Modifications in the microenvironment of macrophages 
also contribute to fibrosis and tissue repair. Macrophages 
isolated from day 7 post-MI infarcts exhibit an increased 
expression of collagen I and periostin, indicating that mac-
rophages mediate a re-organization of the extracellular 
matrix (ECM), which is a major characteristic of fibrosis 
and tissue repair [129]. After an ischemic injury, mac-
rophages produce various growth factors including trans-
forming growth factor β1 (TGF-β1), insulin-like growth 
factor 1 (IGF-1) and vascular endothelial growth factor 
(VEGF), which activate the recruitment and proliferation 
of fibroblasts. During the proliferative phase of the wound 
healing process, fibroblasts differentiate into myofibroblasts, 
restoring the lost ECM [208]. A study from Shiraishi’s 
group showed that M2 macrophages are crucial for post-MI, 
fibroblast-mediated repair, supporting a scenario in which 
fibroblast activation preferentially occurs through one mac-
rophage phenotype [162]. This suggests that the modulation 
of macrophage polarization could simultaneously target pro-
cesses of both inflammation and fibrosis, two of the major 
factors in the progression of heart failure after MI.

Balancing homeostasis

Neutrophil extracellular traps (NETs) and neutrophil 
granule components

Neutrophil extracellular traps (NETs) are networks consist-
ing of DNA or extracellular fibers released from de-granu-
lated neutrophils that induce defense mechanisms against 
injury [194]. NETosis (i.e., the activation and release of 
NETs) is a recently described immune action of neutrophils 
that coordinates wound healing after injury [29]. The high 
expression of a NET marker (cell-free deoxyribonucleic 
acid) has been detected following MI, and this strongly cor-
relates with infarct size [3, 31]. Ge et al. demonstrated that 
NETs could be degraded by treatment with DNase, resulting 
in an improvement of post-MI cardiac function and pointing 
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to NETs as another novel potential target in treating MI 
patients [54]. Domingo-Gonzalez’s group showed for the 
first time that prostaglandin E2 (PGE2) serves as an inhibi-
tory signal for NETosis [38]. In a different study, treatment 
with PGE2 increased the ability of stem cells to regenerate 
cardiomyocytes, suggesting that PGE2 plays a positive role 
in post-MI cardiac repair [72]. If this protection is conferred 
through an inhibition of NETosis inhibition, NETs would 
appear to be an attractive target with the aim of improving 
cardiac repair.

During NETosis, neutrophils can de-granulate, which 
releases antimicrobial cytotoxins or proteinases that can 
regulate the inflammatory response. PMN granules are 
classified into four main types: (1) azurophilic; (myelop-
eroxidase (MPO), serine proteases, azurocidin, lysozyme), 
(2) specific; [lactoferrin, neutrophil gelatinase-associated 
lipocalin (NGAL, lipocalin-2)], (3) gelatinase; (matrix met-
alloproteinases), and (4) secretory; (complement receptor 
1, CD13 CD14, CD16) [71]. MPO activity peaks with the 
accumulation of neutrophils and inflammatory monocytes, 
and is correlated with an adverse inflammatory response, 
which has led to the assessment of MPO activity as a means 
of imaging post-MI cardiac inflammation [32, 125, 131]. 
The effects of these proteins on post-MI healing are still 
being clarified. Some evidence suggests that the neutro-
phil granule proteins lactoferrin and pentraxin 3 (PTX3) 
improve cardiac function and infarct size after MI [23, 105, 
140, 161]. Contrary to this finding, high levels of MPO in 
the plasma are correlated with increased mortality after MI, 
which means that inhibiting the post-MI accumulation of 
MPO accumulation could improve LV remodeling [2, 125].

The seemingly contradictory results seen for NETs and 
their granule proteins might be explained by a ‘double-edged 
sword’ theory by which they not only kill pathogens to the 
body’s benefit, but also detrimentally sustain the digestion 
of tissues. A sustained exposure to granule proteins and their 
oxidation products is ultimately cytotoxic and leads to long-
term adverse post-MI LV remodeling [189]. The conclusion 
is that NETs and secreted proteins are neither exclusively 
pro- nor anti-inflammatory mediators, but that their timely 
resolution is surely crucial for resolving inflammation and 
inhibiting further damage [61]. Thus, NETosis and neutro-
phil degranulation need to be carefully regulated if post-MI 
wound healing is to proceed in a balanced way.

Proliferation and apoptosis of resident macrophages

Macrophages both induce inflammation and maintain home-
ostasis. These immune cells reside in the heart and account 
for about 5–10% of non-myocyte cells during steady state 
[66]. Following an ischemic injury, these numbers inflate 
due to an influx of macrophages from the circulatory sys-
tem. For this reason, studies of macrophages in this context 

have mostly focused on their morphological and functional 
changes upon infiltrating damaged tissue. The roles and 
origins of resident cardiac macrophages have received less 
attention.

Tissue resident macrophages mostly develop embryoni-
cally, either from yolk sac (YS) or fetal liver haematopoietic 
stem cells (HSC) [57]. Once having taken up residence in the 
tissue, their turnover is tissue specific and tightly depends 
on the particular organ system [163]. In the heart, tissue 
macrophages renew mostly from local sources. Following 
their depletion in a mouse model, resident macrophages 
undergo an increased rate of local proliferation, based on 
depletion of the cells and staining for the cell cycle marker 
Ki67. This indicates a highly regenerative phenotype [44, 
66]. But a study from Molawi et al. has suggested that newly 
recruited macrophages play a role in the turnover of resident 
cells, whose rate of self-proliferation gradually decreases 
with aging. They are replenished by monocyte derived 
macrophages, in contrast to previous reports saying that the 
regulation of resident macrophages is independent of those 
that circulate [44, 126]. A recent study by Bajpai et al. has 
characterized distinctive subsets of macrophage in the heart: 
CCR2− tissue-resident macrophages and CCR2+ monocyte-
derived macrophages. CCR2− macrophages are maintained 
through self-proliferation, while CCR2+ indicates mac-
rophages replenished by the recruitment of monocytes [9]. 
This heterogeneity may be explained by complex processes 
of modulation affecting the macrophage population in the 
tissue.

Cardiac-resident macrophages have functions distinct 
from the recruited macrophages [44]. These functions have 
recently attracted attention due to new findings on inter-
actions between the immune cells, cardiomyocytes and 
endothelial cells [51]. A recent study from Nahrendorf et al. 
revealed that resident cardiac macrophages play an impor-
tant role in maintaining the steady state in healthy mice. His 
group discovered that AV nodal macrophages are directly 
attached to cardiomyocytes via connexin-43 and contribute 
to steady-state electrical conduction in the heart [75]. How 
these functions change after cardiac injuries like MI requires 
further study, but these findings introduce the novel concept 
that interactions between macrophages and cardiomyocytes 
might influence on electrical conduction of the heart after 
MI.

Tissue-resident macrophages have been previously con-
sidered as M0 state; however, an interesting study from 
Pinto et al. has shown that in the heart, these macrophages 
are more likely oriented toward a M2 phenotype, as seen 
in the expression of characteristic marker genes such as 
CD163 and Mrc1. A loss of the M2 phenotype in resi-
dent macrophages is associated with exaggerated cardiac 
inflammation [148]. Maintaining cardiac homeostasis 
might require establishing an anti-inflammatory phenotype 
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for resident macrophages. How this concept could func-
tionally affect macrophages recruited after injuries such as 
MI has yet to be explored.

Over the years, several studies have indicated that 
macrophages might undergo apoptosis after injury. 
Within 12 h after MI, significant increases in counts of 
TUNEL+MAC3+ cells have been shown in the infarcted 
heart [66]. An in vivo study from Timo’s group observed 
a complete disappearance of resident macrophages in the 
infarct within 1 day post-MI. An infiltration of circulat-
ing monocytes into the infarct led to a recuperation of 
macrophage numbers within 4 days post-MI [66]. In any 
case, macrophage turnover clearly plays an important 
role during inflammatory responses to MI. A recent study 
by Ishikawa aimed to improve infarct healing through 
a novel approach targeting apoptosis inhibitor of mac-
rophage (AIM). This factor plays a role in the accumula-
tion of macrophages in the injured area. An AIM depletion 
model exhibited reduced cardiac rupture with decreased 
inflammatory macrophages, suggesting that resident mac-
rophages must undergo apoptosis to improve outcomes in 
cardiac healing [77]. Similar effects were seen in experi-
ments depleting MafB, a transcription factor which has 
shown to be involved in myelomonocytic differentiation 
and AIM expression. Its loss had an inhibitory effect on 
atherogenesis by reducing AIM [64].

Adaptive immunity and immune suppression

Tolerogenic DCs (tDCs)

DC maturation can be divided into three phenotypes: imma-
ture, intermediated (semi-mature) and fully mature [109]. 
An increasingly popular type of immune therapy involves 
establishing DC tolerance mechanisms in an approach called 
tolerogenic therapy; it is being applied to a number of dis-
ease models including rheumatoid arthritis (RA) and scle-
rosis [119, 167]. While fully mature DCs are immunogenic, 
activating T-cell immunity, semi-mature DCs (tDCs) are 
tolerogenic, maintaining tolerance of T cells [101, 115, 178]. 
tDCs significantly upregulate their production of the well-
known immune suppressor IL-10. This increases numbers of 
Tregs and suppresses immune responses [128, 195]. Treat-
ment with tDCs induces macrophages to acquire a reparative 
phenotype by increasing the population of Tregs, preserv-
ing post-MI systolic LV functions and improving survival 
[24]. Zhu et al. showed that stimulating DCs with IL-37 and 
Troponin I can foster a tolerogenic phenotype. Such induced 
tDCs play a protective role in post-MI cardiac remodeling 
by suppressing Th1- or Th17-mediated inflammation [226]. 
These results suggest that tDC treatment might improve the 
immune environment as a novel therapeutic strategy for MI.

T‑cell activation

T lymphocytes act as important regulators of adaptive immu-
nity by inducing cell-mediated immune responses [158]. 
Activated T cells have been detected in both the infarct and 
remote areas of the heart tissue in patients with MI [1]. All 
types of T cells gradually infiltrate into the infarct in mice 
with permanent occlusion, with numbers peaking at 7 days 
post-MI [212]. The types can generally be distinguished 
with two categories: T helper (Th) cells and cytotoxic T 
(Tc) cells, on the basis of glycoproteins presented on the cell 
surface. Mature Th cells express CD4 on their surfaces and 
are referred to as a “helper CD4+ T cells”, while mature cells 
expressing CD8+ are known as “cytotoxic CD8+ T cells” 
[95]. CD4+ T cells are required for an immune response 
through their facilitation of the production of antibodies 
from B cells. They are involved in the regulation of inflam-
matory responses induced by macrophages and the recruit-
ment of other immune cells to the injured sites. They also 
assist in CD8+ T-cell activation [81, 223]. Although their 
numbers are estimated to peak at < 1% of the total popula-
tion of cardiac cells, CD4+ T-cell recruitment is significantly 
increased overall following an Ischemic insult, as deter-
mined by the enlargement of heart draining lymph nodes 
and an elevation in the total number of cells they contain in 
a permanently occluded mice model [69]. Cytotoxic CD8+ 
T cells, on the other hand, have the capacity to kill dam-
aged or cancerous cells. Interestingly, the CD4/CD8 ratio 
has been found to be lower in patients with acute MI [173]. 
This trend is even more pronounced in MI patients who also 
suffer from HIV infections or Type 1 diabetes, in whom this 
significantly decreased CD4/CD8 ratio is associated with a 
higher post-MI mortality rate [8, 174].

CD4+ T‑cell differentiation

CD4+ T cells can likewise be differentiated into distinct 
subtypes which play specific roles during the inflamma-
tory response: Th1 (CD3+CD4+IFN-γ+), Th2 (CD3+CD4+ 
IL-4+), Th17 (CD3+CD4+IL-17A+) and regulatory T cells 
(Treg; CD4+CD25+Foxp3+) [224] (Table 1). The quantities 
of all types of T cells and B cells increase in the infarcted 
myocardium after MI, although levels of Th17 and Treg 
remain relatively low [188] (Fig. 1). Significantly higher 
Th1/Th2 and Th17/Treg ratios have been shown in particu-
lar patients with heart failure (CHF), compared to a healthy 
control. This change is associated with a heightened myo-
cardial inflammation and indicates a strong relationship 
between the CD4+ T-cell-mediated immune response and 
cardiac function [17, 21].

Th1 cells mediate cellular immune responses and induce 
a pro-inflammatory reaction by producing TNF-α and IFN-
γ. A complementary inhibition of Th1 activation improves 
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post-MI LV wound healing [213]. Th2 cells mediate the 
humoral immune response (also referred to as the antibody-
mediated response) and induce an anti-inflammatory reac-
tion that is facilitated by a secretion of IL-4 and IL-13. High 
numbers of Th2 cells are associated with a lower risk of get-
ting MI by preventing cell apoptosis [43]. Th17 cells medi-
ate a strong pro-inflammatory response through the produc-
tion of IL-17 through means resembling the activity of Th1 
cells. The sustained production of IL-17 by Th17 increases 
inflammations, which suggests that Th17 has detrimental 
effects during post-MI cardiac repair [168]. Tregs are a sub-
set of suppressor T cells expressing CD25 and Foxp3 and are 
important in balancing the immune response by regulating 
inflammation; they also provide tolerance to self Ags [224]. 
A depletion of Treg cells leads to an increase in LV dilation 
and a high rupture rate, and is associated with an accelera-
tion of the post-MI infiltration of inflammatory cells [69]. 
Overall, methods that maintain better ratios between popula-
tions of Th1 × Th17 and Th2 × Tregs might offer potential 
therapeutic approaches to improve post-MI healing.

Treg‑mediated immune suppression

Following MI, CD4+CD25+Foxp3+ Treg significantly accu-
mulate in the region of the infarct, but their immunosuppres-
sive functions are impaired [160]. Despite this, exogenous 
post-MI Treg treatment results in a reduction of infarct size 
and improved cardiac function, indicating that the transfer 
of Treg cells could be a novel therapeutic approach [160]. 
There is mounting evidence that Tregs play a crucial role 
in inflammatory resolution during post-MI remodeling. A 
study from Weirather’s group showed that a treatment with 
Tregs improved post-MI LV remodeling by regulating the 
phenotype of macrophages and enhanced the resolution 
of inflammation, further indicating a therapeutic potential 
of Tregs in the MI setting [206]. The beneficial effects of 
CD4+Foxp3+Tregs do not apply, however, to post-ischemia 
reperfusion (IR) injury. The injury is enhanced because dur-
ing reperfusion, CD4+Foxp3+ T cells are immediately acti-
vated by either T-cell receptor (TCR)-independent signaling 
or preceding auto-antigen recognition. Although this process 
eventually leads to classical resolution of the inflammation 
by Foxp3+ Tregs, this means that care must be taken in clini-
cal approaches based on mediating the activation of injuri-
ous T-cell subsets [121].

B cells

B lymphocytes mediate the humoral immune response by 
producing antibodies. The maturation of B cells occurs 
in the bone marrow, whereas activation occurs via B-cell 
receptors (BCRs) in secondary lymphoid organs. An 
important role in CD3−CD19+ cell activation is played by 

interactions between surface receptors (CD21) and surface 
proteins (CD19 and CD81). In mice, B cells accumulate 
in the infarct after permanent coronary ligation and their 
numbers peak 5–7 days post-MI [212, 230]. Following MI, 
mature B cells selectively release CCL7, whose abundance 
in the circulation is strongly correlated with high post-MI 
mortality rates. B-cell-induced CCL7 production contributes 
to impaired cardiac function by elevating monocyte recruit-
ment into the infarct. Accordingly, B-cell depletion reduces 
the inflammatory response, emphasizing the need for a bet-
ter understanding of the effects of B-cell suppression on MI 
healing [230].

Summary: non‑coding RNAs and immune 
regulation

Mounting evidence regarding the many diverse ways non-
coding RNAs (ncRNAs) serve as master regulators of gene 
expression in diverse situations involving immunity and 
wound healing have brought these molecules to attention as 
potential targets for therapies. Studies have shown that ncR-
NAs are expressed in a highly lineage-specific manner and 
regulate the differentiation and function of innate and adap-
tive immune cells—both of which are crucial in attempts 
to develop therapies that target pathological processes with 
high specificity in the environment of post-MI cardiac tis-
sues. A global disruption of immune cell types would almost 
invariably have negative consequences on patient health, 
particularly in the context of a dynamic tissue in which the 
roles of inflammatory and adaptive immune cells change 
over time.

A recent study from Halade et al. showed that miRNAs 
play a role in regulating gene expression related to leukocyte 
kinetics following MI. This suggests that modulating the MI-
coordinated miRs could provide hints towards the regulation 
of post-MI inflammatory responses [62]. Wang et al. have 
reported a cardio-protective role for miR-146a. Its transfec-
tion inhibited the activation of NF-kB and diminished the 
infiltration of neutrophils into the heart following myocardial 
I/R, leading to reduced infarct size and improved cardiac 
function following MI [201]. Lowering the expression of 
another miRNA, miR-223, was associated with an increase 
in neutrophil infiltration and myocardial dysfunction in a 
sepsis patient via activation of STAT3/IL6 and Sema3, indi-
cating that the presence of the miR-223 prevents this influx 
and lowers inflammation [202]. miR-21 and -150 also help 
prevent adverse MI remodeling through their effects on leu-
kocyte numbers and subsequent vascular inflammation [11, 
18, 113]. Deficiency of miR-21 in macrophages promotes 
apoptosis-related signaling pathways, including the MKK3/
p38 and JNK pathways, leading to apoptosis and vascular 
inflammation during atherogenesis [18]. miR-150 negatively 
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regulates expression of the chemokine receptor 4 (CXCR4) 
which in turn induces monocyte migration, thereby decreas-
ing infiltration of inflammatory monocytes and improving 
cardiac function, as shown in miR-150 overexpressing mice 
[113]. A significantly reduced expression of miR-144 is 
associated with improper cardiac remodeling, while restor-
ing endogenous levels of myocardial expression of miR-144 
through intravenous injections improves post-MI cardiac 
function. Additional mechanistic studies have demonstrated 
that miR-144 inhibits inflammatory and auto-phagocytic 
signaling pathways, indicating that miR-144 might have its 
beneficial effects by lowering the infiltration of macrophages 
and improving autophagy [106].

MiR-155 expression is significantly and primarily upreg-
ulated in macrophages, in the post-MI myocardium; inter-
estingly, levels differ between M1 and M2 macrophages. Its 
depletion promotes M2 polarization and improves cardiac 
function following viral myocarditis [219]. This suggests 
that miRNA-155 might serve as a prognostic marker for car-
diac death in post-MI patients [123]. miR-155 is also found 
in exosomes released by macrophages and this has effects on 
fibroblasts, which in turn trigger a dysregulation of fibrosis 
[197]. miR-155 is mainly involved in B- and T-cell recep-
tor signaling, neurotrophin signaling, MAPK signaling, and 
the cell cycle. Especially in regard to the cell-cycle signal-
ing pathway, Sos1 expression is increased in the absence 
of miR-155, and is associated with fibroblast proliferation 
post-MI [197]. Also, angiotensin II-induced expression of 
the angiotensin II type 1 receptor (AT1R) and extracellular 
signal-related kinase 1/2 (ERK1/2) are downregulated by 
miR-155 [123]. Overall, the inhibition of miR-155 activity 
seems to have therapeutic potential in seeking to minimize 
post-MI cardiac injury [197].

Circulating miR-133 and miR-33 directly promotes mac-
rophage polarization and has further effects on lipid metabo-
lism, as seen in the myocardial steatosis that develops in type 
2 diabetes patients [34, 143]. miR-33 expression levels have 
been used as diagnostic marker for diabetic cardiomyopa-
thy [34]. miR-33 mediates anti-inflammatory macrophage 
polarization by targeting the energy sensor AMP-activated 
protein kinase (AMPK) pathway [143]. Two further miR-
NAs, miR-150 and miR-181a, play roles in regulating both 
DC differentiation and vascular inflammation. Necrotic car-
diomyocyte-stimulated DC maturation requires the JAK1-
STAT1/c-Fos pathway, concomitant with decreased miR-
150 and increased miR-181a levels. Modification of these 
miRNAs, either through the overexpression of miR-150 or 
through the inhibition of miR-181a, respectively, downregu-
lates DC maturation and leads to a reduction in the apop-
tosis of cardiomyocytes, indicating a potential therapeutic 
approach to preserve cardiomyocytes after a cardiac injury 
such as MI [225].

Various lncRNAs have also been implicated in immune 
regulation (Table 2). Vausort et al. showed a strong con-
nection between the inflammatory response and lncRNAs 
including hypoxia inducible factor 1A antisense RNA 2 
(aHIF), cyclin-dependent kinase inhibitor 2B antisense RNA 
1 (ANRIL), MI-associated transcript (MIAT) and metasta-
sis-associated lung adenocarcinoma transcript 1 (MALAT1). 
Their expression was closely associated with blood cell 
count as well as the abundance of neutrophils and lympho-
cytes. Cardiovascular risk factors such as aging or diabetes 
boost their levels even higher. So far, a direct connection to 
post-MI cardiac dysfunction has only been established for 
ANRIL [190]. Levels of the myocardial infarction-associated 
transcript-1(Mirt1) and Mirt2 are elevated in MI and peak 
at 24 h post-MI, strongly suggesting another case of ncR-
NAs linked to inflammatory regulation [215]. LPS-induced 
Mirt2 regulates inflammatory cytokine production through 
the polarization of macrophages towards a M2 phenotype 
via suppression of NF-κB and MAPK pathways [39]. Mirt2 
overexpression protects against endotoxemia-induced mor-
tality and organ dysfunction [39]. Furthermore, both Mirt1 
and Mirt2 target cardiac remodeling genes such as mmp-9, 
Icam1 and tgfb1 during post-MI wound healing [215]. The 
upregulation of both lncRNAs have been negatively corre-
lated with post-MI cardiac remodeling, accompanied by the 
smaller size of infarcts and better ejection fractions, indicat-
ing that elevations in Mirt1 and Mirt2 expression balance 
the inflammatory response and preserve cardiac function 
post-MI [215].

The inflammatory response post-MI can result in sys-
temic atherosclerosis with elevated numbers of macrophage-
derived foam cells accompanied by enhanced lipid metabo-
lism [85]. LncRNA E330013P06 is expressed at high levels 
in foam cells, a phenomenon associated with exaggerated 
cardiac inflammation. Sustained E330013P06 levels are 
correlated with elevated levels of pro-inflammatory genes 
and pro-atherogenic genes, which contribute to foam cell 
formation. Inhibiting the expression of E330013P06 in mac-
rophages reduces the production of both foam cells and the 
expression of inflammatory genes in diabetes patients [152]. 
There are still crucial questions regarding the E330013P06 
underlying molecular mechanism that controls the cardiac 
inflammatory response, which merits further studies. A fur-
ther pro-inflammatory lncRNA, LINC00305, is also highly 
expressed in monocytes derived from patients with athero-
sclerosis and is associated with an exaggerated inflammatory 
response [217]. LINC00305 promotes an interaction between 
the membrane protein lipocalin-interacting membrane recep-
tor (LIMR) and the inflammatory gene aryl hydrocarbon 
receptor repressor (AHRR) via activation of the NF-kap-
paB pathway in human monocytes, further contributing to 
the development of atherosclerosis [217]. These findings 
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suggest that LINC00305 could be a novel target for an anti-
inflammatory therapy. LncRNAs can also regulate autoim-
munity, as the expression of lncRNA-A930015D03Rik and 
-1055 is strongly correlated with IL12Rβ1, one of the essen-
tial molecular markers in Th1 response pathway. Knocking 
down lncRNA-A930015D03Rik and -1055 to modulate the 
Th1-mediated immune response and cardiac inflammation 
is an interesting line of future therapeutic strategies [56].

A function in the context of immunity has not been 
described for most ncRNAs, although dramatic changes in 
ncRNA expression have been clearly shown during the acti-
vation of immune cells. This further strengthens the argu-
ment that ncRNAs can act as immune regulators and should 
therefore not be considered mere transcriptional ‘noise’. Fur-
ther investigations into ncRNAs and their potential immune 
functions will undoubtedly yield insights into the mecha-
nisms that balance the inflammatory response, which could 
ultimately lead to improved treatments for cardiovascular 
diseases and other pathologies.

Non‑coding RNA based therapeutics

An increasing number and range of functions are being 
found for ncRNAs in processes related to the dynamic devel-
opment, function and activation of cells, all of which are 
relevant to pathologies. This has given rise to the concept 
of manipulating disease-related signaling pathways by tar-
geting cell-specific ncRNAs in developing new approaches 
to therapies. The main aim of such ncRNA-based therapies 
has generally been to alter abnormal levels of expression of 
ncRNAs by restoring them to the basal level. In the investi-
gation of ncRNA functions, antagonists and ncRNA mimics 
are being effectively used; most therapeutic efforts are based 
on these strategies as well. [154]. Antisense technologies 
which sequester or degrade mature ncRNAs are currently 
the most efficient approaches in silencing ncRNA activity.

miRNAs seem to be particularly targetable through the 
delivery of reverse complimentary anti-miRNA oligonu-
cleotides, which function by either sequestering the tar-
get molecule or by triggering their degradation by cellular 
RNA interference mechanisms. Antagonists usually need to 
be modified to enhance their stability and improve binding 

Table 2   Non-coding RNAs as a biomarker and therapeutic approaches in myocardial infarction

LncRNA (lnc-) long non coding RNA, miRNA (mir-) microRNA, PBMC peripheral blood mononuclear cells, DC dendritic cells

Therapeutic approaches Non-coding RNA RNA name Functions Major cell source Post-MI level

Inhibition of inflammation miRNA miR-144 ↓Pro-inflammatory response N/A ↓
miR-146a ↓Infiltration of neutrophils, 

infarct size
Cardiomyocytes ↑

miR-150, -181a ↓DCs maturation, cardio-
myocyte apoptosis

Dendritic cells ↑

miR-223 ↑Neutrophil infiltration, 
inflammation

Cardiac muscles ↓

Let-7i-5p ↓Inflammatory cytokine 
production, fibrosis

Fibroblasts ↑

lncRNA ANRIL Increase blood cell count, 
associated with cardiac 
dysfunction

PBMCs ↑

LINC00305 Accelerated monocyte-
mediated inflammation

PBMCs ↑

LncRNA-1055, 
-A930015D03Rik

↑Th1 mediated immune 
response, ↑cardiac inflam-
mation

N/A N/A

Resolution of inflammation miRNA miR-133 Pro-inflammatory mac-
rophage polarization, lipid 
metabolism

Macrophages ↑

miR-155 Macrophage polarization, 
↑fibroblast proliferation

↑Treg proliferation

Macrophages ↑

lncRNA Mirt1, -2 Macrophage polarization, 
↑cardiac function

Fibroblasts ↑

Modulation adoptive 
immunity

lncRNA LncRNA-E330013P06 ↑Foam cell production, 
↑atherosclerosis

Macrophage ↑
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efficiency, through chemical modifications such as the addi-
tion of 2-O-methyl groups, or methylene linkers that ‘lock’ 
the oligonucleotides in a more robust conformation (LNA) 
[179]. Additionally, cholesterol-conjugated antagomirs 
might be useful tools, as demonstrated by Krutzfeldt et al. 
who achieved a cardiac tissue-specific miRNA knockdown 
by injecting the compounds into mice [98]. The LNA-based 
approach is currently being tested in an anti-miRNA therapy 
in stage IIa of clinical trials, using an inhibitor designed to 
target miR-122 in cases of chronic Hepatitis C infection. 
This study represents a good example how to translate a 
miRNA-focused therapy in the clinic, and it suggests that 
targeting immune cell-derived miRNAs in the heart is a 
practicable strategy.

Another concept that has emerged in altering miRNA 
expression involves “sponges”, which do not actively trigger 
their degradation but rather serve as baits that prevent their 
binding to target mRNAs. Such sponges may be constructed 
to target multiple miRNAs and have longer lifespans than 
miRNA inhibitors. Wang’s group has designed a ‘Multi-
ple Target AMO Technology (MT-AMO)’, in the form of a 
single-stranded, methyl-modified oligonucleotide sequence 
capable of binding multiple miRNAs within a single family 
of seeds or even multiple families [203]. This could be use-
ful in treating human pathologies, including cardiovascular 
diseases, in which several miRNAs are deregulated.

The novel CRISPR/cas9 system has also been used to 
knock-down expression of ncRNAs [20, 26]. Chang et al. 
demonstrated that the CRISPR approach not only reduces 
the off-target seen with miR inhibitors or mimics, but also 
has a knock-down effect on miRNAs that is sustained much 
longer in both in vitro and in vivo models [20]. Synthetic 
ncRNAs and individual ncRNAs transduced using viruses 
are the most common method of restoring levels of down-
regulated ncRNAs [194], but the results are not always 
reproducible or very potent, making efforts to re-constitute 
miRNA levels lag behind those aimed at depleting them.

Our review shows that levels of expression of an increas-
ing number of ncRNAs are now known to change follow-
ing MI [190]. Recent work has deepened our understand-
ing of the way the immune regulation of non-coding RNAs 
influence post-MI cardiac functions, particularly where the 
inflammatory response is concerned. The findings open ncR-
NAs to new approaches for clinical translation in efforts to 
achieve optimal post-MI wound healing.

Conclusion and future direction

Dynamic immune responses regulate key events during 
post-MI cardiac repair. Distinct types of immune cells act 
in precisely timed ways and take on diverse roles in pre-
serving cardiac function after MI. Improper or imbalanced 

immune responses have adverse effects on LV remodeling 
and enhance the progression to heart failure. Understand-
ing these cell fates and functions and the diverse factors 
related to immune action will be required to help develop 
an improved microenvironment that encourages repair. A 
number of approaches to regulate the immune response fol-
lowing MI damage are under development. The first step in 
moving these concepts into clinical practice is to understand 
how ncRNAs regulate the functions of the immune cell rep-
ertoire in achieving a balanced inflammatory response in the 
context of the post-MI heart. Given that key molecules are 
expressed in different cell types, often with contradictory 
functions at different time points, applications will require 
a very profound understanding of the cell-specific functions 
of ncRNAs and the way they change over time.

Data are particularly needed on the way the origin and 
spatiotemporal distribution of these immune cells function 
in the broader context of immunity, which has not been doc-
umented here. To date, most experimental models have been 
limited because they are based on models where age, gen-
der and genetic background are highly standardized. This is 
never sufficient in characterizing the progression of diseases 
that affect patients who are mostly older and have co-mor-
bidities [141]. What will be needed is a “higher resolution” 
view of the kinetics of immune cells over time in different 
strains of animals, particularly during dynamic inflammatory 
states in areas of the heart and body beyond those directly 
affected by an infarction. While much has been learned 
about the dynamics of immune cells that closely associated 
with cardiac dysfunction in the ischemic myocardium, much 
less is known about inflammatory changes in remote post-
MI myocardium. There is evidence that remote myocardium 
dysfunction indirectly or directly contributes to functional 
and morphological changes in the infarct region [15]. To 
thoroughly understand the systemic immune response fol-
lowing MI, further studies will be needed that focus not only 
on ischemic lesions, but also on non-ischemic lesions; they 
will need to be carried out in a wider range of experimental 
models with some connection to cardiovascular physiology. 
Another issue will be to characterize the crosstalk between 
immune cells, other cardiac cells and those in other tissues. 
There is every sign that addressing these gaps in our knowl-
edge will identify fruitful new avenues toward diagnosing, 
treating and preventing MI, as a means of improving the 
lives of the growing number of patients suffering from this 
dreaded disease.
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