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Measuring nanoparticles in the size range to 2000 nm
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Abstract Measurement of light scattered from suspen-
sions of monodisperse nanoparticles in solution
(Bturbidity^) long has been used to derive their size.
Following some means of fractionation, the light
(monochromatic) scattered by the particles into a set of
distinct angles is collected and a non-linear least squares
fit was made to an appropriate theory in order to extract
their size. For a wide range of particle structures, where
this process becomes very complex and of questionable
validity, there is a far simpler interpretive means based
upon measurements at extremely small, and often inac-
cessible, scattering angles. A method is described
whereby the required small angle values are derived
from measurements made over a range of larger, more
readily accessible, angles. Although the basis for the
analyses developed is the Rayleigh-Gans approxima-
tion, the results presented confirm that the method pro-
vides meaningful results up to a size of about 2000 nm.
The larger sizes are well beyond the RG limits.

Keywords Rods . Spheres . Gold . Aggregates . Carbon
nanotubes . Particle suspensions

Introduction

The measurement of light scattered from a suspension of
particles (often referred to as a turbidity measurement) has
been used historically (Koch 1961) as a means to deter-
mine their average size. In a practical sense, the incident
light is monochromatic and well collimated, such as it
might be produced by a laser. For specific size determi-
nations, the particles must be monodisperse (in size and
structure) and the scattered light intensities were collected
over a range of angles with respect to the direction of the
incident illumination. However, even for a monodisperse
solution of particles, the determination of their size and a
measure of their structural features require additional in-
formation. A particle Bmodel^ is generally required, i.e.,
what are the known structural properties of the particles
being measured? Are the particle homogeneous spheres?
Are they rods? Ellipsoids? Radially symmetric spheres?
Other structures? Conceptually, it would be ideal if the
particle size and structure could be determined from the
collected scattered intensities alone. (Traditionally,
scattered light intensities are collected at an explicit set
of angles and, relative to the direction and polarization of
the incident monochromatic beam, polarizations. Associ-
ated with each intensity value collected is its experimental
standard deviation.) Deriving the particle structural prop-
erties associated with these measurements is generally
referred to as solving the Binverse scattering problem,^ a
subject of continuing study.
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The Lorenz-Mie theory and the Rayleigh-Gans
approximation

From a practical point of view, the structure of the
scattering particles is known a priori so that the collected
data might be used to extract the Bbest fit^ structural
parameters. For example, if the particles are known to be
homogeneous spheres in a medium of refractive index
n0, one could use such a best fit to the Lorenz-Mie (LM)
scattering theory (Lorenz 1890, 1898; Logan 1965; Mie
1908) to extract a best-estimate of the radius a and the
refractive index of the sphere, n. This exact theoretical
model has been extended to a broad variety of spherical-
ly symmetric structures (Aden and Kerker 1951; Kerker
1988; Wyatt 1962). For more complex structures such as
ellipsoids of revolution, a far more complex scattering
theory must be employed that includes the orientation of
the ellipsoid’s axes with respect to the incident beam
direction. From an ensemble of identical ellipsoids, a
best fit would have to be extracted from a model that
includes averaging over all possible orientations. Even a
simple homogeneous sphere of refractive index n1 and
radius a with a homogeneous coating of refractive index
n2 and thickness t will require a complex set of compu-
tations (Aden and Kerker 1951) to extract the parameters
n1, n2, a, and t that correspond to a best fit to the data.

The scientific literature is filled with myriad articles
(Kerker 1988) describing elements of BForward
Scattering^ theory, i.e., given its structure, how does a
particle scatter light? Sometimes, models based on exact
theory are used, while others may involve iterative ap-
proximations to such exact theory. The so-called Ray-
leigh-Gans (Debye) approximation (Kerker 1969;
Newton 1982; Van de Hulst 1981) appears to be of
greatest practical importance as it permits a relatively
simple interpretive formalism. This approximation is the
optical equivalent of the Born approximation, familiar in
classical quantum mechanics (Schiff 1955) scattering
theory. The potential Vof quantum mechanics is replaced
by a constant relative refractive index, m = n/n0, through-
out the region occupied by the scattering particle where
the particle is of refractive index n in a medium of
refractive index n0. In the Born approximation, the scat-
tering of neutrons and x-rays from a variety of nuclei is
described by the same expressions (Feigan et al. 1987).
Such neutron and x-ray scattering measurements often
rely on low-angle scattering data to derive scattering
structures. The particles that scatter the incident neutrons
and x-rays are usually assumed to be highly tenuous; very

much as the scattering particles in the RG approximation
are assumed barely differentiable in a medium of closely
matched refractive index.

Particles for which RG is most frequently applied to
extract their size are characteristically suspended in water
or other fluidswhose polarizability is comparable to that of
the particles themselves. Thus n ≈ n0 and, therefore,m ≈ 1.
In that case, we require (m2 − 1)/(m2 + 2)≃ (m + 1)(m − 1)/
(m2 + 2)≃ 2(m − 1)/3≃ ∣m − 1 ∣≪ 1. In effect, this con-
dition implies that the polarizability of the particle and its
surrounding medium are nearly the same. In addition, the
RG approximation requires that the phase shift, ρ, of the
incident light as it passes through the particle be very
small, i.e., ρ = 2ka∣m − 1∣≪ 1, where k = 2π/λ = 2πn0/
λ0. From such light scattering measurements, the size and,
sometimes, other structural details of the particles are,
hopefully, derived. This exercise is a very simple example
of the Binverse scattering problem^ (Colton and Kress
1998; Cakoni and Colton 2010) whereby from the collect-
ed scattering data, scattering particles may be character-
ized or even identified. For such analyses, the shape and
structure of the particles are assumed to be known and
only their associated dimensions deduced. As discussed
above and in further detail in an earlier paper (Wyatt
1993), the general Brequirements^ for application of the
RG approximation are stated frequently as the following:

jm−1∣≪1 ð1Þ

2kajm−1∣≪1: ð2Þ

If ∣m − 1∣ is not ≪ 1, measurements at very small scat-
tering angles θ still might be useful if

2qajm−1∣≪1; ð3Þ
where q = 2k sin(θ/2). Thus, by restricting measurement
of scattered light to very small scattering angles, the RG
approximation might provide a means to derive a parti-
cle size per Eq. (3). This will be discussed further in the
BAnalytical extension: the form factor at very small
angles^ section.

Modern light scattering instrumentation is designed
to collect scattered light at detectors placed at discrete
angles within the range 0 < θ < 180∘. A typical experi-
ment consists of measurement of light scattered over
that range of scattering angles (referred to as differential
light scattering or now, more commonly, as multiangle
light scattering or MALS) and, depending upon the
sample measured, may not even include sufficiently
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small scattering angles for which Eq. (3) might be valid.
Similar measurements over a range of scattering angles
are common, as well, for the interpretation (Feĭgin et al.
1987) of x-ray and neutron (Wyatt et al. 1960) scattering
experiments, though scattering measurements are fre-
quently restricted to small angles.

One of the major areas for the successful application
of the RG approximation has been in the fields of poly-
mer and protein chemistry. Here, the Bparticles^ are
polymer and protein molecules whose sizes are charac-
teristically very small compared to the wavelength of the
incident radiation. It is important to note, however, that
the main focus of polymer and protein measurements
based on light scattering (Huglin 1972; Zimm 1948) is
the determination of molar masses and interactive prop-
erties of the molecules. When the particle/molecule size
is smaller than about 20 nm, which is most often the case,
the angular variation of the scattered intensities may be
too small to derive a size.

As discussed by Zimm (1948a, 1948b) and others
(Huglin 1972; Wyatt 1993), the variation of scattered
light [the Rayleigh ratio, R(θ)] from a sample of volume
V at very low concentration is proportional to a corre-
sponding form factor, P(θ), characteristic of the particles
present in the illuminated sample. P(θ) is also referred to
as the particle scattering function. Thus for incident
vertically polarized light of intensity I0, the scattered
intensity, I(θ), is given by

R θð Þ ¼ I θð Þ
I0

¼ kað Þ4V2

4π
m−1j j2P θð Þ: ð4Þ

As an example, consider an ensemble of identical cylin-
drical rods of length L and radius a. We must average
over all their orientations,α, with respect to the direction
of the incident light to yield the RG approximation
(Kerker 1969; Elicabe 2010)

P θð Þ ¼ ∫
π
2

0

2J 1 qasinαð Þ
qasinα

sin qLcosα=2ð Þ
qLcosα=2

� �2
sinαdα: ð5Þ

In the limit of an extremely thin rod (a→ 0), we have
the further approximation

P θð Þ ¼ 1

x
∫
2x

0

sinv
v

dv−
sinx
x

� �2

; ð6Þ

where x = (2πL/λ) sin(θ/2) = kL sin(θ/2).
A more frequently seen example of the RG approxima-

tion is that for homogeneous spheres of radius a for which

P θð Þ ¼ 3

u
j1 uð Þ

� �2
; ð7Þ

where u = 2ka sin(θ/2) = qa and j1(u) is the spherical
Bessel function of order unity. It may be shown that
P(0) = 1 and 0 ≤P(θ) ≤ 1.

Scattering data, collected at a set of discrete angles,
are then used tomake a non-linear least squares fit to Eq.
(5), (6), or (7) to extract the best value of the length L for
the rods or the radius a for the spheres. For Eq. (5), the
value of the cylinder radius a is assumed to be known
from prior microscopy measurements. Similar expres-
sions have been developed for a variety of other axially
symmetric structures including tubes, ellipsoids,
superellipsoids, rings, and disks. Such analyses are by
no means easy, but compared to similar fitting analyses
to the full Lorenz-Mie theory, they are much simpler. It
is emphasized, however, that the fits of the RG approx-
imations, such as the three listed above, are assumed to
be meaningful only if the particles are suitably described
by Eqs. (1) and (2). Non-linear least squares analyses
based explicitly on Eq. (5) are rarely, if ever, seen.

Limitations of RG

In 1963, Kerker et al. (1963) published a rarely refer-
enced paper in which they compared the RG approxi-
mation for a sphere, Eq. (7), to the exact Lorenz-Mie
solution. Although their main purpose was to study the
limits of the RG approximation for a sphere, they actu-
ally addressed a much more general question: How
reasonable is any use of the RG approximation to obtain
meaningful interpretations of scattering data from struc-
tures characterized by limits expressed in Eqs. (1) and
(2)? Obviously, if the approximation had limitations for
so well-described particles as homogeneous spheres,
applying it to other, perhaps more complex, structures
could not be expected to provide any significant expec-
tations of obtaining more meaningful results. For their
calculations, the authors consider a broad range of sizes
(0 ≤ x ≤ 12) relative to the incident wavelength, i.e., x =
ka = 2πa/λ where λ = λ0/n0 as well as a broad range of
relative refractive indices, m,1 ≤m ≤ 2. They compared
the RG results directly for the total scattering cross
sections as well as specific scattered intensities at a
few selected angles (10∘, 20∘, and 45∘). The most sig-
nificant conclusions of their study were summarized in
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their comments B…The (RG) approximation is best for
small values of m − 1 and small angles (forward direc-
tion)…. The agreement between RG… and (Lorenz-)
Mie is very poor except for the smallest values of x….^

The RG approximation is commonly applied only for
small particles of simple structure and, even then, the
results reported may be wrong. It may well have been
overlooked by Kerker et al. (1963); however, their cal-
culations suggest that in regions where Eq. (3) applies,
meaningful sizes might be extracted if scattering results
at extremely small scattering angles θ could be derived.
Therein lays the problem, of course, as measurements at
small scattering angles are prone to scattering from
sample and solution contaminants which tend to over-
whelm the scattering by the sample particles themselves,
especially if the particles of interest are of radii much
smaller than the wavelength of the incident light.

Consider now an example where both Eqs. (1) and
(2) would appear to exclude any possibility of RG
providing a measure of particle size since the refractive
index is far beyond any reasonable value: a gold particle
of radius 250 nm and refractive index 0.14246 +
3.6821i. Figure 1 contrasts the exact Lorenz-Mie theory
at the wavelength of 658 nmwith the RG approximation
of Eq. (7) for the case of such spheres in water n0 = 1.33.
For gold at that wavelength, the value of ∣m − 1∣ =
4.99. The data at the 15 angles indicated by the
superimposed cross hatches correspond to the set that
would be measured with a commercial MALS instru-
ment (DAWN HELEOS II n.d.) as listed explicitly in
Table 1, below.

Returning to the studies by Kerker et al. (1963)
testing the applicability of the RG approximation to
provide an accurate measure of the scattering by homo-
geneous spheres, we note that the authors inferred also a
reasonable basis for estimating the applicability of the
approximation to other particle shapes and forms. As we
shall see later in this paper, the analytical extension of
the RG approximation to very small scattering angles
may permit a simplified means to extract a reasonable
approximation of the size of such gold particles. If that is
successful, we would expect that a similar approxima-
tion theory might well be used to determine structural
properties of more complicated particles (with more
common refractive indices!) for which an exact theory
(such as Lorenz-Mie) does not exist. We shall return to
these gold particle exemplars in the final section and
confirm that the analytical procedure concept to be
presented is both applicable and appropriate.

Preparing and measuring selected samples

Before MALS measurements may be used to extract
particle sizes and related features, appropriate monodis-
perse samples must be prepared. Samples of the selected

Table 1 Scattering angles measured for aqueous medium λ =
664 nm

Detector Angle sin2(θ/2)

1 13° 1.28 × 10−2

2 20.7° 3.23 × 10−2

3 29.6° 6.33 × 10−2

4 37.5° 1.03 × 10−1

5 44.8° 1.45 × 10−1

6 53.1° 2.00 × 10−1

7 61.1° 2.58 × 10−1

8 70.1° 3.30 × 10−1

9 80.1° 4.14 × 10−1

10 90.0° 5.00 × 10−1

11 99.9° 5.86 × 10−1

12 109.9° 6.70 × 10−1

13 120.1° 7.51 × 10−1

14 130.4° 8.24 × 10−1

15 140.0° 8.83 × 10−1

16 149.0° 9.29 × 10−1

17 157.7° 9.63 × 10−1Fig. 1 Size distribution of 630 measured short fraction rods of
NIST reference set
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particles are prepared in solution and then fractionated
by size. For molecular species, or even small particles,
fractionation may be achieved using columns based on
size exclusion chromatography. For large particles, as
well as smaller molecules, the preferred separation tech-
nique of asymmetric flow field flow fractionation (A4F)
is used to obtain subsamples comprised of essentially
identical particles. In the late 1980s, Carl-Gustav
Wahlund (Wahlund and Giddings 1987; Wahlund and
Litzén 1989) introduced the asymmetric flow concept as
a simplification of the difficult to use, yet revolutionary,
cross flow technique developed by J. Calvin Giddings
(1966). Within a few years, Christoph Johann (2004)
had perfected the system most frequently used based on
a single pump. See also Jores et al. (2004). A rich
literature covering the implementation of various types
of FFF devices may be found in the FFF Bibliography
(1965–2018). This listing of every known paper relating
to field flow fractionation was developed and managed
for many years by Dr. Mark Schure beginning when he
worked for Rohm&Haas. The text by Podzimek (2011)
should be consulted for further details of the A4F de-
vices as well as size exclusion separation techniques and
their applications. Using A4F, it is now possible to
fractionate particles of unusual shapes and structures
with relative ease within the very large range of sizes
from 5 nm to several micrometers. Use of the A4F
device has become the method of choice to fractionate
such particles though, as we shall discuss in the section
on BExamples of the analytical representation by
Πm(θ)^, the mechanism by which rod-like particles are
actually separated remains still an area of uncertainty.

Traditionally, with an a priori knowledge of the par-
ticle structures, a non-linear least squares fit of the
MALS collected data is made to the LM theory for
homogeneous spheres or, in the RG approximation, to
Eq. (6), for thin rod-like structures, to extract the corre-
sponding structural parameters such as the sphere radius
a or thin rod length L. The latter assumes, of course, that
scattering by such particles may be characterized by the
RG approximation, i.e., satisfy Eqs. (1) and (2). For an
ensemble of identical extremely thin rods in the RG
approximation, a non-linear least squares fit of the mea-
sured MALS data to Eq. (6) would be expected to yield
values of the rod length for each size fraction measured.
The measured scattered intensity at each angle collected
for this non-linear least squares fitting calculation is
usually weighted by its reciprocal measured standard
deviation. Thus, noisy data, associated with large

standard deviations, are weighted less than more pre-
cisely measured data in performing the least squares
analyses. The precision of the experimental measure-
ments is critical to determining structural features of the
scattering ensemble. Although these are complex calcu-
lations, the speed of even the most modest computer
insures that the calculations are easily performed. Com-
pared to fitting to the exact electromagnetic formalism,
if such were available, the RG approximation is a much
simpler analysis, though it is often only a poor repre-
sentation of the scattering particles. Nevertheless, the
process of setting up the formalism for each such type of
structure may be time-consuming and difficult unless
such calculations are routine; in general, they are not.
Again, of course, for particles that do not satisfy Eqs. (1)
and (2), there may be no suitable RG approximation for
which the collected data may be used to estimate size.

Following A4F fractionation of the sample in appro-
priately buffered aqueous solution (refractive index of
1.33), MALS measurements are made (Podzimek 2011)
of each eluting fraction (often referred to as a Bslice^) at
the set of n discrete angles θi, i = 1,…, n listed in Table 1.
Often, because of poor calibration or for samples with
large outlier particles, some angles are deleted during the
subsequent analyses. A class of very important particles,
where RG theory is applied frequently, is that of very
thin rods such as cellulose (refractive index 1.47). Ap-
plication of the RG result, Eq. (6) produces excellent fits
to the measured data for some cellulose samples (Wyatt
2014). Whether or not such sizes are correct requires
some form of ancillary measurement process such as
examination by electron microscopic means; not easily
done with such tenuous particles! On the other hand,
when the approximation of Eq. (6) is applied to single-
wall carbon nanotubes (SWCNT), it produces a poor fit
and probably a poor estimate of their size. Although they
are extremely thin rods of diameter about 1 nm, even
smaller than cellulose tubes, application of Eq. (6) yields
a very poor fit to the measured data, as we shall see
presently in Fig. 2. Even though the refractive index of
graphene (Wang and Nolte 2009) is very large n = 3 +
1.4i, the application of Eq. (6) to interpret the MALS
measurements of these particles yields lengths that ap-
pear to be much shorter than those measured by electron
microscopy. It should be pointed out, however, that the
effective refractive index of SWCNTs is different from
graphene. Indeed, considering such structures as water-
filled tubes of wall thickness t and radius a, Wyatt (2014)
shows an effective value of n per unit length as n =
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2.08 + 0.625i. Thus in water n0 = 1.33 and m = 1.56 +
0.47i; therefore ∣m − 1 ∣ = 0.73. The wall thickness was
assumed to be the diameter of a carbon atom (0.154 nm)
and the tube diameter is generally taken as 1.2 nm. On
this basis, a proper interpretation of the scattering by
such structures should be based on application of Eq.
(5); not an easy calculation.

In 2013, the National Institute for Standards and
Technology (NIST) produced a Standard Reference
Material 8281 comprised of dispersed single-wall car-
bon nanotubes of three length-resolved populations,
each with broad distributions referred to as Bshort, me-
dium, and long.^ A detailed report of the associated
investigation is discussed by Lin and Watters (2013).
The size distributions of each of these fractions were
obtained by measuring them manually one-at-a-time
using transmission electron microscopy. Fractionation
by centrifugation (Fagan et al. 2008) has also been used,
but both techniques were difficult and relatively ineffec-
tive. Figure 1 shows the NIST tube length histogram as
measured for 630 Bshort fraction^ tubes.

In order to restrict the measurements to the shorter
lengths, before injection into the A4F system, the NIST
short samples were filtered through a 450-nm cellulose
filter. An aliquot was then injected for fractionation by
A4F, producing the elution of Fig. 3. The vertical bar
shows the location of slice 979 whose MALS scattering
data points are shown in Fig. 2.

Figure 2 contrasts the (n = 15 detectors) data collected
at slice 979 with their best fit to the RG rod model of Eq.
(6) yielding a length of 189.4 ± 1.6 nm. The inapplica-
bility of the RG approximation to such particles has been
discussed earlier. Nevertheless, the literature is replete

with the application of this model (cf Gigault et al. 2011)
and the subsequent publication of the associated, possi-
bly erroneous, results. The importance for measurement
of these structures cannot be overemphasized. They, and
similar objects, are the focus of much ongoing research
in the field of nanoparticles, yet there are no known
theoretical models to predict their light scattering and
provide, thereby, a more precise basis for their measure-
ment. Accordingly, one of the most important questions
that this paper hopes to answer is: By what means might
MALS measurements be used to extract particle shape
and structural properties when an exact scattering theory
for the particles of interest does not exist and application
of the RG approximation may be inappropriate?

As to be presented later, there is a means to test the
validity of Eq. (3) by which a reasonable size may be
derived despite the failure of Eqs. (1) and (2). This
analytical extension of the RG approximation to derive
scattering data at very small angles is explained in
further detail in the BAnalytical extension: the form
factor at very small angles^ section.

Let us now examine a different class of structures
comprised of various aggregates of 100-nm PSL
spheres. Figure 4 presents the result of separation by
means of a CPS disk centrifuge of the aggregated
NBS1963 100-nm diameter polystyrene latex (PSL)
standard (now referred to as NIST1963). Note that the
most massive particles (aggregates) sediment most rap-
idly, i.e., the largest aggregates elute first, i.e., move
most rapidly outward. Note that the rightmost peakmust
correspond to the unaggregated 100-nm diameter
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Fig. 2 Best fit of the collected 15 angle scattering data to the RG
rod model of Eq. (6); R(θ)vs. sin2(θ/2)
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Fig. 3 The scattered intensity at 90° from a suspension of the
NIST short fraction as a function of elution time (seconds) during
an A4F fractionation
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particles; the smallest particles present.What was once a
standard suspension of single 100-nm PSL spheres had
become a mixed suspension of various aggregates. Cen-
trifugation separates by mass with the smallest fraction
requiring the longest time to sediment and, for this
aggregated sample, corresponding to the single, non-
aggregated spheres. Next would be doublets, then trip-
lets, etc. Although some work had begun whereby
MALS measurements were combined with centrifugal
separation (Wyatt 2010), the instrumentation at the time
was limited to the three scattering angles 20°, 60°, and
80°. It remains a Bwork in progress.^

An aliquot of the aggregated NBS 1963 sample
shown in Fig. 4 was then separated by A4F producing
the fractogram shown in Fig. 5, below. Note the two
peaks clearly resolved in that figure. They should cor-
respond to the smallest particle groups: Monomer and
dimer of the original sample. The vertical bar at an
elution time of about 32 min corresponds to Slice
1876 in the monomer of this elution. Slice 2193, at an
elution time of about 37 min, lies in the dimer peak
region, is also marked. The collected data of slice 1876

and their 16-angle fit to the LM theory are shown in
Fig. 6. The LM theory yields a radius of 48.9 ± 0.3 nm
for this slice while the RG sphere model [Eq. (7)] yields
49.9 ± 0.4 nm. The refractive index of PSL at the wave-
length of 664 nm is 1.59 while that of water is approx-
imately 1.33. For these small latex spheres, this RG
approximation is excellent. As mentioned, the second
peak of Fig. 5 corresponds to the dimer, so we might try
to establish an equation like Eq. (5) for a double touch-
ing sphere structure averaged over all orientations for
the RG approximation and deduce its component sphere
sizes. Such an analysis and calculation would be diffi-
cult. An earlier paper (Wyatt 2014) presents some de-
tails relating such multiple sphere aggregates to the size
of each contributing identical sphere. An exact repre-
sentation of the scattering by two spheres has been
developed by Fuller et al. (1986), but the calculations
required to extract the sphere sizes are also complex.
There is a far simpler means, however, derived from the
RG approximation as will be shown later.

Fig. 4 Latex sphere aggregates separated by disk centrifugation [intensity vs. time]

Fig. 5 Latex sphere aggregates separated by A4F [I(θ) vs. time]
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The relation between the mean square radius
and the form factor, P(θ)

As mentioned earlier, most commercial light scattering
instrumentation is designed to collect scattered light at
detectors spanning a broad range of angles. Yet applica-
tion of Eq. (3), for example, requires measurements at
very small angles. Even if very small angle measure-
ments were available, the means for extracting size in-
formation therefrom is not clear. The major objective of
this paper is to show how traditional large angle mea-
surements may be used as a basis for deriving key
nanoparticle dimensions especially in regions where the
RG approximation of Eqs. (1) and (2) may fail.A result of
particular importance for light scattering, and especially
related applications of the RG approximation, arose from
studies of polymer molecules. During the developments
by Zimm (1948a, 1948b) and others (Huglin 1972) of the
relation of scattered light measurements and molar mass,
an associated Bsize^ was obtained from these same mea-

surements: the molecule’s mean square radius, r2g
D E

: As

presented very clearly by Kratochvíl (1987), a homoge-
neous molecule/particle of mass M is assumed to be
comprised of n identical elements of mass mi. Its associ-
ated mean square radius is defined as

r2g
D E

¼ 1

2n2
∑
n

i¼1
∑
n

j¼1
h2ij

D E
; ð8Þ

where hij is the distance between the ith and jth mass

element and h2ij
D E

is the square of this distance averaged

over all conformations. Eq. (8) may be shown to reduce
to the more familiar form

rg2
� � ¼ ∑

i
mir2i =∑

i
mi ¼ ∑

i
mir2i =M ; ð9Þ

whereM is the particle’s total mass and ri is the distance
of the ith element from the particle’s center of mass (the
subscript Bg^ referring to the center of gravity, i.e., center
of mass). This same structural parameter is derived sim-
ilarly for the interpretation of small angle x-ray and
neutron scattering (Feĭgin et al. 1987) from various par-
ticles some of whose structural features are to be derived
from such measurements. Note that Eqs. (8) and (9) are
not approximations nor do they depend on any theoret-
ical limitations. Thus irrespective of shape, refractive

index, or size, the mean square radius, r2g
D E

; for most

particle structures may be calculated from data collected
over a range of scattering angles as will be shown below.

Returning to Eq. (9) for a homogeneous molecule/
particle of volume V, density ρ, and mass M = ρV, we
obtain Eq. (10) where mi = ρvi and R(r, θ, φ) is the
distance of the mass

r2g
D E

¼ ∑mir2i
M

¼ ∑vir2i
V

¼ 1

V
∭R2 r; θ;φð Þdv; ð10Þ

element ρdv from the particle center of mass. For a
homogeneous sphere of radius a, for example, Eq. (10)
yields

r2g
D E

¼ 1

V
∭r2dV ¼ 3

4πa3
∫
2π

0
dφ ∫

π

0
sinθdθ ∫

a

0
r4dr ¼ 3

5
a2: ð11Þ

For this simple example, the center of mass lies at the
center of the sphere.

The mean square radius r2g
D E

, as defined above,

bears a very important relationship to the scattering
particle’s form factor P(θ), discussed earlier. Specifical-
ly, the form factor may be written (Kratochvíl 1987) as

P θð Þ ¼ 1

n2
∑
n

i¼1
∑
n

j¼1

sin μhi j
μhi j

¼ 1

n2
∑
i¼1

∑
j¼1

1−
μhi j
� 	2

3!
þ μhi j

� 	4
5!

−:::

" #
;

ð12Þ

where μ ¼ 4π
λ sin θ

2 : From Eq. (8), we can rewrite Eq.
(12) to obtain

P θð Þ ¼ 1−
μ2

3:2:n2
Xn
i¼1

Xn
j¼1

h2i j

 �

þ μ4

5:4:3:2n2
Xn
i¼1

Xn
j¼1

h4i j

 �

−:::

¼ 1−
μ2

3
⟨r2g⟩þ μ4

5:4:3:2n2
Xn
i¼1

Xn
j¼1

h4i j

 �

−:::

ð13Þ

where μ2 ¼ 16π2

λ2 sin2 θ=2ð Þ ¼ 16π2

λ2 ξ: Differentiating Eq.

(13) with respect to ξ, where ξ = sin2(θ/2), yields the

relation between r2g
D E

and the variation of P(θ) with

respect to ξ viz.

⟨rg2⟩ ¼ −dP θð Þ
dξ

3λ2

16π2

� �
þ terms∝ξ2; ξ4; ::: ð14Þ

If we now restrict Eq. (14) to the initial slope of P(θ),

i.e., lim
ξ→0

dP θð Þ
dξ

; we obtain the familiar result
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rg2
� � ¼ 3λ2

16π2

� �
lim
ξ→0

−dP θð Þ
dξ

� �
: ð15Þ

Kratochvil (1987), among others, has emphasized
that this result applies to any particle shape and, there-
fore, particle size determination based on light scatter-
ing is unique. By measuring the slope of the scattering at
very small scattering angles of an ensemble of identical
particles, the mean square radius may be determined
and, from it, a physical dimension of the particles may
be derived. It is important to remember, however, that all
of these conclusions relate explicitly to the RG approx-
imation and its limits of applicability. Equation (15), i.e.,

determining r2g
D E

by measuring the initial slope [with

respect to ξ = sin2(θ/2)], represents a conceptually sim-
pler means for determining the size of homogeneous
spheres in the RG approximation than using a non-linear
least squares fit of the collected data to Eq. (7) and, even
more certainly, for determining the length of homoge-
neous rods given their diameter than using a non-linear
least squares fit of the collected data to Eq. (5). Equation
(15) has been a long recognized consequence of deter-

mining r2g
D E

in the RG approximation. The major dif-

ficulty of applying this method lies universally in the
fact that measurements at sufficiently low angles are
rarely possible and, when they are, they may not be
sufficiently precise. Figure 7 below confirms that even
for simple spherical particles with negligible experimen-
tal noise; the small angle measurements needed to make
use of the apparent simplicity of Eq. (15) are not gener-
ally available in commercial instrumentation.

We now emphasize one of the major objectives of this

paper: Determination of the values of lim
ξ→0

dP θð Þ
dξ

based

on measurements traditionally made by light scattering
instrumentation in the range shown in Table 1. In the
early applications of light scattering to polymer chem-

istry, the derived values of r2g
D E

were relatively small

since the polymer analyses were focused almost exclu-
sively on molecules whose size was generally much less
than the wavelength of the incident illumination provid-
ed by the Hg-arc lamps of that period (Zimm 1948a,
1948b). Historically, however, with particular interest
in a variety of large spherical particles whose sizes
were often comparable or even larger than the wave-
length of the incident radiation, there were consider-
able efforts made (Latimer and Tully 1968; Mullaney
and Dean 1969) in trying to fit collected data to the
LM theory or even the RG approximation to derive
size and structure information from MALS measure-
ments made at very small scattering angles less than
the first minimum. Unlike small scattering angle
measurements of small particles where contaminat-
ing background debris often would affect such mea-
surements, for large particles, their forward scattered
intensities generally overwhelmed most noise contri-
butions that might have been present.

Analytical extension: the form factor at very small
angles

Shown in Fig. 7 is a set of scattering results at very small

scattering angles [0 < sin2 θ
2

� 	
< 0:05, i.e., 0 < θ < 26°]

from the exact LM theory for a set of polystyrene latex

Fig. 7 Scattering calculated at
very small angles by PSL spheres
in water for radii between 50 and
1000 nm at an incident
wavelength of 664 nm
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spheres in water of radii from 50 to1000 nm at an
incident wavelength of 664 nm. Note that an accurate
determination of the initial slope for all such sizes usu-
ally would require measurements at very low angles,
though for small particles background debris may play a
major disruptive roll. On the other hand, large particle
size determinations require very precise measurements
at small angles where significant slope deviations are
prone to slight errors in the angular measurements
themselves.

For measurement of light scattered from an ensemble
of identical scattering particles, in order to derive useful
particle size information beyond that derived tradition-
ally from the RG approximation, we will require three
specific items: (i) the structure of the particles present in
the sample being measured (e.g., tubes and disks), (ii) a
function that represents the scattering by an ensemble of
such identical particles averaged over all orientations
with respect to the direction of the incident illumination,
whose variation as sin2(θ/2)→ 0 will correspond to a
form factor similar to the RG form factor P(θ), and (iii)
the slope at ξ = sin2(θ/2) = 0 of the function that repre-
sents the ensemble scattering. Recall from the analyses
of Kerker et al. (1963), that the RG approximation more
closely agrees with the correct scattering formalism (in
that case, the LM theory) as the scattering angles mea-
sured become smaller. Few exact theories for other
structures, such as the LM theory for homogeneous
spheres and similar spherically symmetric structures,
have been developed explicitly, so we must seek a best
fit of the scattering data to an analytical function per

item (ii) from which r2g
D E

would be derived from its

initial slope per item (iii).
In Fig. 2, for example, the scattered intensities, I(θi)

(i = 1, 15), are shown as collected at n = 15 distinct
values of sin2(θi/2) from the ensemble of identical
single-wall carbon nanotubes. The best fit to the thin
rod structure per Eq. (6) is shown. Although these
single-wall carbon nanotubes are only of diameter
1.2 nm, the thin rod model, so commonly used, does
not fit the data well and does not, therefore, appear be
an appropriate model of their scattering. We assume, of
course, that the A4F process (Podzimek 2011) yields
identical lengths in each fractionated slice. The errors
associated with those 15 data are very small, so we
conclude that these measurements themselves are rep-
resentative of the analytical scattering function that the
actual particles would produce were such available.

We now attempt to generate a function equiva-
lent to the RG function P(θ) analytically. Note
from Eq. (4) that the recorded scattered intensity
I(θ) is proportional to the form factor P(θ) whose
behavior near sin2(θ/2) = 0 we hope to derive per
item (ii) above. We begin by fitting the collected
data to a polynomial of order m in ξ = sin2(θ/2)
viz.

f m ξð Þ ¼ ∑
m

i¼0
−1ð Þiciξi;m≤n−1: ð16Þ

From Eq. (16), we define the normalized function

Πm ¼ f m ξð Þ=c0: ð17Þ
Πm(0

∘) = 1 as we confirm per Eq. (18), below. Note
that Πm(ξ) is a functional representation (through a
power series) of the actual measurements. Finally, we
assume that in the limit as ξ = sin2(θ/2)→ 0,

P θð Þ→ lim
ξ→0

Πm θð Þ ¼ f m ξð Þ=c0 ¼ 1−c1ξ=c0 þ c2ξ2=c0−:::

ð18Þ

However, from Eq. (15), rg2
� � ¼ 3λ2

16π2


 �
lim
ξ→0

−dΠm θð Þ
dξ

:

Therefore rg2
� � ¼ 3λ2

16π2


 �
lim
ξ→0

−dΠm θð Þ
dξ

; or simply

rg2
� � ¼ lim

ξ→0

−dΠm ξð Þ
dξ

3λ2

16π2

� �
¼ c1

c0

3λ2

16π2

� �
: ð19Þ

The association of the Btraditional^ RG form factor
P(θ) with the limiting form of the calculated function
Πm(ξ) in Eq. (19) is a consequence of Eq. (3). It remains,
therefore, to determine the polynomial degree m of the
Eq. (16) that will fit best the measured data and to select

a model by which the derived r2g
D E

may be used there-

from to determine explicit particle dimensions.
Traditionally, multiangle light scattering (MALS)

measurements of spherical particles are interpreted by
performing a non-linear least squares fit of the collected
data to an assumed structure such as a homogeneous
sphere or perhaps even a radially symmetric form
(Wyatt 1962) understood or confirmed by other physical
measurements such as electron microscopy. Particles of
more complex structure are by far the most common
(ellipsoids, thick rods, tubes, and aggregates of spheres)
and there are virtually no explicit analytical forms cor-
responding to averaging them over all relative
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orientations. From the actual data collected (such as the
data points shown in Fig. 2), we create function Πm(θ)
that best represents the collected data and, from which,

we hope to derive its mean square radius r2g
D E

.

Examples of the analytical representation by Πm(θ)

The question now arises as to what order m of the
function Πm(ξ) will yield the Bcorrect^ or, at least, the
best value of the mean square radius of the sample
measured? If Πm(ξ) is fit to the data collected at p of
the different angles of Table 1, is there a Bbest fit^, i.e., a
number m where 0 <m < p, that will yield the most

accurate value for r2g
D E

? Historically, this question

was never addressed for the molecules considered by
Zimm (1948a, 1948b) nor whenever measurements
were made from light scattered by small particles, such
as proteins. The order was assumed always to be 1.Most
light scattering results presented usually produced a
value of rg without further comment on its relation to
the structure of the specific particles/molecules mea-
sured. As we shall see presently, there is a basis for
selecting a value of m that will yield a best fit of the
data collected from measurements at p angles.

To illustrate this result, consider the fractionation and
subsequent measurements of a mixture of three sizes of
PSL spheres (diameters 50, 100, and 500 nm) as shown
below in Fig. 8. The shaded area/peak of Fig. 8 corre-
sponds to the separated 500-nm fraction. Slice (2207) is
indicated by the vertical mark in the shaded peak 3

region near the 40-min elution. As indicated by the very
fine vertical lines, that peak includes 296 slices from
#2055 to #2351. The data collected at slice 2207 are
shown in Fig. 9 with their best fit to the LM theory
indicated by the continuous line, corresponding to a
radius value of 253.7 ± 3.3 nm. Figure 10 presents a plot
of the fit ofΠ8 to the same data yielding a value of rg of

231.7 ± 22.4. From Eq. (11), therefore, a ¼ ffiffiffiffiffiffiffiffi
5=3

p
rg

¼ 293� 28: Note the anomalous shape of the right
peak of Fig. 10. Finding the Bbest fit^ value of m is
now a straightforward consequence of the results tabu-
lated in Table 2, below. Consider the radii associated
orders 3 ≤m ≤ 8 as shown. Associated with each order is
a derived rg value and its derived uncertainty. The ratios
of the experimental uncertainties, Δrg, to their derived
values rg are shown also. The best fit corresponds to the
smallest relative order, i.e., the smallest ratio, 0.003, for
these orders, i.e., m = 5 yielding a radius of 255 nm.
Note that this is also the closest value to the best fit of the
data to the applicable LM theory, i.e., 253.7 ± 3.3 nm of
Fig. 9. For polystyrene spheres in water, ∣m − 1 ∣ = 0.2
and one would expect good agreement between LM and
RG theories.

Although the data at the particular slice 2207 in the
region of peak 3 appear consistent with the LM result,
will the other slices in this peak 3 region be similar or
will the optimal order vary with the small size differ-
ences within the peak? Table 3 compares the derived
optimal rg values for the listed six slices spanning most
of the peak 3 region of Fig. 8 and confirms that the
formalism associated with the determination of the op-
timal fit order is consistent throughout the peak.

control graph

Index = 37.146 min
time (min)
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Fig. 8 The elution profile (90°
scattering vs. time) of 3 PSL
samples following fractionation
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For the next example, we return to Fig. 2 (the col-
lected SWCNT data for slice 757 fit to the rod model of
the RG approximation) and the determination of the
function Πm(θ) that will fit these data best. The rod
model of the RG scattering approximation is clearly
inappropriate and would not, therefore, be expected to
produce realistic estimates of the SWCNT lengths. Elec-
tron micrographs have shown that these single-wall
carbon nanotubes are extremely narrow tubes (radius a
of the order of 0.6 nm and thickness t that of the carbon
atom 0.154 nm) yielding an effective value (Wyatt
2014) per unit length of the term ∣m − 1∣ of Eq. (1) to
be about 0.73. Accordingly, we would expect the use of
the functions Πm will provide a better estimate of their
length. The function Πm will be used to provide the
corresponding slope at the origin needed to produce a

value of r2g
D E

per Eq. (19). The relation between r2g
D E

and the length L of a tube of radius a and thickness t is
just (Wyatt 2014)

r2g
D E

¼ L2

12
þ a2 þ t2

2
−at ð20Þ

With lengths L in excess of 100 nm and the values of
a and t for the nanotubes described, Eq. (20) becomes

simply r2g
D E

¼ L2
12 : Thus L ¼ ffiffiffiffiffi

12
p

r2g
D E1=2

¼ ffiffiffiffiffi
12

p
rg;

where the root mean square (rms) radius rg ¼ r2g
D E1=2

:

Figure 11 below corresponds to fit of the data by
Π2. The corresponding rg value for that slice is 58.8
± 2, as shown. The associated value of L is therefore

results graph

Fit R²=0.9955
sin²(ϴ/2)
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g 
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Fig. 10 Fit of the function Π8 to
the data of Fig. 8. log[R(θ)]vs.
sin2(θ/2)

results graph
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Fig. 9 The collected scattering
data for slice 2207 with their best
fit to the LM theory.log[R(θ)]vs.
sin2(θ/2)
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204 ± 7 nm. This fit does not even appear more ac-
curate than the thin rod model value of 189 nm from
Fig. 2, so higher orders should be examined. Table 4
similar to Table 2, presents all values for m ≤ 7 from
which we hope to find the most appropriate represen-
tation. Applying the same criterion used previously
to determine the best value of m representative of the
scattering by the 500 nm spheres per Table 2, we note
immediately that the best functional representation of
the SWCNT data from slice 757 of the elution corre-
sponds to Π3, i.e., m = 3 with an associated length of
245 ± 8 nm well within the range expected after fil-
tration of SWCNTs to lengths less than 450 nm. This
comparison is shown in Fig. 12.

We now return to the aggregated spheres’ data of
Fig. 5 in order to derive the mass of typical particles
in the second peak that eluted around 37 min. Unfor-
tunately, there will be larger particles present in that
peak due to the huge aggregates to the right. So if we

settle on slice 2193 shown eluting around 36.9 min,
we obtain rg = 60 + 8. (The mean square radii for six
different aggregates of identical spheres are listed in
Fig. 1 by Wyatt (2014) together with those of 10

other structures. For the dimer, r2g
D E

¼ 8=5a2.) As-

results graph

Fit R²=0.9828
sin²(ϴ/2)

0.0 0.2 0.4 0.6 0.8
R(

ϴ)

-61.4x10

-61.6x10

-61.8x10

-62.0x10

Fig. 11 The data of Fig. 2
compared to the fit of functionΠ2

yielding an rg of 58.8 ± 2

Table 2 The derived values for the polystyrene particles of rg,Δ
rg, the ratio Δ rg/rg and the derived radii a ¼ ffiffiffiffiffiffiffiffi

5=3
p

rg

m rg Δrg Ratio Radius nm

3 157.1 20.7 0.132 199 ± 27

4 183.3 9.7 0.053 232 ± 13

5 201.5 5.1 0.025 255 ± 6.6

6 208 9.4 0.045 263 ± 12

7 220.2 14 0.064 279 ± 18

8 231.7 22.4 0.097 293 ± 29

Table 3 The ratios ofΔrg/rg in the vicinity of order 5 in peak 3

Peak 3

Slice# Order Ratio rg time(min)

2090 4 0.055 35.176

5 0.028 201.6

6 0.052

2120 4 0.053 35.68

5 0.024 201.5

6 0.042

2200 4 0.053 37.028

5 0.026

6 0.048

2260 4 0.055 38.038

5 0.026 201.5

6 0.047

2280 4 0.053 38.375

5 0.025 201.6

6 0.046

2300 4 0.052 38.712

5 0.023 201.4

6 0.042
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suming a dimer, a ¼ rg
ffiffiffiffiffiffiffiffi
5=8

p ¼0.79(60 ± 8) = 48 ± 6
nm. This confirms that the second peak of Fig. 6
corresponds to the second peak from the right of
Fig. 5, i.e., a dimer. The large errors associated with
this dimer peak of Fig. 5 are associated to the very
noisy data present in the A4F measurement of Fig. 6.

Finally, we return to the 500-nm gold particles whose
calculated scattering is shown in Fig. 13. Adding to
these calculated values, the estimated experimental er-
rors of the water solvent per, for example, those mea-
sured during the collection of the data shown in Fig. 8,

yield Table 5 below. From Eq. (17), we have rg ¼
rg2
� �1=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3c1=c0
p

λ= 4πð Þ ¼ 68:19
ffiffiffiffiffiffiffiffiffiffiffi
c1=c0

p
: T h e

smallest ratio corresponding to Π5 yields an rg=206
and a =

ffiffiffiffiffiffiffiffi
5=3

p
rg ¼266 nm; a value differing from the

gold particle radius of 250 nm by less than 7%. These
particles are virtually impenetrable by the incident
radiation.

results graph

Fit R²=0.9975
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Fig. 12 The data of Fig. 2 compared to the fit of function Π3 yielding an rg of 70.7 ± 2.4

Table 4 The derived values for the SWCNT sample slice 757 of

rg, Δrg, the ratio Δrg/rg, and the derived length L ¼ ffiffiffiffiffi
12

p
rg

m rg Δrg Ratio Length nm

1 42.2 1.7 0.040 146 ± 6

2 58.8 2.0 0.034 204 ± 7

3 70.7 2.4 0.014 245 ± 8

4 81.6 2.4 0.029 283 ± 8

5 81.0 4.7 0.060 281 ± 16

6 86.3 7.6 0.088 299 ± 26

7 78.9 13.8 0.175 273 ± 48

2
sin ( / 2)

Fig. 13 Comparison of the RG sphere model to the LM
theory (Table 1 angles marked) for homogeneous gold spheres of
radius 250 nm in water
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Summary and conclusions

Nanoparticles of greatest current interest and impor-
tance, both in regard to their physical properties and
practical application, are in the size range of a few
hundred nanometers, i.e., from about 50 nm to
2000 nm: the range of focus of this paper. Once a
monodisperse sample is obtained of such particles in
suspension (generally aqueous), and their structure is
known; the determination of their size/dimension-based
measurement of the scattering of monochromatic light
by the ensemble becomes the basic objective of the
measurement. Traditionally, the measurements obtained
over a broad range of scattering angles are fit in a non-
linear least squares sense to a theoretical model of how
such particles will scatter incident light of defined wave-
length and polarization. For the case of homogeneous
spheres, the Lorenz-Mie theory is so fit to the collected
data to yield their size. There are very few other struc-
tures for which such an exact theory is available except
in the case when 2ka ∣m − 1 ∣ ≪ 1 discussed in the BThe
Lorenz-Mie theory and the Rayle igh-Gans
approximation^ section as the Rayleigh-Gans approxi-
mation. Even in the limits associated with that approx-
imation, the functions that must be fit to the measure-
ments are often very complex [Cf. Eq. (5)]. Rather than
relying upon the non-linear least squares fitting of the
approximate RG formulae to the collected data, a sim-
pler approach has been developed by which means the

scattering particles’ mean square radius r2g
D E

is calcu-

lated and then used to derive the sought shape parame-
ters (e.g., radius, length, and thickness) following, for
example, the sets presented by Wyatt (2014). Deriving

the appropriate r2g
D E

values based upon a set of form

functions Πm(θ), similar to the familiar form factors
Pm(θ), has been described.Key to selecting the best order
of Πm(θ) is the determination of the order producing

the smallest relative error of the ratio Δrg= r2g
D E1=2

:

Following the determination of the optimal r2g
D E1=2

;

and with the a priori knowledge of the particles’ shape

and its dependence on r2g
D E1=2

; the particles’ structural

properties are calculated. Such a procedure, even for
particles well described by the RG approximation at
all angles, represents the simplest means to determine
such structural parameters in contrast, for example, to
using the collected data to extract such information by
performing a non-linear least squares fit to expressions
such as Eq. (7) for simple spheres, or even Eq. (5) for
cylinders.

The determination of the best fit order m and the
subsequent application of Eq. (19) to determine the
particles’ size parameters (using the known relations

between r2g
D E1=2

and these parameters as listed, for

example, for several types of particles by Wyatt
[2014]) represent the most important consequences of
this paper. The paper confirms also that for a broad
range of particles sizes well outside of the strictures of
Eqs. (1) and (2), very good approximations of their sizes
may be obtained with relative ease and simplicity. Great
efforts have been expended historically (Sharma and
Somerford 2006) to obtain means by which particle size
features may be extracted from a variety of interpreta-
tions of their scattering properties. Again, the methods
disclosed in the present paper appear to be the simplest
and probably the most accurate means to achieve these
goals. The derivations of Eqs. (13) and (15) appear only
rarely in physics texts as their origins go far back to the
work of Zimm (1948a, 1948b) and similar polymer
chemistry investigations (Huglin 1972; Kratochvíl
1987). Nevertheless, it should be apparent from the
present paper that the methods presented based on Eq.
(19) are by far the simplest (and probably the most
accurate) means to measure the size of monodisperse
distributions of particles in suspension.

The need to produce a collection of monodisperse
particles for subsequent application of the methods de-
veloped in this paper invariably has required means to
fractionate samples of initially broad distributions. In
this regard, asymmetric flow field flow fractionation
(A4F) has become the preferred method. One of the
most important classes of nanoparticles addressed in
this paper has been single-wall carbon nanotubes

Table 5 The derived values for the gold particles of rg, Δrg, the
ratios Δrg/rg, and the derived radii a ¼ ffiffiffiffiffiffiffiffi

5=3
p

rg

m rg Δrg Ratio Radius

4 193 9 0.047 249 ± 12

5 206 6.4 0.031 266 ± 8.3

6 212 13 0.061 273 ± 17

7 221 20 0.090 285 ± 26
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(SWCNT). The process bywhich FFF actually produces
monodisperse subsets of SWCNTs has been an area of
particular interest and application for well over a decade,
yet remains poorly understood. The separation of oxi-
datively shortened SWCNT (as well as multiwall sam-
ples) using the more difficult cross flow FFF was re-
ported in 2002 in a study by Chen and Selegue (2002).
Their methods of measuring the fractions using both
SEM and TEM were not particularly successful. Later
studies by Nguyen et al. (2015) focused on high aspect
ratio gold rods. It should be noted, however, that the
aspect ratios of such rods are much larger than the far
more important SWCNT (as well as the multi wall
CNTs). No associated MALS measurements have been
reported.

Despite some uncertainties of the actual mechanisms
by which rod-like particles are separated in A4F devices
(Park and Mittal 2015; Nguyen et al. 2013), under a
variety of conditions, separations by length actually do
occur [Cf. Fig. 2]. A major question then arises: What is
the actual length of the particles within the fraction
(Bslice^) whose differential light scattering variation
(aka MALS) is measured? At present, in order to pro-
duce an associated size, the particles/rods producing the
scattering data must be collected and measured. Gener-
ally, there are two types of measurements possible: (1)
by microscopic examination, one-particle-at-a-time
[electron, transmission, or atomic force microscopy] or
(2) by single particle inductively coupled mass spec-
trometry (sp ICP-MS). No wonder the thin rod model of
Eq. (5) is so often used! Its results, of course, are always
erroneous since they never fit SWCNT data.

Insofar as SWCNTs are concerned, their
measurement, and the derived distributions of their
sizes anticipated by the present paper, will require
particle microscopy measurements of the quality so
well described and documented by Nguyen et al.
(2015) for gold rods. Thus the SWCNT particles sepa-
rated at each slice, as indicated by the slice profile
example of Fig. 3, should be similarly collected and
measured. Such results would then be compared directly
with the values at each slice calculated by the enhanced
RG approximation described in the present paper. This
proposed measurement program for a single sample
aliquot is an essential requirement in order to confirm
the interpretive model proposed. It is important to note
that every A4F measurement performed using a sample
whose preparation such as cited above by Nguyen, J.
Liu, and V. Hackley generally requires a variety of

preparative procedures including filtration and sonica-
tion. In order to confirm the applicability of the inter-
pretive procedures described in the current paper, trans-
mission electron microscopy measurements of the
particles/rods present in each collected slice must be
performed. Only by such repeated measurements will
the postulated methodology of the current paper become
accepted and useful. The Hackley group has produced a
variety of interesting papers (Nguyen et al. 2013;
Gigault et al. 2014; Cho and Hackley 2010) relating to
the A4F separation process itself, though the companion
use of MALS as a means for sizing gold particles or
SWCNTs is not addressed.

The surprisingly good results of the derived size of
large gold particles earlier in this article (within 7%) for
a structure certainly antithetical to the extensive appli-
cation of the RG approximation suggest that for particles
of such great refractive index, the incident waves do not
penetrate significantly into the particles and we are, in
effect, just seeing diffraction with no dependence on
internal particle structure.

Once the A4F fractionation and the accompany-
ing sizing methodology for SWCNT and gold parti-
cles as developed in the current paper has been
confirmed, an entirely new set of applications and
opportunities for these particles will be possible.
The ability to produce and retain for future study/
use aliquots of well-defined sizes without the need
for cumbersome microscopy and/or mass spectros-
copy will have extensive application, especially in
areas for medical applicat ion (Sharma and
Somerford 2006; Zhang et al. 2010; He et al.
2013) of these particles.

Finally, a most important result of this study is
restated: Using the collected multiangle scattered light
signals from a suspension of monodisperse particles, the
size of such particles may be determined from the initial
slope [with respect to ξ = sin2(θ/2)] of the derived form
factor Πm(θ). There should no longer be a need to
perform non-linear least squares fitting of collected
multiangle scattering data to any RG model [e.g., Eq.
(5)] in order to obtain the associated size features of the
monodisperse scattering particle.
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