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Abstract

Lilikoi (the Hawaiian word for passion fruit) is a new and comprehensive R package for personalized pathway-based

classification modeling using metabolomics data. Four basic modules are presented as the backbone of the package: feature
mapping module, which standardizes the metabolite names provided by users and maps them to pathways; dimension
transformation module, which transforms the metabolomic profiles to personalized pathway-based profiles using pathway
deregulation scores; feature selection module, which helps to select the significant pathway features related to the disease
phenotypes; and classification and prediction module, which offers various machine learning classification algorithms. The
package is freely available under the GPLv3 license through the github repository at: https://github.com/lanagarmire/lilikoi

and CRAN: https://cran.r-project.org/web/packages/lilikoi/index.html.
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Introduction

Metabolomics has been increasingly employed as a systematic
approach to investigate the relationship between cellular signals
and phenotypes [1]. Non-targeted metabolomics with global
measurements helps to discover novel metabolite biomarkers
for diseases and conditions [2]. However, due to factors such
as non-standardized protocols and highly heterogeneous study
populations, it is difficult to find robust biomarkers that can be
translated into clinical applications [3, 4].

Currently, there are multitudes of secondary metabolomics
analysis tools, primarily in the form of web tools. Very few
comprehensive packages exist in R/Bioconductor, the domi-
nant bioinformatics scripting language, in order to support
metabolomics data analysis. Various modules of metabolomics
pipelines have been implemented in other programming lan-

guages, including preprocessing [5], compound mapping [6],
pathway networks [7], visualization [8], deep learning [9], and
statistical enrichment analysis [10].

In the pathway analysis area, various approaches have been
proposed to analyze metabolomics data, such as MetPA [11],
IMPaLA [12], and MPEA [13]. The common feature of these
methods is that they use metabolites as biological entities to
summarize to pathway-level statistics at the group level (sepa-
rated by states) and then perform enrichment analysis (such as
over-representation analysis and gene set enrichment analysis
[GSEA]) in order to calculate the over-representation of pathways
in one group vs the other group. As a result, over-representation
of pathways in one group vs the other group is estimated. Specif-
ically, MetPA is a web tool that combines pathway enrichment
analysis with pathway topological characteristics to help iden-
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tify the most relevant metabolic pathways. IMPaLA is a web tool
that performs joint pathway analysis of transcriptomics or pro-
teomics and metabolomics data through over-representation or
enrichment analysis. MPEA is another pathway analysis tool
based on GSEA principles, designed specifically to handle many-
to-many relationships that may occur between the query com-
pounds and metabolite annotations. However, none of these
pathway-based methods transform the metabolite-sample ma-
trix into pathway-sample matrix in order to entail pathway rep-
resentation at the individual sample level (or personalized level).
Moreover, these pathway-based methods are generally used as
system biology-level interpretation of metabolomics, and they
are incapable of constructing pathway features, upon which
classification algorithms are built for the purpose of biomarker
modeling.

To fill the void above, we introduce a new R package called
Lilikoi (the Hawaiian name for passion fruit), which specializes
in personalized pathway measurement and classification pre-
diction models. We present this tool in four modules: feature-
pathway mapper, which standardizes metabolite ID and maps
them to pathways; dimension transformation, which derives
personalized pathway deregulation scores from metabolite pro-
files; feature selection, which provides the user with a range of
feature selection algorithms to select significant features related
to phenotypes; classification and prediction, which lists a series
of classification algorithms to derive machine learning models
and give predictions on testing datasets.

The Lilikoi package can be divided into four functional modules
(Fig. 1): feature mapper, dimension transformer, feature selec-
tor, and classification predictor. In the first module, Lilikoi takes
metabolite profile data from the user as the input feature and
standardizes the metabolite names to various IDs in databases
including Kyoto Encyclopedia of Genes and Genomes (KEGG),
PubChem, Human Metabolome Database (HMDB), and Metabo-
lite and Tandom Mass Spectrometry (METLIN). After the map-
ping step, the second module transforms metabolite profiles to a
comprehensive pathway deregulation score (PDS) matrix based
on the Pathifier algorithm [14]. The third module employs vari-
ous feature selection algorithms to select key pathway features
in the training set that are significantly related to phenotypes.
The final classification module builds a classification model on
the training set based on various algorithms, including random
forest (RF), support vector machine (SVM), linear discriminate
analysis (LDA), logistic regression (LOG), prediction analysis for
microarray (PAM), generalized boosted model (GBM), and recur-
sive partitioning and regression analysis (RPART). It then per-
forms prediction and quantitative evaluations on testing sets us-
ing various metrics. The details of each module are discussed in
the following sections.

Reporting proper compounds with standard accession numbers
is of paramount importance, and ownstream metabolomics data
analysis is only possible with unique metabolite IDs. The non-
standardized synonyms create many issues for data analysis
and thus must be dealt with. A few tools have been developed
to address this issue. The Chemical Translation Service is a web-
based tool for metabolite ID conversion [15]. BridgeDb is another

R package that supports gene, protein, and metabolite identifier
mapping [16]. We implement feature mapper in Lilikoi, which
embeds comprehensive databases including more than 18,000
metabolites and 100,000 synonyms. Lilikoi provides a default
database and also allows updated database if the user prefers.
The function lilikoi.updateDB() method allows users to call to
pull the latest curated databases from Lilikoi’s github repository.
The feature mapping process consists of three steps (Fig. 2).
In step 1, the input metabolite names are mapped to HMDB
IDs using exact matching. We include various databases such
as HMDB, KEGG, PubChem, and MetaboAnalyst compound
databases to standardize the metabolite names. In step 2, Lilikoi
employs the synonym database to standardize the rest of the
unmapped metabolites to HMDB IDs. The remaining unmapped
metabolites go through the third fuzzy matching step. We cal-
culate the Levenshtein edit distance as a measurement of string
similarity and map the metabolite to the closest related stan-
dardized metabolites [17]. Such a process allows for maximal
mapping of input metabolites to standardized HMDB IDs.

Lilikoi applies the Pathifier algorithm to perform the metabolites-
pathway dimension transformation [14]. This algorithm sum-
marizes per-sample information from the metabolite level to the
pathway level [14]. For each pathway, all samples are mapped to
a high-dimensional principal component space (as data points),
and a principal curve is constructed among them (the data
cloud). A PDS score is then derived to measure the distance from
the origin of the principle curve to the specific point on the prin-
ciple curve, projected by the data point that represents a sample.
The larger the PDS score, the farther a sample deviates from the
normal level in that specific pathway. As the result of the dimen-
sion transformation step, a new pathway-level metabolomics
profile matrix is constructed. The user can then use this matrix
for downstream analysis. More details of applications of Pathi-
fier on biomarker studies (prognosis or diagnosis) can be found
in our earlier publications [4, 18].

The PDS score Dp(i) was calculated for each pathway P and
each sample i, based on the intensities of the metabolites in
pathway P. This score estimates the extent to which the path-
way P in sample i deviates from the control. Briefly, in the high-
dimensional space dp made of metabolite vectors (where each
metabolite belongs to pathway P), all samples form a data cloud,
where sample i is a data point x;. The principle curve Sp in this
space dp is then calculated using Hastie and Stuetzle’s algorithm
[19]. For each sample, the data point x; is projected onto the prin-
ciple curve Sp. The deregulation score Dp(i) of sample i is then
defined as the distance from the start of the principle curve to
the projected point on this curve.

Lilikoi allows the user to provide training and testing datasets,
as well phenotype information for the samples. For the training
set, Lilikoi provides two major feature selection algorithms: in-
formation gain (mutual information) and gain ratio, which select
the most significant pathway-level features related to the phe-
notype. The RWeka package is required for the feature selection
module [20]. Information gain statistic is provided to evaluate
the added information from each feature to help discriminate
the phenotype. Gain ratio statistic is an alternative metric that
solves the problem of overfitting, when there are a large number
of distinct variables. We recommend that the user uses the gain
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Exact

matching ———»
with name

no hits

Exact
matching
with
synonyms

no hits

Fuzzy matching .
Levenshtein score

Figure 2: The workflow of module 1: feature mapper. The user can input any metabolite IDs such as chemical name, KEGG, PubChem, and HMDB IDs. The fuzzy
matching algorithm is implemented to map the non-matched names to the 100k synonyms database.

ratio instead of the information gain when the input dataset has
categorical variables in addition to the metabolomics data. To
assess overfitting, one can examine the difference in accuracy
between the training and testing data. A much lower accuracy
in testing data indicates overfitting.

Classification and prediction

Seven widely used machine learning algorithms, including LDA,
SVM, RF, RPART, PAM, LOG, and GBM, are supported by Lilikoi
to build classification models. These methods have been widely
used in the metabolomics community and reported in various
research articles [9, 21-23]. Lilikoi uses R package caret for au-

tomatic parameter tuning of all the algorithms [24]. An n-fold
(default n = 10; flexible depending on different sample sizes)
cross-validation is applied on the training dataset to avoid over-
fitting. Metrics to measure prediction accuracy, including area
under the curve (AUC), Fl-statistic, balanced accuracy, sensi-
tivity (SEN), and specificity (SPEC), are reported to the user as
bar plots, similar to others [25]. Receiver operating characteris-
tic (ROC) curves can also be reported as a separate figure.

To rank the importance of pathway features in the classifi-
cation model, we used the variable importance function imple-
mented in the Caret PR package. This function ranks features
based on their contribution to the model performance.



4 |

R package for personalized pathway

T .lmu;.»z;m

Normal

06

="' Label

b - ERn

m |l \" \‘n il "'“N u ||| |l| °§

"."4' "U‘ ;kwmwawm

I l I flf‘ll 1

II'II |

b i AL
!r|||| LI |

nﬁL G

'w
AN | I|

Elll i/ Iu |\||||[_|
@w

Aoncwiie J.ll LT

AL
%\1 i ﬂ'ﬁ‘r**ﬁ« i

\‘

it ﬂ|ﬁ ;rﬁnwnm

TIg
[

HI’ i

Figure 3: Heat map of the individual-based pathway dysregulation scores (PDS) generated by Lilikoi. The rows are the pathway IDs, and the columns are the patients
separated by group. PDS score is a personalized pathway metric ranging from 0 to 1. Higher PDS score indicates more dysregulation. (A) Dataset 1, breast cancer vs
healthy control plasma samples. (B) Dataset 2, ER+ vs ER— breast cancer tissue samples.

Combined model addressing confounding

The user can add any clinical factors such as age, sex, and eth-
nicity to the model. All of these factors are normalized between
0 and 1 by scaling between minimum and maximum values so
that they are compatible with the PDS score.

Example datasets

For demonstration, we present two metabolomics datasets. One
set is from the City of Hope Hospital that was published ear-
lier [4]. This dataset is composed of 207 samples from plasma
(126 breast cancer cases and 81 controls). The details of the
data are summarized in our previous work [4]. This dataset
was downloaded from Metabolomics workbench [26] project ID
PR0O00284. The second dataset consists of 271 breast cancer tis-
sue samples (204 estrogen receptor [ER]+ and 67 ER—) collected
from a biobank at the Pathology Department of Charité Hospi-
tal, Germany, as reported earlier [27]. The metabolomics profiles
of these patients can be downloaded from the supplementary
material of the study [28].

Results

For illustration purposes, we applied Lilikoi to two metabolomics
datasets of breast cancers. The first dataset is the plasma sam-
ples of breast cancer vs normal controls, which also have clin-
ical information such as age, sex, and ethnicity [4]. The second
dataset is the tissue samples of ER+ vs ER— breast cancer pa-
tients [27].

Standardization and mapping of metabolomics IDs

A good practice of a metabolomics report is to have stan-
dardized identifiers. However, in reality, currently different
metabolomics research laboratories/preprocessing tools gener-
ate metabolomics profiles using different naming standards,
and this causes big problems for downstream bioinformatics
analysis. To cope with it, Lilikoi first transforms the metabolite
names to standard IDs. It allows the user to input any kind of
metabolite IDs, their synonyms, KEGG IDs, HMDB IDs, or Pub-

Chem IDs. Moreover, Lilikoi embeds comprehensive databases,
including more than 18,000 metabolites and 100,000 synonyms,
in accordance with other types of input IDs. Another major user-
friendly characteristic of Lilikoi is the implementation of a fuzzy
matching algorithm, which allows better mapping of uncertain
metabolites by calculating the string similarity score of the in-
put metabolite name with those in the databases. These features
of Lilikoi greatly improve its usability. In the first plasma sample
set, 182 of 227 metabolites are mapped to standard HMDB IDs; in
the second breast cancer tissue sample set, 120 of 162 metabo-
lites are mapped to standard HMDB IDs.

Metabolite to pathway level transformation

After transforming metabolites to standardized IDs, the
metabolomics profile of the training set is transformed to a
pathway-based profile through module 2: dimension trans-
formation, with additional phenotype input (cancer/control)
also provided by users. In the first dataset, the metabolites
are mapped to 224 pathways, and the resulting PDS score
(ranging from 0 to 1) based matrix with 224 pathways (rows) and
207 patients (columns) are shown in Fig. 3A. The hierarchical
clustering analysis on the pathways further demonstrates that
the cancer and control samples are distinguishable by several
pathway clusters. For example, the first pathway cluster in
Fig. 3A includes pathways that have a low PDS score in general
but higher PDS in cancer patients compared to those in control
samples; a close examination reveals that they are related to
sugar metabolism. One of these signature pathways is called
“Warburg effect,” which is a hallmark of cancer and entails
altered metabolism in cancer cells with increased glucose
uptake and fermentation of glucose to lactate [29].

On the contrary, other pathway-based methods, such as
MetPA [11], IMPaLA [12], and MPEA [13], are not capable of gen-
erating such individual patient-level pathway matrices. Rather,
they employ enrichment analysis to compare the difference of
pathways at the case vs control group level (rather than the
individual level). Supplementary Table S1 shows the retrieved
metabolomics pathways, their statistical enrichment test signif-
icance (P value and adjusted P value), and the number of metabo-
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lites involved in each pathway that were included in the metabo-
lites dataset. Aminoacyl-tRNA biosynthesis (P = 5.8 e-09), bio-
chemical pathways part I (P = 4.4 e-34), and protein digestion
and absorption (P = 3.15 e-20) are the most significant pathways
for MetPA, IMPaLA, and MEPA, respectively. Notably, although
these methods retrieve significant pathways, these pathways
cannot be used as the input features for downstream statisti-
cal modeling and classification in the following sections. Thus,
Lilikoi is a unique pathway-based metabolomics analysis pack-
age that enables rigorous biomarker predictive modeling.

We conducted similar clustering of pathways on dataset 2
(Fig. 3B) and found similarly that ER+ and ER— samples are
well separated by the pathways. Moreover, since this dataset in-
cludes all cancer samples, their PDS differences are overall less
than those in the plasma dataset of cancer vs healthy samples
(Fig. 3A).

Metabolomics feature selection

The next step is the feature selection module, using the PDS ma-
trix and phenotypes of the training set as input. We then split

each dataset into 80% training and 20% hold-out testing set. The
user can choose either information gain (mutual information)
or gain ratio to select key pathway attributes. Lilikoi plots a bar
plot of selected features and their relevance to phenotype labels.
Lilikoi enables the output of information gain score, a measure
of feature relevance to phenotype for each selected attribute
(Fig. 4A and 4C). The information gain score is a nonparamet-
ric, model-free score between 0 and 1. It can be used to rank
all features relevant to the classification. The higher the value,
the more relevant the feature is to classification. In dataset 1,
nine pathways are identified as feature pathways in the plasma
training set. Among them, alanine, aspartate, and glutamate
metabolism stand out as the pathway most relevant to the dis-
ease phenotype, with the highest information gain score of 0.36.
Aspartate metabolism is the second most important pathway,
with the information gain score of 0.29. These rankings are in ac-
cordance with the previous report, where a lower level of plasma
aspartate is one of the most important metabolomics feature in
human breast cancer [30].

In dataset 2, six pathways are identified as feature pathways
in the breast tissue training set (Fig. 4C). Among them, pan-
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Figure 5: Model evaluation on the two exemplary datasets. (A-C) Dataset 1, breast cancer vs healthy control plasma samples. (D-F) Dataset 2, ER+ vs ER— breast cancer
tissue samples. (A, D) ROC curves of the breast cancer diagnosis testing set, obtained from seven classification algorithms: recursive partitioning and regression analysis
(RPART), linear discriminate analysis (LDA), support vector machine (SVM), random forest (RF), generalized boosted model (GBM), prediction analysis for microarray
(PAM), and logistic regression (LOG). (B, E) Metrics (AUC, sensitivity, specificity, and F-1 statistic) to measure the performance of classification on training or testing
data. (C, F) Metrics of the best-performing model on testing data, based on the criteria chosen by the user (AUC in this case).

tothenate and CoA biosynthesis stand out as the pathways most
relevant to the disease phenotype, with the highest information
gain score of 0.19. Histidine metabolism is the second most im-
portant pathway, with the information gain score of 0.16. Inter-
estingly, none of these pathways were mentioned in the orig-
inal study that was focused on metabolite-level analysis [27].
To investigate if our pathway analysis truly reveals interesting
metabolic changes, we looked into the metabolites that are as-
sociated with these top pathways in the dataset 2. Impressively,
beta-alanine is the metabolite associated with all six feature
pathways, and it was reported in the original study as the sig-
nature metabolite to differentiate ER+ and ER— samples. While
many other pathways such as GABA-transaminase deficiency
and ureidopropionase deficiency also have beta-alanine as part
of metabolite, the fact that only the six pathways are selected
as features indicates that they are more relative to ER+ and ER—
separation.

Model construction and validation

The last step is classification model construction and prediction.
This module builds a model from the selected pathway features
and allows the users to select among seven different classifica-
tion algorithms with n-fold cross-validation. The user can com-
pare performance measurements and choose the best classifier

as the model of choice (Fig. 5). This module generates two types
of figures: a plot of ROC curves (Fig. 5A, D) that present the over-
all model performance on the testing dataset and a second bar
plot (Fig. 5B, E) that illustrates the values of additional perfor-
mance metrics (e.g., AUC, SEN, SPEC) of the testing data. In ad-
dition, Fig. 5C shows the performance metrics generated from
the best-performing model, using a user-selected metric. In this
example, we use AUC as the metric to select the best model, and
GBM algorithm yields the best performance (Fig. 5C, F).

Next, we checked the importance of these pathway features
(Fig. 4A, C) relative to each classification model (Fig. 4B, D). For
dataset 1, interestingly, all machine learning methods place con-
sistently high importance scores to pathway alanine, aspartate,
and glutamate metabolism and protein digestion and absorp-
tion, supporting its significance (Fig. 4B). The importance of ala-
nine, aspartate, and glutamate metabolism has been confirmed
before [30]. On the other hand, some pathways had discrepant
importance scores ranked by the machine learning methods,
such as aspartate metabolism and hypoacetylaspartia (a defect
in L-aspartate-N-acetyltransferase resulting in a strongly de-
creased concentration of N-acetyl-L-aspartic acid). For dataset
2, less consistency is found among different machine learning
methods on pantothenate and the CoA biosynthesis pathway,
although it is the highest ranking pathway by three machine
learning methods (Fig. 4D).



e 4
@
S
© |
S
2
2
=
(%2}
c
(3]
n .
S
— Selected Pathways
""" Clinical factors
— Selected pathways + clinical factors
~
s
e
=

T T T T T T
0.2 0.0

0.6 0.4
Specificity

¥

& Q&o‘ & o C
Alanine..Aspartate.And.Glutamate.Metabolism ’ . . .
Nicotinate.And.Nicotinamide.Metabolism ' . . ‘ . ‘ ‘ .
Protein.Digestion.And.Absorption ’ ’ ‘ . . . .
Hypoacetylaspartia “‘ ' ’ ‘
Aspartate.Metabolism ‘
Canavan.Disease . ' . . Foo
Metabolic.Pathways ’ ‘ ‘
Biosynthesis.Of. Amino.Acids ‘ .
Glycine..Serine.And.Threonine.Metabolism ‘

-06

@ ®
08
Race ‘

Figure 6: Calibration of metabolomics model on dataset 1 by confounding. (A) ROC curves of metabolomics only, clinical data only, and the metabolomics clinical
combined model. (B) Correlation coefficients among demographic/physiologic factors and the metabolomics data. Blue indicates positive correlations and red indicates
negative correlations.

Rl



Adjusting the fitted model using the clinical factors (if available)
is a critical step in metabolomics-based biomarker research. In
this step, Lilikoi builds three models using metabolomics data,
or clinical data, or the combination of the two types of data, and
plots their ROC curves on the corresponding testing sets (Fig. 6A).
Model 1 (black solid curve) is created using the selected path-
ways from the features selection module; model 2 (red dashed
curve) uses the clinical factors selected by the user; and model
3 (blue solid curve) is created by combining both selected path-
ways and selected clinical factors. In this example, the clinical
factors impose significant confounding in classification, and age
is the primary contributor in the clinical model (data not shown).
To understand the relationships among the selected pathways
and the clinical factors, a correlation heat map is plotted in
Fig. 6B.

Metabolomics biomarker discoveries have gained an increasing
amount of attention recently in a variety of applications such
as disease diagnosis and progression. Currently, most of the
biomarker features in the metabolomics field are represented as
individual metabolites, which suffer from inconsistency among
studies. On the other hand, most pathway-based methods in the
metabolomics field are not personalized and they are merely
used for graphical mapping and enrichment analysis. None of
these metabolomics pathway-based tools employ pathways as
features for downstream biomarker modeling. Lilikoi addresses
all of these issues with personalized pathway deregulation mea-
surements (PDS scores) and offers a standardized classifica-
tion model for biomarker prediction. Compared to the tradi-
tional way of identifying individual metabolites as biomarkers,
pathway-based biomarkers are more tolerant of population het-
erogeneity. Additional advantages of Lilikoi include the flexibil-
ity of its feature selection methods, the use of various machine
learning classification algorithms, and its automatic tuning of
parameters to generate the best model for a specific algorithm.

As an R package that will undergo active improvements,
Lilikoi can potentially benefit from other technical tweaking.
Currently, a small percentage (20%) of the metabolites still can-
not be mapped to the standard names in databases. One possi-
ble reason for this mismatching is that we used the Levenshtein
distance as a measure of the similarity between the user’s query
metabolites and the metabolites stored in Lilikoi’s database.
However, regardless of mapping facilitation, the first line of re-
porting practice is to always use metabolite standard identifiers.
Lilikoi uses standard IDs such as PubChem CIDs, HMDB IDs,
InChiKey or METLIN IDs for the mapping process. Additionally,
although the parameters in each classification model are auto-
matically optimized, there is no automatic algorithm (AutoML)
implemented that selects the best overall classification model;
rather it depends on the user’s subjective preference of a ma-
chine learning method. It would be beneficial to automatically
provide users with references for classification algorithm selec-
tion, without human supervision [31, 32]. We plan to use AutoML
in our classification module in the future.

Project name: Lilikoi
Project home page: https://github.com/lanagarmire/lilikoi
Operating system(s): Windows and Linux

Programming language: e.g., R

Other requirements: e.g., R3.5.1

License: GPLv3

The R package for Lilikoi is accessible at https://cran.r-project
.org/web/packages/lilikoi/. The source code is also freely avail-
able under the GPLv3 license through the github repository at:
https://github.com/lanagarmire/lilikoi. We made a web tool for
Lilikoi to facilitate programming-free use of the package. The
GUI link is: Lilikoi.garmiregroup.org. Additionally, Docker image
and binder image can be accessed at: https://mybinder.org/v2/
gh/FADHLyemen/lilikoi_ Fadhl/master

Additional supporting data, which includes R package scripts
and snapshots of the code, including Docker image and binder
image, are available in the GigaScience repository, GigaDB [33].

Table S1: the enrichment analysis results of other pathway
methods on data set 1: MetPA, IMPaLA, and MPEA.

AUC: area under the curve; CRAN: The Comperhensive R Archive
Network; ER: estrogen receptor; GBM: generalized boosted
model; GSEA: gene set enrichment analysis; HDMB:; KEGG: Kyoto
Encyclopedia of Genes and Genomes; IMPaLA: pathway analysis
with transcriptomics and metabolomics data; LDA: linear dis-
criminate analysis; LOG: logistic regression; METLIN: metabo-
lite and tandem MS database; MPEA: metabolite pathway en-
richment analysis; MetPA: a web-based metabolomics tool for
pathway analysis and visualization; PAM: prediction analysis for
microarray; PDS: pathway deregulation score; RF: random for-
est; ROC: receiver operating characteristic; RPART: recursive par-
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