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Abstract

In this paper we propose a latent class based multiple imputation approach for analyzing missing 

categorical covariate data in a highly stratified data model. In this approach, we impute the 

missing data assuming a latent class imputation model and we use likelihood methods to analyze 

the imputed data. Via extensive simulations, we study its statistical properties and make 

comparisons with complete case analysis, multiple imputation, saturated log-linear multiple 

imputation and the Expectation– Maximization approach under seven missing data mechanisms 

(including missing completely at random, missing at random and not missing at random). These 

methods are compared with respect to bias, asymptotic standard error, type I error, and 95% 

coverage probabilities of parameter estimates. Simulations show that, under many missingness 

scenarios, latent class multiple imputation performs favorably when jointly considering these 

criteria. A data example from a matched case–control study of the association between multiple 

myeloma and polymorphisms of the Inter-Leukin 6 genes is considered.
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1. Introduction

Missing covariate data are common in biomedical studies of categorical risk factors of 

disease. For example, unordered categorical demographic data such as race, gender, and 

marital status are frequently measured as risk factors, but may be missing for some study 

subjects. In the example that motivates the current investigation, we seek to investigate the 

association between multiple myeloma and a polymorphism of the IL-6 gene called the 

IL-6rα receptor SNP (−174 RA), which is missing in 40 pairs from a total of 112 case–

control pairs due to problems related to assaying (Cozen et al., 2006). Moreover, two 

potential confounders body mass index (BMI) and education were missing 10% and 5% of 

values, respectively. The result is the omission of 27% of the study subjects if complete case 

analysis is used. For studies with small sample sizes like this, in the presence of a large 
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proportion of missing covariate values, it can be difficult to obtain valid inference by 

analyzing the complete data using standard methods, irrespective of whether the missing 

data mechanism is ignorable or nonignorable. However, reasonable inference could be made 

by using principled missing data analysis techniques (Little and Rubin, 2002; Schafer, 

1997a).

Despite the ubiquitousness of missing categorical data, there are not readily available 

principled methods for handling missing values for categorical variables. Current statistical 

methods for imputing missing categorical data have limited use in practice because of the 

concern about robustness and/or difficulty in implementation when the number of 

categorical variables is large. For example, two commonly used noncluster based approaches 

for missing categorical data are log-linear multiple imputation (LLMI) (Schafer, 1977b), and 

an ad hoc rounding approach (Bernaards et al., 2007). The former is computationally 

difficult as the number of categorical variables becomes moderately large (Schafer, 1997a). 

The latter ignores the categorical nature of the data by using procedures for continuous data 

with subsequent rounding to the nearest integer. While it has been shown that ignoring the 

categorical nature of the data by rounding to the nearest integer is robust to violations of 

normality (Bernaards et al., 2007), other authors have demonstrated that resulting parameter 

estimates may be biased (Allison, 2006; Horton et al., 2003).

As demonstrated in a recent study by Vermunt et al. (2008), latent class multiple imputation 

may be used to efficiently impute missing categorical data in the presence of a large number 

of observed categorical variables. Since latent class analysis explains the variation in 

observed variables typically using a small number of latent classes, and since it is directly 

applicable in the presence of many categorical variables, it is natural to apply in the missing 

categorical data setting. While latent class multiple imputation has been shown by Vermunt 

et al. (2008) to outperform log-linear imputation, these authors only made limited 

assessments of the method in terms of missing data mechanism scenarios. Moreover, they 

used the computationally less efficient (Xiang et al., 2006) nonparametric bootstrap 

approach instead of a full Bayesian Markov chain Monte Carlo (MCMC) for sampling from 

the posterior distribution of the missing data. They implemented their procedure in a 

specialized software called Latent GOLD.

Although a few other cluster based imputation methods have been developed, most consider 

imputation in extremely high-dimensional continuous data settings where the goal of the 

analysis is the actual clustering (i.e., where the number of variables is much larger than the 

number of subjects) (Fujikawa and Ho, 2002; Godfrey et al., 2002; Joernsten et al., 2007). 

But few, if any, reliable clustering based imputation methods have been proposed for studies 

whose goal is to measure association in the presence of missing categorical covariate data.

In summary, there are limitations with the above-mentioned nonclustered and cluster based 

approaches when applied to the imputation of data with a moderate to large number of 

covariates with missing data. Therefore, in this paper we evaluate a latent class based 

procedure for implementing multiple imputation of missing categorical covariates. Our aim 

is three fold. Firstly, we develop the method under a highly stratified data model assumption 

with one or more missing categorical covariate (e.g., for individually matched case–control 
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data). Secondly, we investigate the statistical properties of this approach via an extensive 

simulation study under several missing data scenarios, and compare performance to existing 

imputation procedures. Thirdly, using a real data example, we demonstrate its applicability 

for missing genotypic data in matched case–control studies.

The outline of the rest of the paper is as follows. In Section 2 we briefly describe commonly 

used missing data techniques. In Section 3 we develop and describe latent class multiple 

imputation (LCMI). In Section 4, we assess its performance relative to other commonly used 

methods, and in Section 5, we apply the methods to the multiple myeloma data. Finally, in 

Section 6, we discuss our findings along with possibilities for future research.

2. Methods

2.1. Data, notation and model

While the problem can be developed under a general linear model framework, we considered 

a logistic model of the form

logit pr(Y i j = 1|W i, Xi j, Zi j) = q(W i) + β1Zi j + β2Xi j, (1)

where i=1, K strata, Xij (subject to missing) and Zij (not subject to missing) are the 

corresponding covariates. Let each strata, defined by Wi, have ni+1 subjects and let j=0,

…..,ni. The coefficients β1 and β2 are the log-odds ratio and q(Wi) is the random stratum-

specific effect (or random baseline odds). This model is commonly known as a stratum-

specific (random effects) logistic model. Suppose Sij indicates whether or not a subject is 

sampled from the population and Rij is a missing indicator for covariate Xij defined as 

Rij=I(Xij is observed) which takes values rij. Assuming a missing at random (MAR) missing 

mechanism, P(R = 1ǀX,W,Y,Z) = P(R = 1ǀW,Y,Z) and unbiased sampling of cases and 

controls, P(S = 1ǀX,W,Y,Z) =P(S = 1ǀY,W), we can re-write Eq. (1) as

logit pr(Yi j = 1|Wi, Xi j, Zi j, Si j = 1) = q(Wi) + β1Zi j + β2Xi j + α(Wi)* = q*(Wi) + β1Zi j + β2Xi j,

where q*(W) = α*(W))+q(W), and α*(W) = log(P(S = 1|Y = 1, W)/P(S = 1|Y = 0, W)). Further 

define the joint density of Xij and Zij as hi j(y) = h(Zi j, Xi j |Y i j = y, W i, Si j = 1). The full 

likelihood is

L(β1, β2, q(W1)…q(WK)) = ∏
i = 1

K
∏
j = 0

ni
hi j(y) .

This likelihood can be estimated in several different ways based on how one handles the 

large number of nuisance parameters, q(Wi), which could be a source of loss of efficiency. 

Two commonly used approaches are the random effects approach (Breslow and Clayton, 

1993) and the fixed effects approach, which includes conditional likelihood (CL) (Diggle et 

al., 1994). We used the CL method for matched case–control data (Breslow and Day, 1980). 
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In fact, since sampling in matched case–control studies is made from the distribution of 

(Z,X) conditional on (Y,W), and because ∑jYij is a complete sufficient statistic for q(Wi), CL 

is a natural choice. The corresponding CL is

Lc(β1, β2) = ∏
i = 1

K hi0(1)∏ j = 1
ni hi j(0)

∑ j = 0
ni hi j(1)∏k ≠ j hik(0)

= ∏
i = 1

K exp(β1Zi0 + β2Xi0)

∑ j = 0
ni exp(β1Zi j + β2Xi j)

.

The maximum likelihood estimates from the CL score function are semi-parametric efficient 

estimators of β1 and β2 in the presence of the nuisance parameters q(Wi) (Rathouz, 2003).

Assuming X is categorical and is not fully observed, it is our goal to impute the missing 

values of X in order to efficiently estimate parameters of the model given in Eq. (1). The 

details are given in Section 3.

2.2. Multiple imputation

In the first stage of multiple imputation (MI), m simulated versions of the missing data are 

created under a data model using methods that incorporate appropriate variability across the 

m imputations. In the second stage, the m versions of the complete data are analyzed using 

standard analysis techniques, and the results are combined to produce the final results (Little 

and Rubin, 2002; Rubin, 1987). MI has been shown to result in valid statistical inferences 

that properly reflect the uncertainty due to missingness.

The imputation model is a joint distribution of the missing indicator, Rij, and the observed 

and missing variables. This is defined as

Pr(Ri j, Xi j, Zi j, Wi; β1, β2, γ) = Pr(Xi j,Zi j, Wi; β1, β2)Pr(Ri j | Xi j, Zi j, Wi; γ)
= Pr(Xi j |Zi j, Wi; β1, β2)Pr(β1 |Zi j, Wi)Pr(Ri j | Xi j, Zi j, Wi; γ) .

The method of choice for the first stage depends on the pattern of missingness, assumptions 

about the missing mechanism, and whether or not the distributions for Rij and Xij involve 

common parameters. Assuming data are MAR and that there are no common parameters 

between the two distributions, for data with monotone missing patterns, either a parametric 

method that assumes multivariate normality or a nonparametric method may be used. For 

data sets with arbitrary missing patterns, an MCMC approach that assumes multivariate 

normality is used to impute all missing values (or enough missing values such that the 

imputed data sets have monotone missing patterns). For missing categorical data, parametric 

models could be used (for instance, logistic or discriminant analysis) (Little and Rubin, 

2002; Schafer, 1997a).

2.3. Log-linear imputation

Log-linear multiple imputation (LLMI) uses a saturated log-linear model to impute missing 

categorical data (Schafer, 1997a). As described in Agresti (2002), the saturated log-linear 

model can be reformulated as a logistic regression model with all two-way and higher order 

interaction terms included. We implemented LLMI in PROC MI by specifying the 
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parametric logistic model with all main effects and higher order interactions included. The 

procedure uses MCMC sampling from the posterior distribution of the parameters of the log-

linear model to get proper imputations (Little and Rubin, 2002). We note that since all 

higher order associations among categorical variables need to be considered, only a small 

number of variables may be included in the imputation model thereby rendering LLMI 

computationally infeasible even for a moderately large number of variables.

2.4. Expectation–Maximization method

The Expectation–Maximization (EM) algorithm iteratively finds the maximum likelihood 

estimate (MLE) of parameters (Dempster et al., 1977). The expected value of the complete 

data log likelihood is ascertained in the E-step. In the M-step, the complete data log 

likelihood is maximized with respect to parameter estimates. The two steps are iterated until 

a convergence criterion is met. We implemented the algorithm using the ‘EM’ estimation 

option in PROC MI assuming that the missing values constitute a parameter vector from a 

multivariate normal distribution.

3. Latent class multiple imputation

Following notation in Vermunt et al. (2008) we now use Y to denote all of the observed 

covariate data. Suppose, for each subject i, i=1,2,…,N, we observe J categorical variables 

Yi=(Yi1,….,YiJ). Let ηk denote the probability of membership of a subject in unobserved 

latent class k and let Ki denote the latent class to which subject i belongs, with Ki taking 

values k = {1,….,K}. The variables Yij take values from {1,…Cj} where Cj ≥2, thus Cj 

represents the number of possible categories for categorical variable j. We denote the 

probability distribution of Yij given latent class as πjk = P(Yij = cǀKi = k),c = 1 ... ,Cj.

For unordered categorical variables, we parameterize the πjk as

π jk(c) =
exp(β jk)

1 + ∑l = 1
C j − 1

exp(β jkl)
and π jk(C j) = 1

1 + ∑l = 1
C j − 1

exp(β jkl)
.

The β’s are unknown latent class-specific parameters whose collection is denoted as 

β = (β11′ , …, βk j′ ) where each βk j′  is a vector of length Cj
-1. Based on the standard assumption 

that within latent class, variables are independent, the joint probability of Yi is expressed as

ϕ(yi) = P(Y i1, …, Y iJ) = ∑
k = 1

K
ηk ∏

j = 1

J
∏
c = 1

C j
π jk(c)

Yi j(c)
. (2)

The latent class model can be fitted by maximizing the likelihood below with respect to 

parameter vectors η and βjk,
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L(ηk, π jk) = ∑
i = 1

N
log ϕ(yi) .

This proceeds using the EM algorithm as described for latent class models in Goodman 

(1974). The EM algorithm involves iterating between posterior probabilities of latent class 

membership as given by

P(Ki = k |Yi = yi) = ηk ∏
j = 1

J
∏

c = 1

C j
π jk(c)

yi j(c)
/ϕ(yi),

where ϕ(yi) is given in Eq. (2). To select the number of classes both the Akaike (AIC) and 

Bayesian Information Criteria (BIC) have been proposed; the latter has been shown to be 

superior in studies where the number of observed variables is moderately large (Houseman 

et al., 2006). In general, since imputation models are predictive models, the main purpose is 

not model parsimony; rather the purpose is to be able to create plausible imputations of the 

missing data (imputations that reflect the uncertainty in the observed data). Thus, it is 

expected that an imputation model should encompass the special features of the sample 

design and should be fitted in such a way that it is highly predictive of the missingness and 

without great emphasis on AIC or BIC values (Schafer, 1997a).

LCMI was implemented as follows (technical details are provided in Appendix A. First, we 

fit the latent class model to the observed data, yi,obs. Second, we sampled from the posterior 

probability of latent class (Ki) given the observed data, P(Ki = k |Y i, obs = yi, obs). Third, we 

sampled from the distribution of the missing data conditional on class, P(yi,missǀKi = k), via 

MCMC. Fourth, we used a within class posterior sampling via MCMC to impute the value.

The latent class model was fitted using PROC LCA Version 1.1.5 (Lanza et al., 2007, 2008). 

PROC LCA is a SAS procedure for latent class analysis developed for SAS Version 9.2 for 

Windows and is used to estimate latent classes measured by categorical indicators. Unlike 

Vermunt et al. (2008) who used the nonparametric bootstrap, we used the more 

computationally efficient and readily available full Bayesian MCMC approach to sample 

from the posterior distribution of the missing data model. Finally, after we imputed the 

missing categories we used conditional likelihood to estimate the parameters of the model 

presented in Eq. (1).

4. Simulation study

4.1. Missing data generation

We generated individually matched case–control sets using the paradigm of risk set 

sampling from cohort data in continuous time (Gebregziabher and Langholz, 2009; 

Langholz, 2007; Oakes, 1981; Thomas, 1977). Typically, in this paradigm, a random sample 

of controls of fixed size are sampled at each failure time of a cohort study independently 

from controls in each risk set. However, to evaluate the performance of estimators for bias as 
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well as efficiency, it is sufficient and simpler to generate ‘independent’ risk sets rather than 

to generate failure time data and then form the risk sets. Details are in Langholz (2007).

As our primary interest in evaluating LCMI lies in determining how well the estimation of a 

few latent classes can improve upon standard multiple imputation techniques, we simulated 

data for both K=2 and 3 latent classes determined by J=5 observed variables. To generate 

data with a K-class model, we first set a vector for latent class prevalence, (η1, ... ,ηK) = 

(0.35,0.65) for K=2 and (0.20,0.35,0.45) for K=3. The latent class membership for each 

individual, i, was sampled from a multinomial distribution with the above parameters. Based 

on latent class membership, we sampled βjkc values (j=1…,J; k=1,…..,K; c=1,2) from a 

uniform distribution with a class-dependent range. After parameters were simulated, class-

specific probabilities were calculated and the data matrix was obtained conditional on latent 

class membership by sampling from the binomial distribution (see Eq. (2)).

The outcome variable, Y, for each subject was generated according to the model, 

logit[Pr(Y i j = 1)] = αi + ∑i = 1
5 β jXi j where β represents the collection of logistic regression 

parameters {β1, ... ,β5}. In a given stratum, case–control status for the i th individual was 

determined with probability proportional to exp(αi + ∑i = 1
5 β jXi j). We considered a binary 

exposure variable, X1 and four covariates X2, X3, X4, and X5 that were generated jointly 

with X1; these covariates are potential binary confounders of the relationship between X1 

and Y. For simulations under the null case, we set β1 = 0. For the nonnull case, we set β1 = 

0:69 to yield an odds ratio of 2.0 (consistent with that expected in the multiple myeloma data 

example). Further, two scenarios β2 = 0 and 0.69 with β3, ... ,β5 = 0 were considered.

After generating complete data according to the above model, data sets with missing 

exposure (X1) were generated from the cohort with a 10%, 30% and 50% missing 

proportion. We considered a wide range of missing scenarios broadly classified into missing 

completely at random (MCAR), missing at random (MAR), and missing not at random 

(MNAR), in the sense of Little and Rubin (2002). Further specification of the missingness 

within MAR was based on the dependence of the probabilities of missing X1 on another 

covariate or on the outcome. That is, missing X1 may depend on X2 (MAR(X2)), on both X2 

and Y (MAR(X2, Y)), or on Y only (MAR(Y)). Missingness within the MNAR setting was 

based on the dependence of the probabilities of missing X1 on X1 (MNAR(X1)), on both X1 

and X2 (MNAR(X1, X2)), or on both X1 and Y (MNAR(X1, Y)). We made the assumption 

that the missingness model was logistic with all the variables as covariates,

logit[pr(M = 1| X1, …X5, Y)] = γ0 + γ1X1 + γ2X2 + γ3X3 + γ4X4 + γ5X5 + γ6Y ,

where M=1-R is a binary indicator that takes a value of 1 if X1 is missing and 0 if X1 is 

observed. The intercept of the model γ0 determines the overall proportion of missingness 

while the other γ parameters are the corresponding log odds ratio of missingness for each 

variable. The parameters, γ, that led to those missingness mechanisms are reported in the 

Web Appendix Table B7.
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4.2. Simulation results

The imputed data sets from each scenario were analyzed using all five methods described in 

the paper. From 1000 replicates we computed the mean of both β1 and β2, their 

corresponding asymptotic standard errors, and the empirical coverage probability of the 95% 

confidence interval. To ensure that simulations were performing adequately, we also 

computed the type-I error rate and power of the Wald test for the parameters of interest. We 

report results for the model generated under the assumption of three classes; results for the 2 

class model are provided in the Appendix.

The results of the simulation study are tabulated into five tables. Tables 1 and 2 show the 

means and ASEs of the estimated log odds ratio parameters for the null and nonnull 

simulation scenarios, respectively. Table 3 shows the means and ASEs of the estimated log 

odds ratio parameters, β2 for the completely observed confounder under the null scenario. 

Table 4 shows the 95% coverage probabilities for these parameters and the type-I error rate 

of the Wald test for testing H0 : β1 = 0. Finally, the power of the test is reported in the 

Appendix. Column labels LCMI-2, LCMI-3, and LCMI-4 refer to estimates from LCMI 

based on fitting a 2, 3, or 4 class imputers model.

As mentioned, our primary interests were two-fold. The first was to extensively assess the 

performance of LCMI. The second was to compare LCMI to other data imputation 

procedures, namely LLMI. While we do not expect any one method to perform best in every 

situation, we examined these methods across a very broad array of missing data scenarios in 

order to observe the overall behavior of LCMI and provide some general advice.

As expected, the bias and ASE of the parameters of interest increase as the percent 

missingness increases, as well as when the missing data mechanism is MNAR. Tables 1 and 

2 show that other than for some MNAR scenarios, the bias for β1 resulting from the 

imputation procedures, as well as for the potentially confounding covariate, β2, is reasonably 

small across the missing data mechanisms. Under the null, LCMI results in close to zero bias 

(as do most of the imputation methods) and notably smaller ASEs than observed for all of 

the comparison methods, including LLMI. The only exception is EM, which has its own 

shortcomings as elaborated below. LCMI provides estimates of β1 with either little or no 

bias and high efficiency, even when the number of latent classes is misspecified as 2 or 4.

Although EM gives the smallest ASE in general, Table 4 shows that EM has very poor 

coverage probability and highly inflated type I error rates (as large as 0.33 for MNAR and as 

large as 0.20 for MAR scenarios), thus we would not advocate this method for ignorable or 

nonignorable missing data and therefore will not discuss it further.

It is clear in our simulation scenario that LCMI results in smaller ASEs than both LLMI and 

MI with respect to the parameter of interest, β1 (Tables 1 and 2) as well as with respect to 

the parameter for the potential confounder, β2 (Table 3). In general, the more efficient 

performance of LCMI over LLMI and MI can be seen in both the null and nonnull scenarios, 

and for every type of missingness considered within these scenarios. In addition, LCMI 

maintains a type I error rate near 0.05 and a coverage probability near 0.95 across an array 
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of MNAR and MAR scenarios (see Table 4). Most importantly, the correctly specified 3-

class model either rivals or outperforms LLMI and MI with respect to coverage and type 1 

error rate (see Table 4). There are no scenarios for which LLMI consistently outperforms 

LCMI with respect to the four criteria considered. The improved performance of LCMI over 

LLMI is the most pronounced for 50% missingness, which is arguably the most important 

scenario as accounting for missing data is usually recommended for such high proportions of 

missingness.

While all of the imputation methods studied give unbiased estimates for 10% missing data 

and when the missing mechanism is MCAR, they all break down for the MNAR case where 

missingness depends on both X1 and Y. Interestingly, LCMI and LLMI perform reasonably 

well when the MNAR data did not depend on the outcome Y (MNAR(X1)) and LCMI 

maintains the lowest ASE of the two.

As information criteria often select the wrong number of optimal latent classes, it is 

important to assess the effect of class misspecification on the subsequent analysis. It is clear 

under the columns LCMI-2 and LCMI-4 in each of the tables that the benefit of LCMI holds 

for whether or not the number of classes is misspecified (for example, using a 2-class or 4-

class imputers model). While bias does not appear to improve by overfitting with respect to 

the number of latent classes, the ASE does decrease monotonically as one moves from the 2-

class to 4-class imputers model. While our simulation findings are generally consistent with 

reports from Vermunt et al. (2008), our simulations do not necessarily imply a benefit to 

arbitrarily increasing the number of classes.

5. Data example

The motivating data example is a case–control study of the association between multiple 

myeloma and polymorphisms in the IL-6 region. The details of the study are reported in 

Cozen et al. (2006). Briefly, cases were residents of Los Angeles County diagnosed with 

primary multiple myeloma or plasmacytoma (ICD-03 9731–9734) from October 1, 1999 

through December 31, 2002, and under age 75 years at diagnosis. Cases were ascertained by 

the University of Southern California Cancer Surveillance Program (USC-CSP), the 

population-based cancer registry for Los Angeles County. A total of 150 cases and two 

groups of controls (117 relative controls and 126 population controls identified by random 

digit dialing) were recruited. DNA was extracted and together with other SNPs, the IL-6rα 
receptor SNP in exon 9 was amplified to identify the ala (A) and asp (D) coding alleles. 

However, in this SNP, the coding allele was missing in a total of 40 (29 cases and 11 

population controls) and in at least one of 40 pairs (29 cases and 11 relative controls) due to 

problems related to assaying (Cozen et al., 2006). Our primary interest is to estimate the 

association between IL-6rα and the risk of multiple myeloma in the matched case–control 

study, adjusting for covariates. We focus on the case to relative control comparison.

In addition to missing genotypic data, two cases and four controls were missing information 

on potential confounding covariates, body mass index (BMI) and education. While we 

cannot be certain about the missing data mechanism, it is reasonable to assume that it does 

not depend on case–control status (since blood serum was collected before case–control 
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status was ascertained). Table 5 displays the odds ratio estimates after applying the methods. 

Analyses show that, as expected, CCA resulted in odds ratio with the largest standard errors. 

Using complete cases only, the odds ratio [95% confidence interval] in those with one versus 

no copies of the A allele of the IL-6rα polymorphism was 1.60 [0.66,3.86], and in those 

with one versus two copies was 1.12 [0.28,4.52]. Imputation was made based on a two and 

three class LC models and results are reported for both LCMI-2 and LCMI-3, respectively. 

The odds ratio from this LCMI for the 2 class model (which had favorable BIC/AIC values) 

were 1.95 [1.27,2.97] and 1.51 [0.73,3.13], respectively. Unlike CCA, this represents a 

significantly increased odds of multiple myeloma in those carrying just one allele, as well as 

tighter confidence intervals for these estimates. We note that MI and LLMI resulted in 

similar inference as LCMI, but the asymptotic standard error for LCMI was the smallest 

among all imputation procedures, which is consistent with the simulation findings. 

Interestingly, MI and LLMI result in almost the exact same inference, thus the methods 

appear to be interchangeable in the current context.

Even though we do not recommend it, some researchers analyze missing covariate data from 

matched case–control studies using unconditional logistic regression after breaking the 

match. We analyzed the unmatched data with adjustment for matching covariates and the 

comparative advantage of LCMI was still apparent (see bottom panel of Table 5).

6. Discussion

In this paper, we proposed and examined a latent class based multiple imputation (LCMI) of 

missing covariate data. We provided a comprehensive assessment of LCMI as well as a 

broader systemic comparison of LCMI with other methods, which has been lacking in the 

literature (Vermunt et al., 2008). Specifically, we met the goals outlined in the Introduction 

by demonstrating improved efficiency of this method over existing imputation methods and 

complete case analysis for estimation of covariate effects (for covariate data that are both 

missing and nonmissing) in studies with highly stratified data. We used both simulations and 

a real data example to exemplify the applicability of LCMI to missing covariate data in 

matched case control studies. Our simulations demonstrated that LCMI leads to unbiased 

parameter estimates with smaller standard errors than other commonly used approaches, 

under many missing data scenarios. LCMI also leads to confidence intervals with the 

nominal 95% coverage. In addition, both reported and unreported sensitivity analyses 

showed that parameter estimates were robust to latent class model misspecification. While 

all of the methods break down for the MNAR(X1,Y) situation, LCMI and LLMI performed 

reasonably well under MNAR(X1) and LCMI maintained the lowest ASE. This is of great 

practical value in case–control studies, as missingness is likely to depend on case control 

status especially in settings where data are collected after disease occurrence (Gebregziabher 

and Langholz, 2009).

Our imputation of the IL-6rα receptor SNP in order to assess its association with multiple 

myeloma upheld our simulation findings. Firstly, imputation of this SNP based on 2 and 3 

class models was consistent thereby supporting the simulation findings that the method is 

robust to misspecification of the number of classes. This is important since the use of 

different information criteria often result in conflicting model selection decisions (e.g., 
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Vermunt et al., 2008). Secondly, asymptotic standard errors resulting from LCMI were 

smaller than those obtained from MI and LLMI, while odds ratio estimates were slightly 

larger providing evidence for more precise inference.

Our comprehensive assessment of the five methods under numerous missingness 

mechanisms was focused on a case in which the data were able to be clustered. While we 

chose a basic simulation scenario (i.e., based on the supposition of a small number of 

underlying latent classes), it should also be noted that if the data do not lend themselves to 

clustering, then LCMI would likely be equivalent to MI. In other words, one would impute 

conditional on a one-class model. In general, latent class imputation is similar to multiple 

imputation but allows for imputation based only on like observations and leads to improved 

performance when dealing with missing categorial data. Thus, in situations where log-linear 

imputation is difficult to implement (e.g., when the number of observed variables is large), 

LCMI is the preferred method since LCA can be performed when there are a large number 

of observed categorical variables.

We note that there are several ways in which one can impute missing data based on the 

posterior probability for the individual with incomplete observations on a categorical 

covariate (Steps 2 and 4 in Section 2.2). One can sample from the observed data using 

bootstrap (Vermunt et al., 2008) or from the posterior distribution of the missing data using 

full Bayesian MCMC, as we have done. On the other hand, one could more simply assign 

the subject to the class with the highest probability. Another option is to sample from as 

many classes as are estimated, and use a weighted imputation from the distribution of the 

missing data given latent class. It is not clear if the imputation procedure holds under other 

common missing data scenarios, or whether the bootstrap approach offers any advantages. 

However, head to head comparisons of nonparametric bootstrapping and a Bayesian 

approach to sampling from posterior probability distributions using an MCMC method, have 

showed that the more computationally intensive bootstrap method may give unstable 

estimates than the full Bayesian MCMC (Alfaro, 2003; Xiang et al., 2006). On the other 

hand, in the weighted imputation approach, the imputed value for the individual will likely 

be distributed across classes and hence that might improve efficiency by directly accounting 

for the uncertainty in latent class estimation. One caveat that needs to be mentioned is the 

concern that the covariates (X1,…,X5) are generated under the assumed LC model and 

therefore might favor LCMI over other methods. However, we clarify that neither the model 

used to generate the Y based on X1,….,X5, nor the missing data model Pr(M = 1ǀX1, ... ,X5), 

depended on the latent class. Thus, the simulated data provides a fair comparison of the 

other methods with LCMI.

One limitation of our data example that may have masked some of the advantage of LCMI 

over MI is that the myeloma data set consists of only a moderate number of variables. 

Further applications of this method should consider its behavior for a very large number of 

observed variables. Vermunt et al. (2008) applied the method to impute missing categorical 

data in the ATLAS Cultural Tourism Research Project. These authors fitted models with up 

to 26 latent classes from data containing 79 observed variables. It would be interesting to 

compare the performance of MI to LCMI in these very high-dimensional settings. As few, if 

any, data imputation techniques for ordinal variables exist, a potential extension would be to 
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apply the method to ordinal data. It could also be extended to missing categorical data in 

longitudinal settings using latent transition analysis instead of LCA.

In conclusion, this study is the first to implement and assess LCMI in matched case–control 

data with missing categorical covariates under the highly stratified logistic model 

framework. It is also the first to consider LCMI under many missing data scenarios. We have 

demonstrated that this method provides estimates that exhibit high statistical efficiency, little 

to no bias, and can be implemented using standard statistical software. Even though the 

method is developed for a highly stratified logit model (i.e., Eq. (1)), it can easily be 

extended into any generalized linear model framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: Technical Details of the LCMI method

Following notation in Vermunt et al (2008) we now use Y to denote all of the observed 

covariate data. Suppose, for each subject i, i = 1,2, ,N, we observe J categorical variables 

(Yi1, ... ,YiJ). Let ηk denote the probability of membership of a subject in unobserved latent 

class k and let Ki denote the latent class to which subject i belongs, with Ki taking values k = 

{1, ... ,K}. The variables Yij take values from {1, ...Cj} where Cj ≥2, thus Cj represents the 

number of possible categories for categorical variable j. We denote the probability 

distribution of Yij given latent class as π jk = P(Y i j = c |Ki = k), c = 1, …, C j. For unordered 

categorical variables, we parameterize the πjk as,

π jk(c) =
exp(β jk)

1 + ∑l = 1
C j − 1

exp(β jkl)
and π jk(C j) = 1

1 + ∑l = 1
C j − 1

exp(β jkl)

The β’s are unknown latent class-specific parameters whose collection is denoted as 

β = (β11′ , …, βk j′ ) where each βk j′  is a vector of length Cj-1. Based on the standard assumption 

that within latent class, variables are independent, the joint probability of Yi is expressed as

ϕ(yi) = P(Y i1, …, Y iJ) = ∑k = 1
K ηk∏ j = 1

J ∏c = 1
C j π jk(c)

Yi j(c)
. (A.1)

The latent class model can be fitted by maximizing the likelihood below with respect to 

parameter vectors η and βjk,
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L = ∑i = 1
N log∑k = 1

K ηk∏ j = 1
J ∏c = 1

C j π jk(c)
Yi j(c)

.

This proceeds using the EM algorithm as described for latent class models in Goodman 

(1974). The EM algorithm involves iterating between posterior probabilities of latent class 

membership as given by,

P(Ki = k |Yi = yi) = ηk∏ j = 1
J ∏c = 1

C j π jk(c)
Yi j(c)

/ϕ(yi),

where ϕ(yi) is given in equation (A.1). To select the number of classes both the Akaike and 

Bayesian Information Criteria had been used even though BIC was shown to be superior in 

studies where the number of observed variables is moderately large Houseman et al., 2006.

In the presence of missing covariate data, our goal is to improve upon the standard multiple 

imputation technique for missing categorical data by first clustering like observations and 

then imputing based on latent class. That is, the latent class model is being used as a tool for 

the estimation of P(yi;η,β) as a means for data imputation based on the true distribution of 

the observed data but not to obtain interpretable latent classes. We are therefore not 

concerned with identifiability of parameter estimates or the well known label-switching 

problem Stephens, 2000. Even though any permutation of latent classes results in several 

maximum likelihood solutions, P(yi;β,η) is uniquely identified.

The latent class model is expressed as a model for the observed data density, p(yi,obs;η,β),

p(yi, obs; η, β) = ∑k = 1
K ηk∏ j = 1

J p(yi j |Ki = k; β)
ri j

where rij = 0 if the value of yij is missing and 1 otherwise. Note, rij represents a realization of 

the missing data indicator, Rij, so only variables j = 1, ... ,J that do not have missing values 

contribute to the estimation of the model. This results in unbiased parameter estimates due to 

the assumption of conditional independence of variables given latent class assignment, 

leading to a straightforward strategy for class-based multiple imputation. Once the latent 

class model is fitted via the EM algorithm, one can easily obtain draws from the distribution 

of the missing data conditional on the observed data (eg. via MCMC or Bootstrap) and with 

the conditional independence assumption we get,

p(yi, mis | yi, obs; η, β) = ∑k = 1
K p(Ki = k)p(yi, obs |Ki = k)

p(yi, obs)
p(yi, mis |Ki = k) . (A.2)

Since the first part of equation (A.2) is the posterior probability of latent class membership 

given the observed data, then the distribution of yi,misǀyi,obs can be rewritten as 

p(yi, mis | yi, obs) = ∑k = 1
K p(Ki = k | yi, obs; η, β)p(yi, mis |Ki = k). Recall that as only the observed 
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data are used to fit the latent class model, p(yi,misǀKi = k) is equivalent to 

∏ j = 1
J p(yi j |Ki = k)

1 − ri j, where yij are the complete data and rij the missing data indicator.
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Table 1

Estimates of β1 and SE(β1) in a three class LC model, where β1=0, β2= 0, pr(X1=1)=0.5 and pr(X2=1)=0.5 for 

1:1 matched study with n simulations.

CCA MI EM LLMI LCMI-2 LCMI-3 LCMI-4

β1 ASE β1 ASE β1 ASE β1 ASE β1 ASE β1 ASE β1 ASE

Pr(Missing=10%)

    MCAR
a −0.009 0.341 −0.010 0.325 −0.014 0.304 −0.012 0.324 −0.011 0.321 −0.010 0.316 −0.011 0.313

    MAR(Y)
b −0.012 0.349 −0.008 0.328 0.000 0.303 −0.013 0.327 0.001 0.325 0.003 0.316 −0.001 0.314

    MAR(X2)
c −0.013 0.342 −0.008 0.326 −0.021 0.305 −0.011 0.325 −0.007 0.321 −0.003 0.316 0.000 0.312

    MAR(Y,X2)
d −0.020 0.362 −0.005 0.336 −0.009 0.304 −0.002 0.336 −0.002 0.329 0.039 0.322 0.056 0.322

    MNAR(X1)
e −0.003 0.344 −0.003 0.325 −0.004 0.300 −0.004 0.324 −0.009 0.320 −0.009 0.312 −0.008 0.312

    MNAR(X1,X2)
f −0.019 0.344 −0.005 0.324 −0.007 0.301 −0.002 0.322 −0.009 0.320 −0.010 0.315 −0.013 0.312

    MNAR(X1,Y)
g 0.027 0.348 0.017 0.328 0.018 0.300 0.017 0.325 0.018 0.321 0.030 0.311 0.033 0.311

Pr(Missing=30%)

    MCAR
a 0.001 0.455 −0.011 0.382 −0.011 0.306 −0.006 0.379 −0.006 0.357 −0.009 0.34 −0.003 0.333

    MAR(Y)
b −0.021 0.496 −0.002 0.400 −0.005 0.305 −0.006 0.393 0.001 0.381 0.001 0.347 0.004 0.343

    MAR(X2)
c 0.002 0.473 0.002 0.394 0.011 0.307 −0.009 0.391 0.002 0.374 0.006 0.355 0.009 0.348

    MAR(Y,X2)
d −0.032 0.503 0.001 0.397 0.010 0.305 −0.013 0.399 −0.003 0.38 −0.066 0.348 −0.099 0.341

    MNAR(X1)
e −0.027 0.474 −0.021 0.379 −0.037 0.295 −0.007 0.375 −0.023 0.363 −0.015 0.334 −0.024 0.332

    MNAR(X1,X2)
f −0.042 0.484 −0.012 0.387 −0.011 0.300 −0.002 0.383 −0.012 0.37 −0.011 0.343 −0.009 0.337

    MNAR(X1,Y)
g −0.151 0.490 −0.141 0.390 −0.151 0.298 −0.132 0.391 −0.139 0.37 −0.164 0.337 −0.187 0.334

Pr(Missing=50%) MCAR
a

    MCAR
a −0.054 0.721 −0.024 0.475 −0.009 0.314 −0.011 0.478 −0.012 0.432 −0.002 0.383 0.001 0.365

    MAR(Y)
b −0.032 0.812 0.005 0.490 0.020 0.311 0.005 0.500 0.013 0.451 −0.003 0.390 −0.006 0.373

    MAR(X2)
c 0.015 0.839 0.015 0.507 −0.004 0.311 −0.066 0.568 0.017 0.470 0.011 0.430 0.015 0.413

    MAR(Y,X2)
d −0.082 0.817 −0.014 0.489 0.001 0.309 −0.020 0.516 −0.016 0.453 −0.077 0.400 −0.117 0.386

    MNAR(X1)
e 0.009 0.744 −0.025 0.458 −0.037 0.295 −0.027 0.472 −0.028 0.429 −0.033 0.370 −0.037 0.365

    MNAR(X1,X2)
f −0.035 0.800 −0.001 0.480 −0.008 0.303 −0.005 0.488 0.014 0.436 −0.001 0.379 −0.006 0.371

    MNAR(X1,Y)
g −0.186 0.790 −0.144 0.470 −0.167 0.296 −0.153 0.495 −0.127 0.431 −0.172 0.381 −0.194 0.369

a
missing completely at random.

b
missing at random conditional on Y.

c
missing at random conditional on X2.

d
missing at random conditional on Y,X2.
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e
missing not at random conditional on X1.

f
missing not at random conditional on X1,X2.

g
missing not at random conditional on X1,Y.
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Table 2

Estimates of β1 and SE(β1) in a three class lc model, where β10:69, β2= 0, pr(X1=1)=0.5 and pr(X2=1)=0.5 for 

1:1 matched study with n simulations.

CCA MI EM LLMI LCMI-2 LCMI-3 LCMI-4

β1 ASE β1 ASE β1 ASE β1 ASE β1 ASE β1 ASE β1 ASE

Pr(Missing=10%)

    MCAR
a 0.738 0.378 0.730 0.361 0.725 0.337 0.726 0.359 0.727 0.355 0.691 0.350 0.680 0.348

    MAR(Y)
b 0.729 0.386 0.726 0.363 0.722 0.334 0.724 0.362 0.720 0.357 0.690 0.353 0.685 0.349

    MAR(X2)
c 0.747 0.379 0.733 0.363 0.71 0.335 0.722 0.361 0.732 0.357 0.704 0.356 0.699 0.356

    MAR(Y,X2)
d 0.731 0.402 0.730 0.368 0.739 0.335 0.717 0.369 0.717 0.362 0.720 0.353 0.738 0.351

    MNAR(X1)
e 0.727 0.382 0.735 0.359 0.728 0.331 0.725 0.360 0.726 0.354 0.700 0.346 0.691 0.345

    MNAR(X1,X2)
f 0.745 0.383 0.730 0.361 0.728 0.333 0.721 0.358 0.725 0.355 0.690 0.350 0.680 0.349

    MNAR(X1,Y)
g 0.755 0.388 0.755 0.362 0.745 0.331 0.749 0.359 0.742 0.355 0.726 0.349 0.727 0.349

Pr(Missing=30%)

    MCAR
a 0.775 0.512 0.741 0.422 0.733 0.338 0.716 0.423 0.724 0.400 0.654 0.376 0.639 0.371

    MAR(Y)
b 0.766 0.553 0.744 0.433 0.741 0.336 0.721 0.434 0.716 0.414 0.66 0.384 0.665 0.380

    MAR(X2)
c 0.789 0.528 0.734 0.439 0.705 0.333 0.681 0.454 0.718 0.42 0.657 0.409 0.649 0.398

    MAR(Y,X2)
d 0.789 0.566 0.720 0.443 0.707 0.331 0.687 0.448 0.695 0.425 0.575 0.393 0.550 0.386

    MNAR(X1)
e 0.788 0.543 0.740 0.421 0.715 0.324 0.721 0.432 0.712 0.402 0.646 0.370 0.645 0.367

    MNAR(X1,X2)
f 0.743 0.538 0.722 0.421 0.708 0.328 0.696 0.427 0.709 0.407 0.659 0.374 0.648 0.368

    MNAR(X1,Y)
g 0.645 0.557 0.605 0.428 0.586 0.320 0.557 0.432 0.589 0.409 0.502 0.376 0.483 0.376

Pr(Missing=50%)

    MCAR
a 0.852 0.804 0.755 0.518 0.762 0.346 0.675 0.541 0.728 0.468 0.639 0.430 0.635 0.414

    MAR(Y)
b 0.888 0.928 0.770 0.538 0.765 0.342 0.699 0.572 0.717 0.486 0.632 0.430 0.657 0.413

    MAR(X2)
c 0.866 0.926 0.757 0.579 0.682 0.335 0.644 0.678 0.718 0.544 0.639 0.503 0.633 0.489

    MAR(Y,X2)
d 0.860 0.924 0.725 0.538 0.750 0.334 0.658 0.598 0.701 0.499 0.556 0.454 0.541 0.435

    MNAR(X1)
e 0.906 0.912 0.759 0.521 0.760 0.323 0.694 0.543 0.711 0.468 0.646 0.410 0.640 0.407

    MNAR(X1,X2)
f 0.799 0.879 0.736 0.519 0.728 0.330 0.684 0.566 0.708 0.476 0.641 0.421 0.641 0.415

    MNAR(X1,Y)
g 0.697 0.940 0.583 0.541 0.562 0.318 0.529 0.589 0.576 0.486 0.488 0.421 0.476 0.418

a
missing completely at random.

b
missing at random conditional on Y.

c
missing at random conditional on X2.

d
missing at random conditional on Y,X2.

e
missing not at random conditional on X1.
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f
missing not at random conditional on X1,X2.

g
missing not at random conditional on X1,Y.

J Stat Plan Inference. Author manuscript; available in PMC 2018 December 12.



V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript

Gebregziabher and DeSantis Page 20

Table 3

Estimates of β2 and SE(β2) IN a three class LC model, where β1=0, β2= 0, pr(X1=1)=0.5 and pr(X2=1)=0.5 

for 1:1 matched study with n simulations.

CCA MI EM LLMI LCMI-2 LCMI-3 LCMI-4

β2 ASE β2 ASE β2 ASE β2 ASE β2 ASE β2 ASE β2 ASE

Pr(Missing=10%)

    MCAR
a 0.004 0.341 −0.006 0.305 −0.006 0.306 −0.006 0.306 −0.005 0.306 −0.006 0.305 −0.006 0.304

    MAR(Y)
b −0.004 0.350 −0.009 0.305 −0.007 0.307 −0.005 0.307 −0.009 0.306 −0.008 0.305 −0.008 0.305

    MAR(X2)
c −0.004 0.343 −0.004 0.305 −0.006 0.306 −0.005 0.306 −0.006 0.305 −0.007 0.304 −0.007 0.304

    MAR(Y,X2)
d −0.004 0.364 −0.006 0.305 −0.007 0.307 −0.009 0.307 −0.008 0.306 −0.016 0.305 −0.019 0.305

    MNAR(X1)
e −0.008 0.350 −0.008 0.305 −0.008 0.307 −0.007 0.306 −0.007 0.306 −0.006 0.304 −0.006 0.304

    MNAR(X1,X2)
f −0.010 0.347 −0.005 0.305 −0.007 0.306 −0.007 0.306 −0.006 0.305 −0.005 0.304 −0.005 0.304

    MNAR(X1,Y)
g −0.004 0.355 −0.010 0.305 −0.010 0.307 −0.010 0.306 −0.011 0.306 −0.012 0.304 −0.013 0.304

Pr(Missing=30%)

    MCAR
a −0.005 0.457 −0.006 0.306 −0.006 0.311 −0.007 0.310 −0.006 0.308 −0.007 0.305 −0.008 0.303

    MAR(Y)
b 0.007 0.499 −0.008 0.307 −0.008 0.314 −0.005 0.312 −0.008 0.310 −0.008 0.305 −0.008 0.305

    MAR(X2)
c −0.015 0.474 −0.009 0.306 −0.008 0.312 −0.005 0.312 −0.008 0.309 −0.008 0.305 −0.008 0.304

    MAR(Y,X2)
d 0.017 0.509 −0.010 0.307 −0.007 0.314 −0.005 0.314 −0.010 0.309 0.002 0.305 0.007 0.305

    MNAR(X1)
e 0.007 0.495 −0.001 0.306 −0.003 0.312 −0.007 0.312 −0.003 0.309 −0.005 0.305 −0.004 0.304

    MNAR(X1,X2)
f −0.028 0.493 −0.006 0.306 −0.007 0.312 −0.008 0.312 −0.005 0.309 −0.006 0.305 −0.006 0.304

    MNAR(X1,Y)
g −0.020 0.510 0.024 0.306 0.023 0.314 0.021 0.314 0.021 0.309 0.020 0.306 0.022 0.305

Pr(Missing=50%)

    MCAR
a 0.013 0.803 −0.007 0.308 −0.004 0.322 −0.008 0.323 −0.012 0.314 −0.002 0.306 0.001 0.304

    MAR(Y)
b −0.027 2.344 −0.014 0.310 −0.009 0.327 −0.010 0.326 0.013 0.316 −0.003 0.306 −0.006 0.305

    MAR(X2)
c 0.082 1.920 −0.002 0.309 −0.009 0.327 0.008 0.335 0.017 0.316 0.011 0.308 0.015 0.306

    MAR(Y,X2)
d 0.102 1.699 −0.013 0.309 −0.007 0.326 −0.005 0.328 −0.016 0.315 −0.077 0.307 −0.117 0.307

    MNAR(X1)
e −0.020 2.001 0.002 0.308 −0.004 0.324 −0.004 0.323 −0.028 0.314 −0.033 0.305 −0.037 0.305

    MNAR(X1,X2)
f −0.083 1.216 −0.012 0.308 −0.010 0.325 −0.009 0.326 0.014 0.314 −0.001 0.305 −0.006 0.305

    MNAR(X1,Y)
g −0.100 1.388 0.030 0.308 0.023 0.325 0.019 0.324 −0.127 0.314 −0.172 0.307 −0.194 0.306

a
missing completely at random.

b
missing at random conditional on Y.

c
missing at random conditional on X2.

d
missing at random conditional on Y,X2.

e
missing not at random conditional on X1.
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f
missing not at random conditional on X1,X2.

g
missing not at random conditional on X1,Y.
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Table 4

95% confidence interval coverage (95CI) and Type-I error rate (TE) of Wald test in a three class LC model for 

testing H0 : β1= 0, where β1= 0, β2= 0, pr(X1=1)=0.5 and pr(X2=1)=0.5 for 1:1 matched study with n=200, 

1000 simulations.

CCA MI EM LLMI LCMI-2 LCMI-3 LCMI-4

95CI TE 95CI TE 95CI TE 95CI TE 95CI TE 95CI TE 95CI TE

Pr(Missing=10%)

    MCAR
a 0.94 0.04 0.94 0.04 0.91 0.07 0.94 0.05 0.95 0.04 0.95 0.03 0.95 0.04

    MAR(Y)
b 0.93 0.05 0.94 0.04 0.92 0.07 0.94 0.05 0.95 0.04 0.95 0.03 0.95 0.02

    MAR(X2)
c 0.94 0.03 0.95 0.05 0.91 0.08 0.94 0.05 0.96 0.04 0.96 0.03 0.95 0.03

    MAR(Y,X2)
d 0.94 0.05 0.94 0.03 0.90 0.08 0.95 0.03 0.94 0.04 0.95 0.03 0.96 0.04

    MNAR(X1)
e 0.95 0.04 0.94 0.03 0.91 0.06 0.96 0.04 0.96 0.03 0.95 0.02 0.95 0.03

    MNAR(X1,X2)
f 0.95 0.04 0.95 0.04 0.91 0.07 0.94 0.05 0.95 0.05 0.96 0.03 0.96 0.03

    MNAR(X1,Y)
g 0.95 0.04 0.95 0.04 0.91 0.06 0.96 0.03 0.96 0.04 0.96 0.03 0.97 0.03

Pr(Missing=30%)

    MCAR
a 0.95 0.06 0.95 0.06 0.83 0.15 0.96 0.05 0.96 0.06 0.95 0.04 0.95 0.05

    MAR(Y)
b 0.95 0.03 0.93 0.06 0.84 0.18 0.95 0.05 0.94 0.05 0.95 0.04 0.94 0.04

    MAR(X2)
c 0.94 0.05 0.94 0.05 0.79 0.18 0.95 0.04 0.95 0.04 0.95 0.03 0.95 0.03

    MAR(Y,X2)
d 0.95 0.07 0.95 0.05 0.83 0.18 0.93 0.06 0.94 0.05 0.94 0.04 0.92 0.05

    MNAR(X1)
e 0.95 0.04 0.96 0.04 0.83 0.19 0.96 0.05 0.96 0.04 0.97 0.03 0.96 0.03

    MNAR(X1,X2)
f 0.96 0.04 0.95 0.04 0.84 0.16 0.95 0.04 0.96 0.05 0.97 0.04 0.96 0.03

    MNAR(X1,Y)
g 0.92 0.07 0.93 0.07 0.78 0.20 0.93 0.08 0.92 0.07 0.91 0.08 0.92 0.08

Pr(Missing=50%)

    MCAR
a 0.96 0.05 0.94 0.06 0.74 0.27 0.93 0.06 0.95 0.05 0.95 0.05 0.93 0.07

    MAR(Y)
b 0.97 0.03 0.94 0.08 0.73 0.32 0.92 0.07 0.93 0.06 0.94 0.05 0.93 0.06

    MAR(X2)
c 0.96 0.04 0.93 0.06 0.70 0.28 0.91 0.04 0.93 0.06 0.94 0.05 0.94 0.05

    MAR(Y,X2)
d 0.96 0.05 0.94 0.05 0.71 0.25 0.91 0.05 0.93 0.06 0.93 0.05 0.93 0.06

    MNAR(X1)
e 0.97 0.03 0.93 0.07 0.73 0.30 0.94 0.06 0.94 0.05 0.94 0.04 0.93 0.05

    MNAR(X1,X2)
f 0.96 0.05 0.94 0.07 0.74 0.28 0.95 0.05 0.95 0.04 0.95 0.02 0.94 0.05

    MNAR(X1,Y)
g 0.95 0.05 0.93 0.07 0.67 0.33 0.92 0.08 0.90 0.08 0.91 0.07 0.88 0.09

a
missing completely at random.

b
missing at random conditional on Y.

c
missing at random conditional on X2.

d
missing at random conditional on Y,X2.
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e
missing not at random conditional on X1.

f
missing not at random conditional on X1,X2.

g
missing not at random conditional on X1,Y.
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Table 5

Odds ratio (standard error) estimates for the association between multiple myeloma and IL-6ra using 

conditional likelihood for the individually matched and unconditional likelihood after breaking the match, 

Los-Angeles County, 1999–2002.

Variable Values CCA EM MI LLMI LCMI-3 LCMI-2

Conditional likelihood: odds ratio and SE estimates

IL6174R DD 1.00(–) 1.00(–) 1.00(–) 1.00(–) 1.00(–) 1.00(–)

AD 1.60(0.45) 1.93(0.37) 1.92(0.23) 1.91(0.23) 2.03(0.22) 1.95(0.22)

AA 1.12(0.71) 1.70(0.62) 1.25(0.39) 1.25(0.40) 1.23(0.37) 1.51(0.36)

Gender Male 2.23(0.44) 2.59(0.38) 4.44(0.21) 4.40(0.22) 4.48(0.21) 4.48(0.21)

Age Age > 60 1.15(0.64) 2.25(0.56) 4.66(0.33) 4.60(0.37) 4.48(0.32) 4.48(0.33)

BMI BMI 1.25(0.26) 1.27(0.21) 1.39(0.13) 1.38(0.13) 1.40(0.13) 1.39(0.12)

EDUC EDUC 1.38(0.27) 1.23(0.22) 1.46(0.13) 1.46(0.13) 1.43(0.13) 1.43(0.13)

Unconditional likelihood: odds ratio and SE estimates

IL6174R DD 1.00(–) 1.00(–) 1.00(–) 1.00(–) 1.00(–) 1.00(–)

AD 1.46(0.32) 1.48(0.28) 1.39(0.14) 1.39(0.14) 1.40(0.13) 1.38(0.13)

AA 0.79(0.49) 0.97(0.45) 0.75(0.23) 0.72(0.24) 0.71(0.22) 0.79(0.21)

Gender Male 1.67(0.29) 1.72(0.26) 1.63(0.12) 1.63(0.12) 1.63(0.12) 1.65(0.12)

Race Black 1.01(0.36) 1.04(0.32) 0.99(0.15) 1.00(0.16) 0.97(0.14) 0.98(0.14)

Age Age > 60 1.09(0.29) 1.12(0.26) 1.15(0.12) 1.16(0.12) 1.15(0.12) 1.15(0.12)

BMI BMI 1.12(0.18) 1.17(0.17) 1.16(0.08) 1.16(0.09) 1.16(0.08) 1.16(0.07)

EDUC EDUC 1.12(0.18) 1.08(0.16) 1.05(0.07) 1.06(0.07) 1.05(0.07) 1.04(0.07)

SE=asymptotic standard error; CCA=complete case analysis using conditional logistic; MI=multiple imputation with discriminant method; LLMI= 
log-linear multiple imputation; EM= Expectation Maximization algorithm; LCMI-2=latent class multiple imputation with two classes; 
LCMI-3=latent class multiple imputation with three classes.
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