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Abstract

Store-operated Ca2+ entry (SOCE) is a Ca2+ entry mechanism activated by depletion of 

intracellular Ca2+ stores. In skeletal muscle, SOCE is mediated by an interaction between stromal-

interacting molecule-1 (STIM1), the Ca2+ sensor of the sarcoplasmic reticulum, and ORAI1, the 

Ca2+-release-activated-Ca2+ (CRAC) channel located in the transverse tubule membrane. This 

review focuses on the molecular mechanisms and physiological role of SOCE in skeletal muscle, 

as well as how alterations in STIM1/ORAI1-mediated SOCE contribute to muscle disease. Recent 

evidence indicates that SOCE plays an important role in both muscle development/growth and 

fatigue. The importance of SOCE in muscle is further underscored by the discovery that loss- and 

gain-offunction mutations in STIM1 and ORAI1 result in an eclectic array of disorders with 

clinical myopathy as central defining component. Despite differences in clinical phenotype, all 

STIM1/ORAI1 gain-of-function mutations-linked myopathies are characterized by the abnormal 

accumulation of intracellular membranes, known as tubular aggregates. Finally, dysfunctional 

STIM1/ORAI1-mediated SOCE also contributes to the pathogenesis of muscular dystrophy, 

malignant hyperthermia, and sarcopenia. The picture to emerge is that tight regulation of STIM1/

ORAI1-dependent Ca2+ signaling is critical for optimal skeletal muscle development/function 

such that either aberrant increases or decreases in SOCE activity result in muscle dysfunction.
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1. Physiological Role of STIM1/ORAI1 Store-operated Ca2+ Entry in 

Skeletal Muscle.

Calcium (Ca2+) is a ubiquitous second messenger that controls a plethora of cellular 

functions including proliferation, differentiation, apoptosis, exocytosis, neurotransmitter 

release, and muscle contraction. Ca2+ signaling occurs when cytoplasmic levels, kept at very 

low concentrations under resting conditions (~10−7 M), rise upon either the release of Ca2+ 

from intracellular stores and/or entry of Ca2+ into the cell from the extracellular space. 

Store-operated Ca2+ entry (SOCE), first discovered in salivary gland cells by James Putney 

in 1986 [1] and referred to as “capacitative Ca2+ entry,” is one of the most important 

pathways for extracellular Ca2+ influx in non-excitable cells. After its initial discovery, 

SOCE in mast cells was shown to be mediated by Ca2+ release-activated calcium (CRAC) 

channels [2]. However, identification of the molecular components that coordinate SOCE 

remained elusive for two decades until it was shown that stromal-interacting molecule 1 

(STIM1) was the Ca2+ sensor in the endoplasmic reticulum (ER) membrane [3] and ORAI1 

[4] was the Ca2+-permeable CRAC channel in the plasma membrane (Figure 1). The 

mechanism for SOCE activation was subsequently elucidated by a series of elegant studies 

conducted primarily in non-excitable cells [5]. Specifically, agonist-mediated Ca2+ release 

through activation of inositol-1,4,5trisphosphate receptor channels, sufficient to deplete ER 

Ca2+ stores, results in Ca2+ dissociation from luminal STIM1 N-terminal EF-hand domains. 

Subsequent global conformational changes in STIM1 promotes oligomerization of STIM1 

proteins that then interact and activate highly, Ca2+-selective ORAI1 channels localized in 

discrete junctional regions (~8–10 nm), or puncta, between the ER and plasma membrane 

[6]. While Ca2+ entry through activated ORAI1 channels is used to replenish ER Ca2+ 

stores, it is now clear that SOCE plays an important role in a wide range of Ca2+dependent 

physiological functions including gene transcription, neurotransmitter release, and muscle 

contraction. Moreover, alterations in SOCE activity result in loss of fine control of Ca2+-

mediated processes that lead to pathological conditions including immunodeficiency and 

myopathy. In this section, we discuss the molecular mechanism and physiological role of 

SOCE in skeletal muscle.

1.1. Control of Ca2+ Signaling in Skeletal Muscle.

The primary function of skeletal muscle is to generate force for movement. Muscle 

contraction and relaxation are regulated by rapid (millisecond time frame) changes in 

myoplasmic free Ca2+ concentration. To produce a rapid increase in myoplasmic Ca2+ 

levels, muscle fibers utilize a highly-organized sarcotubular membrane apparatus termed the 

Ca2+ release unit (CRU) or “triad,” which is composed of a transverse tubule (TT), a 

specialized invagination of the sarcolemma that runs transversally to the long axis of the 

muscle fiber, flanked by two terminal cisternae of the sarcoplasmic reticulum (SR). The SR 

and TT membranes of the CRU are closely opposed (~12–15 nm), thus providing the 

structural framework for excitation-contraction (EC) coupling, the process whereby an 

action potential in the TT is used to trigger Ca2+ release from the SR used to drive muscle 

contraction. At the molecular level, EC coupling in skeletal muscle is mediated by 

mechanical coupling between the dihydropyridine receptor (DHPR), the voltage sensor in 

the TT membrane, and ryanodine receptor type 1 (RYR1) Ca2+ release channel in the SR 
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terminal cisternae [7]. Several other junctional proteins, including calsequestrin type 1 

(CASQ1), triadin, junctin, JP-45, Stac3, and FK-506 binding protein 12 interact with the 

DHPR-RYR1 macromolecular machinery to influence Ca2+ release during EC coupling [8–

10]. As one example, CASQ1, a highly acidic protein in the lumen of SR terminal cisternae 

that binds Ca2+ with moderate affinity, but high capacity [11–13], functions both as a 

luminal Ca2+ buffer and a regulator of RYR1 Ca2+ release channel activity [14, 15]. The SR 

also contains a high-level of sarco/endoplasmic reticulum Ca2+ ATPase-1 pumps that 

efficiently transport Ca2+ released during EC coupling back into the SR to terminate 

contraction and refill SR Ca2+ stores. The combination of both high capacity SR Ca2+ buffer 

(CASQ1) and robust Ca2+ reuptake makes it difficult to fully deplete SR Ca2+ stores in adult 

skeletal muscle fibers. As a result, a single twitch contraction results in only ~10% reduction 

of the releasable SR Ca2+ pool [16]; enabling twitch contractions to continue for long 

periods of time following complete removal of extracellular Ca2+ [17]. For many years it 

was believed that Ca2+ entry had no role in skeletal muscle. However, 45Ca2+ tracer studies 

revealed that significant Ca2+ uptake from the extracellular space occurs during 40 Hz 

stimulation of intact muscles, in a manner that is not prevented by inhibitors of voltage-gated 

L-type Ca2+ channels [18]. In addition, muscle performance is reduced and muscle fiber 

types are altered in mouse models that reduce SOCE in skeletal muscle [19, 20]. Muscle 

specific force is also reduced during repetitive, high-frequency ex vivo stimulation under 

conditions that inhibit SOCE, particularly following acute exercise [21]. Finally, mutations 

in the STIM1 and ORAI1 genes result in human disorders that include a range of muscle 

phenotypes such as hypotonia, atrophy, and tubular aggregate myopathy (see Section 2.0). 

The following sections focus on recent advances in elucidating the molecular determinants, 

properties and physiological role of SOCE in muscle.

1.2 SOCE in Skeletal Muscle

Activation of a Ca2+ entry pathway in muscle by depletion of SR Ca2+ stores was first 

demonstrated in myotubes in 1996 by Steinhardt and colleagues [22]. Kurebayashi and 

Ogawa reported a similar process in adult muscle fibers five years later [23]. These findings 

motivated subsequent studies to identify the molecular determinants and physiological role 

of SOCE in muscle. Initial studies suggested that SOCE in muscle was determined by 

coupling of either RYRs or inositol-1,4,5-trisphosphate receptors in the SR membrane with 

transient receptor potential cation channels (TRPC) in the external membrane [24–29]. 

However, inositol-1,4,5-trisphosphate receptor expression in adult muscle is low and 

primarily restricted to the nuclear envelope [30] and SOCE persists in the absence of either 

RYR1 [27, 31] or TRPC3 [32]. Following the discovery that STIM1 and ORAI1 mediate 

SOCE in non-excitable cells [3, 4], subsequent work focused on assessing the roles of 

STIM1 and ORAI1 in skeletal muscle.

1.2.1. Molecular Components of SOCE—Several observations provide strong 

evidence for SOCE in muscle being coordinated by a functional interaction between STIM1 

in the SR and ORAI1 in the TT. First, STIM1 and ORAI1 are abundantly expressed in both 

myotubes and adult skeletal muscle fibers [33, 34]. Second, using Ca2+ entry and Mn2+ 

quench assays, Lyfenko and Dirksen showed that SOCE is abolished by either knocking-

down STIM1 or expressing a dominant-negative ORAI1 construct (E106Q) that eliminates 
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ion permeation through the channel [31]. Third, myotubes from both global [33] and 

muscle-specific STIM1-knockout mice [35] lack SOCE, consistently with STIM1 being the 

SR Ca2+ sensor for SOCE activation in muscle. Fourth, SOCE is also abolished in adult 

muscle fibers from mice with either muscle-specific expression of dominant-negative 

ORAI1 [19] or muscle-specific ORAI1 knockout [20]. These studies provide compelling 

evidence that STIM1 and ORAI1 are required for SOCE in skeletal muscle. It should be 

noted that while ORAI1 functions in skeletal muscle as a SOCE channel, STIM1 has been 

proposed to be a multipurpose stress transducer activated by diverse stimuli (depletion, 

oxidation, temperature, hypoxia and acidification) that may regulate multiple downstream 

targets including different ion channels (e.g. ORAI1, ORAI2, ORAI3, TRPC channels), 

pumps/exchangers, adaptor proteins, ER chaperones, signaling enzymes and ER stress/

remodeling proteins [36]. Finally, while transcripts for STIM2 [37], ORAI2 and ORAI3 [31] 

are also expressed in myotubes, the precise role(s) of these other isoforms in muscle Ca2+ 

homeostasis and function remain largely unresolved.

1.2.2. Properties of SOCE—In non-excitable cells, STIM1 and ORAI1 proteins are 

diffusely distributed throughout the ER and the PM, respectively, under resting conditions. 

Upon store depletion, STIM1 oligomerizes to form punctuate clusters in junctional regions 

between the ER and plasma membrane (of 10–25 nm gap). Within these puncta, STIM1 

oligomers interact and activate highly Ca2+-selective ORAI1 (CRAC) channels in the plasma 

membrane [6]. In T-lymphocytes, this entire process, from store depletion to CRAC channel 

activation, occurs over ~1 minute [38]. In muscle, however, some authors have proposed that 

Ca2+ influx can be activated very quickly (<1 second) following Ca2+ store depletion [16, 

39]. This rapid activation of SOCE might in part be possible in muscle because highly-

organized, pre-formed SR-TT junctions are already present. Under resting conditions with a 

Ca2+ replete SR, ORAI1 is located within the TT system [19, 21] and STIM1 is positioned 

both within the SR terminal cisternae and throughout the free SR within the I-band region of 

the sarcomere [19, 21, 33]. The localization of a fraction of STIM1 with ORAI1 within pre-

existing triad junctions is proposed to underlie rapid SOCE activation in muscle since 

neither STIM1 redistribution nor SR remodeling upon store depletion are required [40]. 

Consistent with functional STIM1/ORAI1 localization within the triad junction, muscle 

fibers from mice lacking mitsugumin-29, a synaptophysin protein that contributes to triad 

formation and maintenance, exhibit swollen and irregular TTs, altered triad structure, and a 

marked impairment of SOCE [27, 41].

1.2.3. Proposed Roles of STIM1S and STIM1L—Although the above studies 

provide evidence for pre-localization of ORAI1 and a fraction of STIM1 to the triad in 

resting muscle, the precise nature and role of STIM1 present within the free SR at the I-band 

require more investigation. Stiber and colleagues [33] suggested that muscle contains two 

functionally distinct pools of STIM1 proteins: i) one pool located at the triad that mediates 

rapid SOCE activation and ii) a reserve pool within the free SR at the I-band that is recruited 

following store depletion to produce graded SOCE. A recent study provides a potential 

molecular explanation for these two different pools of STIM1 [42]. This work discovered a 

STIM1 splice variant highly expressed in skeletal muscle, STIM1L (L for long, as it encodes 

an extra 106 amino acids), that is the consequence of alternative splicing of exon 11. The 
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unique residues in STIM1L were found to interact with cytoskeletal actin in a manner that 

results in the formation of permanent clusters with ORAI1 even under conditions of fully 

replete Ca2+ stores [42]. On the other hand, the more common, shorter STIM1 variant 

(STIM1S, S for short) was more diffusely distributed throughout the SR at rest and required 

>1 min following store depletion to form clusters [42, 43]. As the rate-limiting-step for 

SOCE activation in non-excitable cells involves the time required for STIM1S oligomers to 

migrate into clusters and then interact/activate ORAI1 channels [43–45], pre-formed 

STIM1L-ORAI1 clusters within the triad junction could account for rapid SOCE activation 

upon sustained or repetitive Ca2+ release sufficient to transiently deplete Ca2+ within the 

terminal SR. Conversely, as STIM1S is localized throughout the free SR and is not pre-

localized with ORAI1, STIM1S might mediate graded recruitment of additional SOCE 

activity when needed.

1.2.4. Effect of Exercise on SOCE—What conditions might drive graded recruitment 

of STIM1Smediated SOCE in skeletal muscle? A recent study found that a single period of 

acute treadmill exercise triggers a reorganization of the sarcotubular membrane system in 

extensor digitorum longus muscle fibers of wild type male mice. The sarcotubular 

reorganization results in the formation of new junctional contacts between the SR and TT 

membrane within the I-band of the sarcomere [21]. The width of the junctional gap in these 

new SR/TT junctions is only ~7–8 nm, narrower than that of triads containing RYR1 feet 

(12–15 nm). In contrast to the translocation of STIM1 oligomers toward ORAI1 in the 

plasma membrane following store depletion in non-excitable cells, in skeletal fibers exercise 

drives the TT membrane containing ORAI1 to elongate into the I-band, toward the Z-line, to 

form junctions with elongated stacks of free SR membranes that contain STIM1 proteins 

(Figure 2). Immunofluorescence and immuno-gold for electron microscopy studies found 

that, following exercise, STIM1 localization remains largely within the Iband, while a 

fraction of ORAI1 moves toward the Z-line, promoting a significant increase in STIM1/

ORAI1 co-localization in the I-band. Prior studies reported that overexpression of STIM1 in 

non-muscle cells triggers a similar remodeling of ER membranes to form stacks of flat-

parallel cisternae [46, 47]. Following acute treadmill exercise, extensor digitorum longus 
muscles were more resistant to fatigue during repetitive, high-frequency stimulation in the 

presence of extracellular Ca2+, a difference abolished by experimental interventions that 

reduce SOCE (e.g. 0 Ca2+ or the addition of the SOCE inhibitors BTP-2 or 2-APB) [21]. 

Together, these results indicate that acute exercise triggers the formation of new SR-TT 

junctions within the I-band that enable recruitment of additional STIM1/ORAI1 interactions 

needed to enhance SOCE and muscle performance during rigorous activity.

Given the potential role for these junctions in mediating STIM1/ORAI1 SOCE after acute 

exercise, they were referred to as Calcium Entry Units (CEUs) in order to differentiate them 

from classical CRUs (Figure 2). In contrast to rapid activation of SOCE in muscle following 

store depletion [16, 39], exercise-induced formation of CEUs occurs over a relatively long 

period time (minutes/hours). It is also important to note that CEUs similar to those formed 

after exercise are also present in muscle fibers from mice not subjected to acute exercise, 

although they are less frequent and smaller in size [21]. Several unanswered issues regarding 

CEUs remain to be addressed. For example, the relative roles of STIM1S, STIM1L, and 
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ORAI1 in exercise-dependent sarcotubular remodeling, CEU formation and SOCE in muscle 

remain unclear. Second, the relative contribution of STIM1/ORAI1 coupling within the triad 

(i.e. CRUs) versus CEUs to SOCE in muscle at rest and after exercise also remains to be 

determined.

1.3. Physiological Role of SOCE in Skeletal Muscle Development and Function

Recent evidence indicates that SOCE plays an important role in both muscle development 

and maintaining contractile activity during periods of prolonged, high-frequency 

stimulation.

1.3.1. Role of SOCE in Muscle Development—STIM1/ORAI1 coupling regulates 

long-term muscle function (e.g. differentiation, development and growth) through activation 

of downstream Ca2+-dependent signals including nuclear factor of activated T-cells (NFAT), 

mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase 1 and 2 

(ERK 1/2) [48, 49]. The role of STIM1/ORAI1 SOCE in muscle development is supported 

by studies showing increased expression of both proteins and enhanced SOCE activity 

during differentiation of myoblasts to myotubes [33, 49–51]. In addition, global STIM1 KO 

mice exhibit delayed muscle development and a lethal congenital myopathy [33, 35], while 

muscle-specific STIM1 KO results in reduced activation of multiple Ca2+-dependent signal 

transduction pathways (including calcineurin, MAP kinase, ERK1/2, and AKT) involved in 

muscle maturation and growth [35]. Muscle-specific STIM1 KO mice and transgenic mice 

with muscle-specific expression of dominant negative E108Q ORAI1 (dnORAI1 mice) both 

exhibit reductions in whole-body and muscle mass, which are due in part to a marked 

decrease in muscle fiber cross-sectional area [19, 35]. Consistent with these findings, mice 

with constitutive, muscle-specific knockout of ORAI1 (cORAI1 KO mice), in which ORAI1 

is absent throughout development, exhibit parallel reductions in both body/muscle mass and 

muscle fiber cross-sectional area [20]. Slow twitch soleus muscles from cORAI1 KO mice 

exhibit reduced content and cross-sectional area of oxidative, fatigue-resistant type I fibers 

[20]. Together, these studies indicate that STIM1/ORAI1-dependent signals promote muscle 

fiber maturation, growth and specification of oxidative, fatigue-resistant fibers. However, as 

muscle mass, fiber cross-sectional area, and fatigue-resistant fiber content are not altered 

following postnatal, muscle-specific ORAI1 ablation [20], the impact of ORAI1 on muscle 

fiber specification and growth occurs during an early developmental time point. Taken 

together, these studies provide strong evidence for STIM1/ORAI1-dependent activation of 

Ca2+-dependent downstream signaling cascades that promote muscle fiber growth and 

differentiation during early development.

1.3.2. Role of SOCE in Maintaining Contractile Function—In addition to playing 

a role in muscle development and growth, STIM1/ORAI1-dependent SOCE also promotes 

sustained force generation during periods of prolonged activity. Under these conditions, 

muscle is activated by repetitive, high-frequency train of action potentials (e.g. 150 Hz) to 

produce tetanic force. Such sustained stimulation triggers massive Ca2+ release that can 

result in a transient depletion of SR Ca2+ content, especially at sites of active Ca2+ release. 

As the Ca2+ current through ORAI1 channels exhibits strong inward rectification [52], 

significant Ca2+ influx through activated ORAI1 channels would be expected to occur 
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primarily during intervals between succeeding high-frequency trains of action potentials 

after the membrane potential has returned to a negative value (e.g. −90 mV). The ability of 

muscle fibers to recover Ca2+ ions from the extracellular space via STIM1/ORAI1-mediated 

SOCE represents one mechanism to promote SR store refilling needed to maintain Ca2+ 

release during periods of repetitive, high-frequency stimulation. Consistent with this, 

removal of extracellular Ca2+ and addition of SOCE channel inhibitors (e.g., 2-APB, BTP-2) 

reduce the ability of skeletal muscle to maintain contractile force during prolonged 

stimulation [21, 27]. Muscles from mitsugumin-29 knockout mice, which display reduced 

SOCE activity, exhibit an increased susceptibility to fatigue [27]. Conversely, mice that lack 

sarcalumenin, a Ca2+-binding protein in the free SR, display increased mitsugumin-29 

expression, increased SOCE activity, and enhanced resistance to muscle fatigue [53]. More 

recently, Stretye and colleagues reported that myostatin-deficiency is accompanied by 

parallel reductions in STIM1 and ORAI1 expression, SOCE activity, SR Ca2+ content and 

depolarization-evoked Ca2+ release [54], while Boncompagni and colleagues found that 

exercise-induced formation of CEUs correlates with an increased ability of muscle to 

maintain force during sustained contractions in the presence of extracellular Ca2+ [21]. 

Together, these studies support a close relationship between STIM1/ORAI1-dependent 

SOCE, SR Ca2+ content, and resistance to fatigue.

Studies using STIM1 and ORAI1 loss-of-function mouse models provided important 

additional insights into the physiological role of STIM1/ORAI1-dependent Ca2+ entry on 

muscle contractile function [19, 20, 33, 35]. STIM1-deficient myotubes lack SOCE and 

exhibit a marked reduction in the ability to maintain myoplasmic Ca2+ transients during 

repetitive KCl-induced depolarization as a consequence of reduced SR Ca2+ content [33]. 

Muscle-specific STIM1 ablation results in loss of SOCE and the inability of muscle fibers to 

maintain Ca2+ transient amplitude during repetitive stimulation in spite of EC coupling 

being unaffected [35]. However, as neither global nor muscle-specific STIM1 knockout mice 

survive into adulthood, these studies do not provide insight into the physiological role of 

STIM1/ORAI1 coupling in adult muscle. On the other hand, muscle-specific dnORAI1 

transgenic mice lack SOCE in muscle and thrive into adulthood [19]. Thus, dnORAI1 

transgenic mice provided the first opportunity to assess the physiological role of ORAI1-

dependent SOCE in adult skeletal muscle. Adult dnORAI1 mice exhibit increased 

susceptibility to exhaustion during rotarod and treadmill exercise. Single muscle fibers from 

dnORAI1 mice show decreases in both SR Ca2+ store content and ability to maintain Ca2+ 

transient amplitude during repetitive stimulation. Consistent with this, extensor digitorum 
longus muscles exhibit a reduced ability to maintain contractile force when subjected to the 

same repetitive stimulation protocol [19]. Subsequent studies using cORAI1 KO mice 

confirmed the physiological role of STIM1/ORAI1mediated SOCE in promoting SR Ca2+ 

refilling and sustained muscle activity during high-frequency stimulation. [20]. Interestingly, 

while cORAI1 KO mice exhibit reduced performance in treadmill and rotarod endurance 

tests, this was not observed following muscle-specific ablation of ORAI1 in adult mice using 

tamoxifen-inducible ORAI1 KO mice [20]. This finding suggests that the reduced endurance 

observed in cORAI1 KO mice primarily results from the reduction in both cross-sectional 

area and fractional contribution of fatigue-resistant type I fibers observed with early 

developmental ablation of ORAI1 (section 1.3.1).
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2. Mutations in STIM1 and ORAI1 Genes Cause Muscle Disease

Since their discovery over a decade ago, mutations in STIM1 and ORAI1 have been linked 

to multiple human diseases including various forms of immunodeficiency and myopathy 

(Table 1 and Figure 1). The fact that mutations in STIM1 and ORAI1 result in disorders 

characterized by clinical myopathy is consistent with the discussion above that STIM1/

ORAI1-mediated SOCE plays an important role in muscle function.

2.1. Loss-of-Function Mutations in STIM1 and ORAI1 Genes

The involvement of SOCE dysfunction in skeletal muscle disease became clear with the 

initial identification of ORAI1 as the pore-forming subunit for CRAC activity [4]. Using a 

modified linkage analysis with single-nucleotide polymorphism arrays and Drosophila RNA 

interference screen approaches, a loss-of-function missense mutation in ORAI1 (p.R91W) 

was identified in patients with combined immunodeficiency (CID) with severe skeletal 

muscle myopathy [4, 55]. A subsequent clinical report from a patient with this mutation also 

revealed a predominance of type I fibers and atrophic type II fibers, consistent with ORAI1 

exhibiting a critical role in fiber type differentiation/maintenance [56]. Similarly, a 

gastrocnemius muscle biopsy taken from a patient with an ORAI1 p.V181SfsX9 loss-of-

function mutation exhibited an almost complete absence of type II muscle fibers [57].

To date, 13 different loss-of-function mutations in the STIM1 and ORAI1 genes, which 

result in a marked reduction of SOCE function, have been described (Figure 1). Loss-of-

function mutations in the STIM1 gene have been reported to result in severe, early-onset 

immunodeficiency with muscle hypotonia, mydriasis, iris hypoplasia, ectodermal dysplasia, 

splenomegaly, lymphadenopathy, and multiple auto-immune manifestations including 

thrombocytopenia and hemolytic anemia (Table 1). As one example, patients homozygous 

for the E136X (p.E128RfsX9) mutation in STIM1 exhibit CID coincident with progressive 

muscular hypotonia as a consequence of a lack of SOCE [58]. Similarly, significant 

muscular hypotonia was reported in patients with a loss-of-function p.R429C point mutation 

in STIM1 [59], a conserved residue in the third coiled-coil domain required for 

oligomerization of STIM1 dimers and subsequent binding/activation of ORAI1 channels 

[60]. In many cases, individuals with loss-of-function mutations in STIM1 and ORAI1 
exhibit a common clinical phenotype. For example, patients carrying STIM1 (p.E128RfsX9, 

p.P165Q, p.R426C, or p.R429C) and ORAI1 (p.A88SfsX25, p.R91W, p.G98R, 

p.H165PfsX1, p.V181SfsX8, p.L194P) mutations experience CID, atrophy/hypotonia of 

skeletal muscle, myopathy and a severe chronic pulmonary problem due to respiratory 

muscle weakness [49, 57, 61] (Table 1).

2.2. Gain-of-Function Mutations in STIM1 and ORAI1 Genes

Recently, multiple gain-of-function mutations in both the STIM1 and ORAI1 genes (Figure 

1), which result in constitutively activated SOCE, were found to be linked to three 

overlapping diseases with presentations ranging from non-syndromic tubular aggregate 

myopathy (TAM) [62, 63] to more complex pathologies such as Stormorken and York 

Platelet syndromes [64–66] (Table 1).
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2.2.1. Tubular Aggregate Myopathy (TAM)—TAM is a relatively rare skeletal muscle 

disorder characterized by progressive muscle weakness, cramps, and myalgia [67] that 

exhibits both autosomal dominant and recessive modes of inheritance [68]. Despite 

differences in clinical phenotype and symptomatology among TAM patients, a consistent 

histopathological feature is the presence of tubular aggregates (TAs). TAs are abnormal 

structures in muscle composed of an unusual accumulation of highly-ordered and tightly 

packed SR tubule membranes (Figure 3) that contain CASQ1, SERCA, and sarcalumenin 

[67, 69]. The first identification and characterization of TAs were made in 1970 by Engel 

and colleagues using electron microscopy to observe TAs in muscle biopsies from 

dyskalemic patients [70]. Under electron microscopy and freeze fracture, TAs appear as 

single- or double-walled parallel aligned tubules in longitudinal sections (Figure 3A-C) and 

as honeycomb-like structures in cross-sections (Figure 3D-F). The tubules can either appear 

empty or containing electron-dense material. Under light microscopy, TAs are detected using 

two distinct staining procedures: 1) as organized inclusions of bright red materials located 

either in the center or periphery of the fiber upon Gomori trichrome staining or 2) as dark 

stained regions with NADH-tetrazolium reductase staining. Interestingly, TAs stain 

negatively for succinate dehydrogenase, consistent with their SR, rather than mitochondrial, 

origin.

Subsequent to their description in dyskalemic patients, TAs were found in a variety of other 

pathological conditions affecting muscle including hypoxia [71], periodic paralysis, 

congenital myasthenic syndromes, and myotonic disorders [72–74]. Thus, TAs are a 

relatively non-specific structural alteration present in patients across a wide variety of 

neuromuscular disorders. Although having not yet been confirmed in humans with age, TAs 

are abundant in fast twitch muscle of aged (>24 months old) male mice and stain positively 

for CASQ1 and SERCA (Figure 3) [67, 75].

A relationship between altered Ca2+ homeostasis and the formation of TAs has long been 

suggested [69, 73]. The hypothesis that TAs are formed as a consequence of altered Ca2+ 

handling in skeletal muscle fibers, is strengthened by the fact that gain-of-function mutations 

in both STIM1 and ORAI1 result in myopathies characterized by the presence of TAs (see 

sections 2.2.2 and 2.2.3 below). Thus, increased SOCE via constitutively-active STIM1/

ORAI1 proteins likely serves as an upstream trigger for TA formation. While the precise 

downstream cellular and molecular mechanisms that underlie TA assembly remain to be 

elucidated, several hypotheses have been advanced. One possibility is that enhanced SOCE 

promotes an aggregation and fusion of free SR vesicles/membranes into TAs. Alternatively, 

TAs may represent an adaptive mechanism triggered by constitutive SOCE designed to limit 

Ca2+-mediated muscle fiber hypercontraction and necrosis.

A second hypothesis is that a dysfunction in Ca2+ homeostasis could result in protein 

misfolding and aggregation due to altered proteostasis, which in turn, drives morphological 

changes in the SR structure that lead to TA formation [76]. In this regard, protein N-

glycosylation plays a critical role in the correct maintenance of ER proteostasis, such that a 

reduction in protein N-glycosylation can induce ER/SR stress and increase the accumulation 

of unfolded proteins [77, 78]. Recessive mutations in the glutamine-fructose-6-phosphate 

transaminase 1 gene, an enzyme that produces UDP-N-acetylglucosamine needed for N-
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linked glycosylation in the ER/SR, results in congenital myasthenic syndromes with a limb-

girdle dystrophy phenotype that are associated with TAs [79]. Interestingly, mutation of an 

N-glycosylation site in STIM1 correlates with strong activation of ORAI1 channels that 

could drive TAs formation in skeletal muscle [80]. It is also possible that TAs are driven by 

conditions (e.g. hypoxia, aging, constitutive SOCE) that promote abnormal clustering of 

STIM1 oligomers. Consistent with this idea, EM images of TAs reveal the presence of 

discrete, evenly spaced electron-dense bridges within the gap between adjacent tubules 

(Figure 3 E). Similar bridging structures were described in TAs of patients with TAM [67] 

and between stacks of flat parallel cisternae in CEUs following exercise [21]. The molecular 

nature of these electron-dense strands remains unknown, though aggregates of STIM1 

oligomers represent a reasonable candidate.

This possibility is supported by immuno-gold detection of STIM1 in the SR stacks following 

exercise in adult skeletal muscle [21] and in the ER stacks after STIM1 overexpression in 

HeLa cells [46]. In addition, Endo and colleagues showed that TAs in skeletal muscle from 

TAM patients are positive for STIM1 and ORAI1 immunostaining, consistent with the two 

proteins being sequestered in TAs [63]. However, a separate study found that STIM1 is not 

included in TAs, but rather is co-localized with RYR1 around the TA periphery, in muscle 

biopsies of TAM patients with STIM1 gain-of-function mutations [62]. Thus, while a 

relationship between altered SOCE function and Ca2+ homeostasis in TA formation in 

muscle is clear, additional studies are needed to more precisely determine the precise 

molecular components of TAs and the cellular/molecular mechanisms involved in their 

formation.

2.2.2. STIM1 Gain-of-Function Mutations—The majority of autosomal dominant 

mutations in STIM1 linked to TAM are located in the N-terminal luminal cEF-hand or hEF-

hand (EF1/2) domains (Figure 1). These domains function as a sensor for the Ca2+ 

concentration in the SR lumen and are critical for initiating a complex series of 

conformational changes that lead to STIM1 oligomerization and ORAI1 channel activation 

following SR Ca2+ depletion. Bohm and colleagues were the first to describe four 

heterozygous dominant missense mutations in four families with dominant TAM, each 

affecting a highly-conserved EF1/2 hand amino acid residue [62]. Members from these 

families displayed a clinical spectrum of myopathic features including elevated serum 

creatine kinase levels, wrist contractures, ophthalmoplegia, miosis, as well as mild and 

slowly progressive lower-limb muscle weakness [62] (Table 1). Ten different STIM1 EF-

hand mutations, five each in both the cEF1- and hEF2-hands, have been reported to date. By 

disrupting the ability of EF1/2 hands to bind Ca2+ and/or destabilizing the interaction with 

the sterile α-motif (SAM) domain, these mutations promote STIM1 oligomerization and 

ORAI1 channel activation even in the absence of SR Ca2+ depletion. Consistent with this, in 

contrast to wild type STIM1, the STIM1 EF-hand mutants promote clustering of STIM1 

monomers independently from thapsigargin-induced store depletion following expression in 

C2C12 myoblasts. Moreover, myoblasts obtained from a patient with one of these mutations 

(p.D84G) were shown to exhibit elevated levels of resting Ca2+ and increased thapsigargin-

induced and thapsigargin-independent Ca2+ influx compared to that of control myoblasts 

[62].
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Similar to TAM, patients affected by Stormorken disease, a rare autosomal-dominantly 

inherited disorder characterized by a complex clinical picture including thrombocytopenia, 

platelet defects, congenital miosis, and proximal muscle weakness (Table 1), also exhibit 

increased serum levels of creatine kinase and skeletal muscle fibers with histological 

evidence of myopathy with TAs [81, 82]. A mutation in the first cytosolic coiled-coil domain 

of STIM1 (p.R304W), a domain that plays a critical role in maintaining STIM1 in a closed, 

inactive state until SR Ca2+ levels are reduced enough to dissociate Ca2+ from the EF-hand 

domains, was shown to be associated with Stormorken disease [64, 65, 83]. The p.R304W 

mutation is proposed to disrupt the conformation of an inhibitory helix in the first coiled-coil 

domain that unlocks the inhibitory state of STIM1, thus resulting in a gain-of-function effect 

on STIM1 function [83]. Indeed, the p.R304W mutation promotes formation of STIM1 

puncta and CRAC channel activation even in the absence of thapsigargin-induced store 

depletion [64, 65, 83]. In addition, a recent study reported a muscle degenerative phenotype 

in p.R304W knock-in mice [84].

2.2.3. ORAI1 Gain-of-Function Mutations—To date, four autosomal dominant 

inherited gain-of-function mutations in ORAI1 have been reported in families with TAM 

(p.G98S and p.L138F) and Stormoken-like disease (p.S97C and p.245L) (Figure 1). The two 

TAM mutations, p.G98S and p.L138F, located in transmembrane domains 1 and 2, 

respectively, result in constitutively activatedORAI1 channels that permit Ca2+ influx 

independently of Ca2+ store depletion and STIM1 oligomerization [63]. The p.P245L 

mutation, located in transmembrane domain 4, results in a Stormorken-like phenotype 

characterized by myopathy with TAs and congenital miosis, but in the absence of 

thrombocytopenia and platelet defects [64]. Heterologous co-expression of STIM1 and 

either wild type or p.P245L ORAI1 in HEK 293 cells revealed that this mutation markedly 

reduces Ca2+ dependent inactivation of ORAI1, and thus, enhances SOCE, but still requires 

STIM1 to be activated [64]. The p.S97C mutation in ORAI1, located in the transmembrane 

domain 1, is associated with mild, late-onset TAM with congenital miosis, consistent with a 

Stormorken-like syndrome in the absence of thrombocytopathy (Table 1). Similar to the 

adjacent p.G98S TAM mutation, the p.S97C mutation results in a constitutively active 

channel that increases Ca2+ influx both in the absence and presence of store depletion [85]. 

Functional assays conducted in both transfected HEK 293 cells and patient-derived 

myotubes revealed that the p.S97C mutation in ORAI1 increases the rate of SOCE, 

consistent with a gain-of-function effect on the channel. The reason(s) for the markedly 

earlier onset and more severe clinical presentation observed in TAM patients possessing the 

p.G98S mutation compared to those with milder Stormorken-like syndrome of patients with 

the p.S97C mutation is not entirely clear. As one possibility, the difference in phenotypic 

expression could be due to a larger effect of the p.G98S mutations on heterotypic ORAI1 

channel function and/or other genetic or environmental factors that influence the clinical 

phenotype [85].

3. SOCE Activity as a Modifier of Skeletal Muscle Disorders.

In addition to loss-of-function and gain-of-function mutations in STIM1 and ORAI1 directly 

causing muscle disease, altered STIM1/ORAI1 function also indirectly contributes to or 
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amplifies the pathogenesis of other muscle disorders including muscular dystrophy, 

malignant hyperthermia, and sarcopenia.

3.1. SOCE and Muscular Dystrophy

Muscular dystrophy (MD) comprises a heterogeneous group of muscle diseases 

characterized by weakness and progressive muscle degeneration. The most common MD is 

Duchenne muscular dystrophy (DMD), an incurable X-linked disorder resulting from loss-

of-function mutations to the gene that encodes dystrophin [86]. Dystrophin, a 427 KDa 

structural protein on the cytoplasmic face of the sarcolemma [87], anchors actin filaments 

and microtubules to a group of proteins collectively known as the dystrophin-associated 

protein complex [88]. The dystrophin-associated protein complex stabilizes sarcolemmal 

integrity during mechanical stress [89] by linking the cytoskeleton to laminin in the 

extracellular matrix [90]. While disruption of sarcolemmal integrity is a common feature 

among different MDs, the exact mechanism(s) that underlies progressive muscle fiber 

degeneration remains controversial. A longstanding hypothesis for muscle fiber degeneration 

in DMD is that alterations in the sarcolemma stability promote excessive Ca2+ entry that 

triggers calpain- and mitochondrial-mediated cell death [91]. Consistent with this 

hypothesis, defective Ca2+ homeostasis has been shown to play a role in the pathogenesis of 

the dystrophic phenotype. For example, both Ca2+ influx and total Ca2+ content are 

increased in muscle biopsies from DMD patients and in skeletal muscle fibers from mdx 
mice (a murine dystrophin-deficient model of DMD) [92, 93]. Myoplasmic Ca2+ overload 

could trigger an array of intracellular pathways/mechanisms responsible for the dystrophic 

phenotype including: mitochondrial Ca2+ overload, enhanced oxidative stress, and activation 

of the Ca2+-dependent proteases [94–96]. However, the mechanisms for enhanced Ca2+ 

influx in dystrophic fibers, including through “microtears” in the sarcolemma or specific ion 

channels, remain uncertain and continue to be debated. Over the past two decades, increased 

activity of several different classes of Ca2+ channels (e.g. Ca2+ leak channels, stretch-

activated channels, receptor-operated channels and SOCE channels) have all been proposed 

to promote the dystrophic phenotype in DMD [97–104].

A growing number of reports provide evidence for a modulatory role of SOCE in the 

pathogenesis of DMD. Early studies found that SOCE activity is upregulated in muscle from 

mdx mice [93], though the molecular components at that time remained unknown. Prior to 

the identification of STIM1 and ORAI1 in coordinating SOCE in muscle (see section 1.2.1 

above), Vandebrouck and colleagues found that upregulation of TRPC1 and TRPC3 voltage-

independent Ca2+-permeable channels sensitive to thapsigargin- and caffeine-mediated store 

depletion increases Ca2+ influx in muscle fibers from mdx mice [100]. Consistent with these 

results, overexpression of TRPC3 in muscle enhanced, while dominant negative TRPC4 

expression reduced, the dystrophic phenotype of mdx and δ-sarcoglycan-deficient (Sgcd−/−) 

mice [101]. A similar reduction in the dystrophic phenotype was also observed following 

overexpression of dominant negative stretch-activated TRPV2 channels [105]. Moreover, 

different levels of stretch-activated TRPC1 channel activity correlates with DMD in mice 

[106] and muscle damage following eccentric contractions is reduced in TRPC1 knockout 

mice [107].
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Several studies provide evidence for a modulatory contribution of STIM1/ORAI1-dependent 

Ca2+ influx to the dystrophic phenotype of mdx mice. First of all, muscle fibers from mdx 
mice exhibit increased STIM1/ORAI1 expression and SOCE function, including a shift in 

SOCE activation and deactivation thresholds to higher SR luminal Ca2+ concentrations [39, 

108]. In line with these findings, Zhao and colleagues found an increase in both ORAI1 

mRNA and protein levels coincident with enhanced SOCE activity and SR Ca2+ storage in 

muscle from mdx mice, although STIM1 levels were unaltered in this study [102]. This 

enhanced SOCE and SR Ca2+ storage were reduced by either shRNA-mediated ORAI1 

knockdown or treatment of animals with BTP-2, a potent CRAC channel inhibitor. Together, 

these studies suggest that increased STIM1/ORAI1dependent SOCE contributes to Ca2+-

mediated muscle fiber degeneration in mdx mice. Consistent with this idea, muscle-specific 

STIM1 overexpression enhances SOCE and promotes a dystrophic phenotype (e.g. increased 

inflammation, fibrosis, necrosis, mitochondrial swelling, and serum CK levels) similar to 

that observed in mdx and Sgcd−/− mice [103]. Importantly, both SOCE and MD of mdx and 

Sgcd−/− mice are reduced by crossing with transgenic mice with muscle-specific expression 

of dominant-negative ORAI1 (dnORAI1) [103]. These findings support a modulatory role 

for STIM1/ORAI1-mediated Ca2+ entry in the pathogenesis of MD.

3.2. SOCE and Malignant Hyperthermia

Malignant hyperthermia (MH) susceptibility is an inherited pharmacogenetic disorder 

characterized by a life-threatening response to halogenated anesthetics (i.e. halothane, 

isoflurane) and certain muscle relaxants (e.g. succinylcholine) commonly used during 

surgical procedures [109]. The exposure of susceptible individuals to these agents triggers a 

hypermetabolic reaction characterized by skeletal muscle rigidity, rise in core body 

temperature (e.g. hyperthermia), rupture of skeletal muscle fibers (e.g. rhabdomyolysis) and 

dangerous increases in serum levels of creatine kinase and potassium. MH crises can be 

lethal if not immediately corrected by suspension of triggering agents, cooling and 

administration of dantrolene, the only FDA-approved drug to treat MH reactions. At the 

molecular level, exposure of MH susceptible individuals to triggering agents induces an 

uncontrolled sustained rise in myoplasmic Ca2+ concentration as a result of activation of 

RYR1 Ca2+ release channels in the SR [109]. In ~70% of cases, MH susceptibility is caused 

by mutations in the RYR1 gene [110, 111]. Mutations in the α1S-subunit of the DHPR 

account for another ~1% of cases [112, 113]. The genetic cause of the remaining ~30% of 

cases remains unknown. While mice lacking CASQ1 (CASQ1-null) exhibit a phenotype 

resembling MH in humans [114, 115], mutations in CASQ1 were not identified in a large 

North American cohort of MH patients [116]. An in vitro caffeine-halothane contracture test 

(IVCT or CHCT), which measures the sensitivity of a muscle biopsies to caffeine- and 

halothane-induced contractures, was developed as a diagnostic assay for MH susceptibility 

in the late 1980s and continues to be the gold standard for MH diagnosis [117, 118].

For many years it was assumed that the sustained rise in myoplasmic Ca2+ during an MH 

event was solely the consequence of an uncontrolled activation of RYR1 Ca2+ release from 

the SR. However, early optimization studies for the diagnostic IVCT/CHCT found that the 

assay only worked when extracellular Ca2+ is included in the solution bathing the muscle 

biopsy [119–121], implicating a critical role for extracellular Ca2+ in the enhanced 
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sensitivity of MH susceptible muscle. More recently, MH triggering agents were proposed to 

promote sustained RYR1-dependent Ca2+ release sufficient to deplete SR Ca2+ stores [114, 

122–124], which in turn, activates SOCE channels to trigger Ca2+ influx from an essentially 

infinite extracellular compartment. The combined effects of sustained SR Ca2+ release, store 

depletion, and massive SOCE-dependent Ca2+ influx result in the myoplasmic Ca2+ 

overload, hypercontractures, heat generation and rhabdomyolysis that occur during an MH 

event. The first direct evidence for a role of SOCE in MH pathogenesis was provided by 

Steele and colleagues who used mechanically-skinned fibers from normal and MH 

susceptible individuals to show that therapeutic levels of halothane induce SR Ca2+ release 

and store depletion sufficient to activate STIM1-dependent Ca2+ influx in muscle fibers from 

MH susceptible, but not normal, individuals [125]. Consistent with this, Cully et al (2018) 

used a skinned fiber approach to show that muscle fibers from MH-susceptible individuals 

exhibit enhanced RYR1 Ca2+ leak, persistent SOCE activity, and a compensatory increase in 

capacity to extrude Ca2+ across the TT system compared with that observed for muscle 

fibers from control individuals [126].

Evidence from validated mouse models of MH susceptibility (Ryr1Y522S/+ and Ryr1R163C/+ 

RYR1 knock-in mice) provides additional support for a role of SOCE in MH pathogenesis. 

As is observed for other MH-causative mutations in RYR1, the Y522S and R163C promote 

RYR1 Ca2+ leak and increased sensitivity of the release channel to be opened by a wide 

variety of activators (including halothane, caffeine, 4-chloro-m-cresol, DHPR voltage 

sensor) [109]. Following homologous expression in RYR1-null myotubes, the Y522S MH 

mutation produces the highest degree of RYR1 Ca2+ leak, sensitization and SR Ca2+ store 

depletion of the MH-causative mutations studied in this system [127, 128]. Consistent with 

these findings, RYR1 channel permeability is increased (>2fold) and resting SR Ca2+ store 

content reduced (~50%) in muscle fibers from Ryr1Y522S/+ mice [129], which would be 

expected to increase SOCE and explain the elevation in resting Ca2+ levels [130, 131]. A 

similar increased RYR1 Ca2+ leak linked to massive reduction in SR Ca2+ content is 

observed in muscle fibers from CASQ1-null mice [114, 132, 133]. Consistent with an 

increased loss of SR Ca2+ via RYR, the rate of SOCE activation is accelerated in myotubes 

from both Ryr1Y522S/+ and CASQ1-null mice [134]. Dantrolene directly inhibits RYR1 

channel activity in a calmodulin- [135] and Mg2+-dependent manner [136], but does not 

directly inhibit SOCE channels [134].

However, as SOCE activation lies downstream of store depletion, dantrolene indirectly 

inhibits SOCE by protecting stores from becoming depleted as a result of reducing RYR1 

Ca2+ leak.

Myotubes derived Ryr1R163C/+ mice exhibit increased basal sarcolemmal divalent cation 

influx that results in a chronically elevated resting Ca2+ concentration [137]. Both elevated 

basal divalent cation influx and resting Ca2+ levels were reduced by inhibitors of ORAI1-

dependent SOCE (BTP2, Gd3+, expression of dominant-negative ORAI1) and TRPC 

channels (Gd3+, GsMTx-4). Importantly, elegant in vivo measurements of resting Ca2+ 

levels in vastus lateralis muscles of control and Ryr1R163C/+ mice during exposure to 1.5% 

halothane vapor, revealed that local application of BTP-2, Gd3+ or GsMTx-4 all markedly 

reduced halothane-induced elevations in resting Ca2+ [137]. Taken together, studies 
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conducted in muscle from MH susceptible individuals and validated murine models of MH 

support a paradigm by which SOCE serves as a modifier or amplifier of MH pathogenesis 

such that STIM1/ORAI1 coupling could represent a potential therapeutic target for the 

treatment of MH in humans.

3.3. SOCE and Age-related Muscle Dysfunction

Aging is a complex, irreversible process characterized by morphological alterations and 

progressive decline of multiple biological/physiological functions. Age-related loss of 

skeletal muscle function (sarcopenia) is characterized by a marked reduction in muscle 

mass, lowered muscle strength, increased susceptibility to fatigue, and reduced velocity of 

contraction [138, 139]. The underlying causes of sarcopenia includes loss of muscle mass 

(atrophy) due to reduced fiber number and size [140, 141], muscle stem cell depletion that 

leads to neuromuscular junction degeneration [142], and loss (1015%) and remodeling of 

motor units [143]. However, these effects alone are not sufficient to account for the degree of 

muscle weakness observed with aging. Impairments in intrinsic muscle fiber capacity for 

Ca2+ release and mitochondrial ATP production contribute to a reduction in specific force 

production. A decrease in DHPR expression leads to an uncoupling between DHPR and 

RYR1 proteins that results in a reduction in Ca2+ available to activate the contractile 

filaments [144, 145]. A decrease in number/area and altered morphology of CRUs also 

contributes to the reduction in electrically-evoked Ca2+ release and skeletal muscle force 

production [146, 147]. Finally, alterations in mitochondrial structure, function, and number 

also play a role in age-related decreases in muscle performance [148–150]. Thus, 

impairments in Ca2+ release and mitochondrial energy production contribute to the observed 

age-dependent decline in muscle specific force.

A reduction in STIM1/ORAI1-mediated SOCE is also proposed to contribute to the decline 

in muscle contractile force and increase in susceptibility to fatigue in aging. In support of 

this idea, muscle fatigue during repetitive, high-frequency stimulation is accelerated [27] and 

SOCE is reduced in skeletal muscle from aged (2 year old) mice [151]. Interestingly, the 

reduction of SOCE in muscle from aged mice was reported to occur in the absence of a 

change in transcript levels for either STIM1 or ORAI1 [151]. However, a significant 

reduction in the expression levels of mitsugumin-29 was reported in aged muscles [151], 

consistent with reduced mitsugumin-29 expression causing a disruption of triad architecture 

and decrease in SOCE [27]. Thornton and colleagues showed that SOCE is required to 

maintain contractile force during repetitive contractions in soleus muscles from young mice, 

but not from aged mice [152]. Together, these studies suggest that an inability to recover 

Ca2+ ions from the extracellular space via SOCE during periods of intense activity 

contributes to a reduction in force generation and increase in susceptibility to fatigue in 

aging. This idea is further supported by the fact that pharmacological inhibition of SOCE in 

muscles from young mice similarly results in a reduction in force generation and increase in 

susceptibility to fatigue [21, 27, 152]. However, the potential role of altered SOCE in 

sarcopenia is controversial. For example, Payne and colleagues reported that while sustained 

contraction during high-frequency stimulation depends on extracellular Ca2+ in a 

subpopulation of muscle fibers from aged mice, this was due to an effect of extracellular 

Ca2+ on excitability rather than insufficient SOCE [153]. In addition, Edwards and 
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colleagues concluded that in spite of a 40% reduction in STIM1 expression (in the absence 

of a change in ORAI1 expression), SOCE is unaltered in muscle fibers from aged mice 

[154]. Thus, the relative role of STIM1/ORAI1-dependent SOCE in the age-dependent 

decline of skeletal muscle performance remains enigmatic. Clearly, additional studies are 

needed to resolve this issue.

4. Conclusions and Future Directions

Over the past two decades, the importance of Ca2+ entry in skeletal muscle has garnered 

significant attention. As a result, STIM1/ORAI1-mediated SOCE in muscle has 

unequivocally been demonstrated, shown to promote muscle growth/differentiation and limit 

force decay during sustained muscle activity. In addition, defects in STIM1/ORAI1-

mediated SOCE both directly and indirectly contribute to a wide range of different clinical 

myopathies. Nevertheless, several important unresolved issues and open questions remain to 

be addressed.

Boncompagni and colleagues reported that acute treadmill exercise triggers a remodeling of 

sarcotubular membranes that results in an elongation of the TT from the triad into the I-

band, toward the Z-line, to form junctional contact with flat-parallel stacks of SR cisternae 

[21]. As STIM1 and ORAI1 proteins are present within these newly formed regions of SR-

TT contact, the junctions were termed CEUs. However the precise molecular mechanisms 

that control exercise-dependent remodeling of SR and TT membranes are unknown. For 

example, future studies will need to determine the specific exercised-induced signals, as well 

as the relative roles of STIM1S, STIM1L and ORAI1, in both remodeling of the free SR into 

well-ordered flat-parallel stacks of cisternae and extensions of the TT into these stacks of 

membranes. The potential role of proteins known to be involved in TT biogenesis and 

maintenance (e.g. junctophilins, myotubularin-1, dysferylin, BIN-1; [155]), in exercise-

induced elongation of the TT and CEU formation, as well as the time course for the 

formation and disassembly of CEUs, need to be determined. Finally, although extensor 
digitorum longus muscles from mice subjected to exercise exhibit an increased frequency of 

CEUs containing STIM1 and ORAI1 proteins and enhanced resistance to fatigue [21], the 

relative impact of CEUs on the magnitude and properties of SOCE after exercise, as well as 

opposing Ca2+ efflux mechanisms, compared to that observed under resting conditions needs 

to be determined. Such an analysis would also provide insight into the relative contribution 

of STIM1/ORAI1 coupling from CRUs versus CEUs in SOCE in muscle at rest and after 

exercise.

Another major unresolved issue involves the precise relationship between SOCE function 

and the formation of TAs in skeletal muscle. It is now clear that gain-of-function mutations 

in both STIM1 and ORAI1 result in clinical myopathies with TAs being a central defining 

histopathological characteristic. However, the mechanism(s) by which constitutively active 

SOCE leads to the formation of TAs is unknown. Another unresolved issue is whether the 

formation and properties of TAs resulting from gain-of-function STIM1 and ORAI1 

mutations are similar or fundamentally distinct from those observed in aging in which SOCE 

may be reduced. In addition, it is unclear if TAs contribute to the hypotonia and muscle 

weakness experienced by individuals with TAM or rather if their formation is a protective 
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compensatory response designed to limit Ca2+ induced damage (e.g. increased proteolysis, 

oxidative stress, activation of the mitochondrial permeability transition pore). Alternatively, 

analogous to how physiological hypertrophy may initially be protective to the heart while 

later being detrimental, TAs could initially be protective by providing a sink for constitutive 

SOCE, but over time, become detrimental as larger and more extensive TAs begin to 

interfere with the EC coupling and myofilament apparatus. In any event, answers to these 

questions will require animal models that faithfully recapitulate the clinical and 

histopathological phenotype of human TAM patients. Finally, as loss- and gain-of-function 

mutations in both STIM1 and ORAI1 directly cause several muscle pathologies (see section 

2.0) and SOCE dysfunction contributes to the pathogenesis of other muscle disorders (see 

section 3.0), STIM1/ORAI1-mediated SOCE in muscle could emerge as an intriguing 

potential new therapeutic target to treat a wide range of debilitating human myopathies in 

the future, though potential side effects of inhibiting ORAI1 channels in muscle (e.g. iris 

sphincter dysfunction) would need to be appropriately managed.

List of frequently used abbreviations:

Ca2+ calcium

CID combined immunodeficiency

CASQ1 calsequestrin-1

CRAC Ca2+-released-activated-Ca2+

CEU Ca2+ entry unit

CRU Ca2+ release unit

DHPR dihydropyridine receptor

EC coupling excitation-contraction coupling

DMD Duchenne muscular dystrophy

ER endoplasmic reticulum

MH malignant hyperthermia

MD muscular dystrophy

RYR1 ryanodine receptor type-1

SOCE store-operated Ca2+ entry

SR sarcoplasmic reticulum

STIM1 stromal interaction molecule-1

TA tubular aggregates

TAM tubular aggregate myopathy
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TRP transient receptor potential cation

TT transverse tubule.
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Highlights

• STIM1 and ORAI1 coordinate SOCE in skeletal muscle.

• STIM1/ORAI1 SOCE promotes muscle development/growth and maintains 

Ca2+ store content during periods of prolonged, high-frequency stimulation.

• Loss-of-function and gain-of-function mutations in STIM1 and ORAI1 result 

in an eclectic array of disorders with clinical myopathy as a central defining 

component.

• Dysfunctional STIM/ORAI1 SOCE also contributes to the pathogenesis of 

other muscle disorders including muscular dystrophy, malignant 

hyperthermia, and sarcopenia.

• Tight regulation of STIM1/ORAI1 SOCE is critical for optimal skeletal 

muscle function.
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Figure 1. Schematic representation of STIM1 and ORAI1 proteins and location of associated 
disease mutations.
A) STIM1 protein structure. cEF, canonical EF-hand; hEF, hidden EF-hand; SAM, sterile α-

motif; TM, transmembrane; CC, coiled-coil region; S/P serine-proline-rich domain; K, 

lysine-rich domain; CAD, channel activation domain. B) ORAI1 protein structure. R/P, 

arginine-proline-rich domain; TM, transmembrane domain; CC, coiled-coil domain. Upper, 

yellow lines indicate gain-of-function mutations. Lower, red lines indicate loss-of-function 

mutations.
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Figure 2. Schematic model showing potential sites of STIM1/ORAI1 coupling in skeletal muscle 
under resting conditions and after exercise.
The SR of adult fibers is divided in two compartments: i) the junctional SR (jSR, or SR 

terminal cisternae) that contains CASQ1 and RYR1 and is closely associated with the T-

tubule (TT) that contains DHPR, to form the triad (or CRU), the site of excitation-

contraction (EC) coupling; ii) the free SR (fSR) that does not interact with TT and is 

localized throughout I band. Both jSR and fSR contain high levels of the sarco/endoplasmic 

Ca2+ ATPase-1 (SERCA1), a Ca2+ ATPase that pumps Ca-2+ ions Ca2+ released during EC 

coupling from the myoplasm back into the lumen of the SR. Two different splice variants are 

expressed in skeletal muscle: STIM1S and STIM1L. Under resting conditions (left side), 

ORAI1 is located within the TT system at the triad, while STIM1S and STIM1L are located 

in the fSR and jSR, respectively. After exercise (right side): i) the fSR and TT undergo a 

striking remodeling to form new junctions composed by multiple layers of flat parallel 

stacks of fSR cisternae and an extension of the TT from the triad into the I-band toward the 

Z-line [21]. These new junctions promote increased STIM1/ORAI1 colocalization at the I-

band as TT elongation allows ORAI1 to interact with STIM1S proteins in the fSR. These 

new junctions are proposed to function as Calcium Entry Units (CEUs) [21].
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Figure 3. Tubular aggregates (TAs) in extensor digitorum longus fibers from 2 year old male wild 
type mice.
A-C) EM images of longitudinal views of TAs in thin sections (A and B) and freeze fracture 

(C). Empty arrows in panel A point to jSR-TT junctions (or triads) located at the periphery 

of a TA. Tubes of TAs are typically filled with electron-dense material, most likely CASQ1 

(B). The regular and straight shape of the tubules are emphasized in freeze fracture replicas, 

where tubules appear as long cylinders showing alternated views of the luminal and 

cytoplasmic leaflets (see [75] for additional detail). D-F) EM images of cross-sectional 

views of TAs in thin sections (D and E) and freeze fracture (F). Large TAs often result from 

the association of multiple TAs of smaller size (panel D: 1–3). In the core of each domain, 

tubes forming the TA display uniform diameters and appear ordered in a hexagonal pattern 

(E). Note the presence of small linkages that bridge the gap between membranes of adjacent 

tubules (E, inset). Bars: A, D and F: 0.5 μm; B and C: 0.2 μm; E: 0.1 μm (inset: 0.05 μm)
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