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Abstract

Rationale:Cigarette smoking is prevalent in the United States and is
the leading cause of preventable diseases. A prominent complication
of smoking is an increase in lower respiratory tract infections
(LRTIs). Although LRTIs are known to be increased in subjects
that smoke, the mechanism(s) by which this occurs is poorly
understood.

Objectives: Determine how cigarette smoke (CS) reduces reactive
oxygen species (ROS) production by the phagocytic NOX2 (NADPH
oxidase 2), which is essential for innate immunity in lung
macrophages.

Methods:NOX2-derived ROS and Rac2 (Ras-related C3 botulinum
toxin substrate 2) activity were determined in BAL cells from wild-
type and Rac22/2 mice exposed to CS or cadmium and in BAL cells
from subjects that smoke. Host defense to respiratory pathogens was
analyzed in mice infected with Streptococcus pneumoniae.

Measurements and Main Results: NOX2-derived ROS in BAL
cells was reduced in mice exposed to CS via inhibition of the small
GTPase Rac2. Thesemice had greater bacterial burden and increased
mortality compared with air-exposed mice. BAL fluid from CS-
exposed mice had increased levels of cadmium, which mediated the
effect on Rac2. Similar observations were seen in human subjects that
smoke. To support the importance of Rac2 in the macrophage
immune response, overexpression of constitutively active Rac2 by
lentiviral administration increased NOX2-derived ROS, decreased
bacterial burden in lung tissue, and increased survival comparedwith
CS-exposed control mice.

Conclusions:These observations suggest that therapies tomaintain
Rac2 activity in lung macrophages restore host defense against
respiratory pathogens and diminish the prevalence of LRTIs in
subjects that smoke.

Keywords: NADPH oxidase 2; heavy metals; respiratory tract
infections; innate immunity

Cigarette smoking remains prevalent in the
United States, with approximately 17% of
adults currently smoking (1). The incidence
of lower respiratory tract infections (LRTIs)
is increased in individuals that smoke
tobacco. LRTIs are the most common
infection that results in hospitalization and

are the leading infectious cause of death
(2–5). Although the link between cigarette
smoking and LRTIs is well described (4),
the molecular pathogenesis of cigarette
smoke–induced LRTI is not known.

Lungmacrophages play a critical role in
host defense to respiratory pathogens (6–9).

Although neutrophils are often considered
the essential cell in combating bacterial
infections, studies have questioned the
effectiveness of neutrophils in bacterial
killing and bacterial clearance as compared
with macrophages (6, 8). Studies show in
models of bacterial pneumonia that lung
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macrophage depletion decreases containment
and clearance of bacteria, as well as impairs
survival (6, 10).

One mechanism lung macrophages use
for host defense includes the generation of
reactive oxygen species (ROS) by the NOX2
(NADPH oxidase 2) complex. NOX2 is a
large complex composed of membrane
components gp91phox and p22phox and the
four cytosolic proteins p67phox, p47phox,
p40phox, and the small GTP-binding protein
Rac (Ras-related C3 botulinum toxin
substrate). Importantly, the generation of
NOX2-derived ROS in lung macrophages
requires activation of Rho GTPases. Rac2
binding of cytosolic p67phox and its
translocation to the membrane are required
for the formation of NOX2 (9, 11).
Dominant negative mutations of Rac2 in
infant children are associated with an
increased risk of infection (12, 13).

Cigarette smoke (CS) contains more
than 4,500 compounds, some of which are
carcinogens, toxins, oxidants, and metals
(1). Of all the noxious compounds in CS,

metals are known to play a critical role
in the threat of diseases associated
with smoking (14). Respiratory diseases,
cardiovascular disease, and bone frailty
have also been associated with metal
exposure (15–18). Cadmium is one metal
found in CS that has no physiological function
in humans. CS is the main source of cadmium
toxicity. Cadmium has been implicated in
altering phagocytosis and bacterial clearance
in lung macrophages, whereas other immune
cells are unaffected (19).

Here, we assessed the role of CS in
altering lung macrophage host defense. We
determined that CS diminished NOX2-
derived ROS generation in BAL cells and led
to increased lung bacterial burden in CS-
exposed mice compared with air-exposed
mice. Of all the metals in CS, we found that
cadmium was increased in the BAL fluid
(BALF) of mice and humans that smoked.
Cadmium altered Rac2 activity, which is
required for the generation of membrane-
derived ROS in lung macrophages. Recovery
of Rac2 activation by the administration
of a lentiviral vector overexpressing
constitutively active Rac2 to mice promoted
lung macrophage innate immunity, reduced
lung bacterial burden, and led to increased
survival. Some of the results of these studies
have been previously reported in the form of
an abstract (20).

Methods

Additional methods are presented in the
online supplement.

Human Subjects
We obtained human lung macrophages
and BALF, as previously described (21),
from smokers and nonsmokers without
lung disease under approved protocols
E150318008 and F120404001 by the
University of Alabama at Birmingham
(UAB) Institutional Review Board. Human
BAL specimens were used for research only.
All subjects provided prior written consent
to participate in the study.

Animal Studies
Protocols were approved by the UAB
Institutional Animal Care and Use
Committee. Eight- to 12-week-old male
and female wild-type C57BL6 and Rac22/2

mice were used. Mice were exposed in
whole-body chambers to air or 40 times
diluted mainstream cigarette smoke for 10

consecutive days, using a SCIREQ
“inExpose” smoke machine. Mice were
exposed to whole-body mainstream CS
generated from 3R4F research cigarettes
(9.4 mg tar/0.726 mg nicotine; University of
Kentucky) with removed filters, to increase
the potency of the cigarettes (22), as
previously described (23).

In vivo transduction studies were
performed with constitutively active Rac2
(Rac2CA) lentivirus, which was a generous
gift from Y. Cao (Nankai University,
Tianjin, China) (24). Full-length Flag-
Rac2CA cDNA was subcloned into
pLVX-IRES-tdTomato lentiviral vector
(Clontech). Concentrated lentiviral
supernatant (53 107 TU in 100 ml) was
delivered intratracheally as described (25).
Thirty minutes before intratracheal
instillation, all viral supernatants were
mixed with Lipofectamine 2000 (final
concentration, 5% [vol/vol]; Invitrogen).
Acute inflammation was allowed to resolve
for 6 weeks after transduction.

For in vivo bacterial infection studies,
mice were administered sterile saline or 107

Streptococcus pneumoniae (strain A66.1, type
3) intratracheally and were killed after 2
days. Bacterial infections were performed
after the last smoke exposure on Day 10 or
after 5 days of cadmium exposure. Mice were
monitored every 4–6 hours after bacterial
exposure for the duration of the exposure.

Inductively Coupled Plasma Mass
Spectrometry
Metal levels (Mn, Cd, Fe, Cu, As, Pb, and Tl)
in BAL samples were measured by
inductively coupled plasma-mass
spectrometry (ICP-MS) (7500a ICP-MS;
Agilent). An aliquot (500 ml) of each sample
was diluted in 4.5 ml of 2% nitric acid
(trace metal basis). Samples were analyzed
in sextuplicate and the concentration of
each metal was calculated using a standard
calibration curve. All solutions used for the
analysis were treated with Chelex 100 resin
(BioRad) to remove cations.

Statistical Analysis
Statistical comparisons were performed
using an unpaired two-tailed Student
t test when only two groups of data are
presented, one-way ANOVA with a Tukey
post hoc test when multiple data groups
are present, a Mann-Whitney U test, or
Kaplan-Meier analysis in survival studies.
All statistical analysis data are expressed
as mean6 SEM unless otherwise indicated;

At a Glance Commentary

Scientific Knowledge on the
Subject: Cigarette smoking is the
leading cause of preventable disease in
the United States. One important
complication of cigarette smoking is an
increased risk of lower respiratory tract
infections. The link between cigarette
smoking and lung infections is well
established; however, the mechanism(s)
by which this occurs is poorly
understood and remains to be
thoroughly investigated.

What This Study Adds to the
Field: Cigarette smoke diminished
reactive oxygen species production in
lung macrophages, which are critical
for host defense. We determined that
cadmium from cigarette smoke
mediated these changes by inhibiting
the small GTPase Rac2 (Ras-related C3
botulinum toxin substrate 2). These
observations suggest that therapies
to maintain Rac2 activity in lung
macrophages restore host defense
against respiratory pathogens and
diminish the prevalence and severity of
lower respiratory tract infections in
subjects who smoke.
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Figure 1. Cigarette smoke (CS) increases lung bacterial burden. (A) Total number of BAL cells (n = 6), (B) cell differential (n = 6), and (C–E) percentage of
resident macrophages (CD11blo/F4/801/CD11chi) (n = 3) (C), recruited macrophages (CD11b1/F4/801/CD11c2/CD2062/CCR21/Ly6C1) (n = 3) (D), and
early inflammatory monocytes (CCR21/Ly6Chi) (n = 3) (E) from air- and CS-exposed mice (16 cigarettes/d for 10 d). (F) Lung macrophage NOX2 (NADPH
oxidase 2)-derived reactive oxygen species (ROS) generation (n = 6) and (G) lung colony-forming units (cfu) from air- and CS-exposed mice infected with
vehicle or Streptococcus pneumoniae (107 cfu for 48 h, strain A66.1, type 3) (n = 5). (H) Cell differential, total number (n = 7–8), (I) lung macrophage NOX2-
derived ROS generation (n = 5), and (J) lung colony-forming units from mice treated with control or clodronate liposomes and infected with vehicle or
S. pneumoniae (n = 7–8). *P, 0.05; **P, 0.001; ***P, 0.0001. Values shown represent means6 SEM. Two-tailed t test statistical analysis was used for
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P, 0.05 was considered to be significant.
GraphPad Prism 5 statistical software
(GraphPad Software) was used for analysis.

Results

Cigarette Smoke Increases Lung
Bacterial Burden
Studies show that CS alters the innate
immune response; however, CS increased
the total number of BAL cells threefold
(Figure 1A). Although macrophages were
the predominant cell type (Figure 1B), we
questioned the source of the BAL cells.
No differences were detected in resident
alveolar macrophages after CS exposure
(Figure 1C) or recruited macrophages
(Figure 1D), whereas CCR21/Ly6Chi

inflammatory monocytes were significantly
increased in CS-exposed mice (Figure 1E).

We investigated the relationship of
CS exposure and bacterial lung infection
in vivo. The total number of BAL cells
was increased with CS exposure and
was increased further after exposure to
Streptococcus pneumoniae (strain A66.1,
type 3), as a model of LRTI (see Figure E1A
in the online supplement). Macrophages
were the predominant cell type in BALF
from CS-exposed mice; however, S. pneumoniae
exposure increased neutrophil recruitment
as well (Figure E1B). Proinflammatory
cytokines tumor necrosis factor (TNF)-a,
macrophage inflammatory protein (MIP)-2,
and IL-6 were increased in response to CS
alone, but there was a significant further
increase to a similar level in response to
S. pneumoniae (Figures E1C–E1E).

ROS production by NOX2 in the cell
membrane is necessary for bacterial killing
and has an important role in macrophage
innate immunity (6, 8, 10). CS exposure
significantly decreased membrane-derived
ROS generation in BAL cells (n = 6)
(Figure 1F). Although BAL cells from
S. pneumoniae–exposed mice had
significantly increased NOX2-derived ROS
generation, CS exposure abrogated this
increase. The CS-mediated reduction in
membrane-derived ROS was associated with
a significant increase in colony-forming units
from the lungs of mice (Figure 1G).

To investigate the significance of
lung macrophages in bacterial lung
infection, macrophages were depleted in
mice, using clodronate liposomes.Macrophage
depletion did not alter the total BAL cell
count after S. pneumoniae exposure (Figure
E1F), but there was an increase in number
(Figure 1H) and percentage of neutrophils
in the BAL (Figure E1G). S. pneumoniae
infection in mice depleted of macrophages
showed a significant reduction in
membrane-derived ROS compared with
BAL cells from mice treated with control
liposomes (Figure 1I). In addition,
macrophage depletion significantly
increased colony-forming units in lungs
(Figure 1J). Confirming the significance of
lung macrophages, no difference in lung
colony-forming units was detected in mice
depleted of neutrophils compared with
controls (Figures E1H and E1I). These data
indicate that lung macrophages have a
critical role in host defense to respiratory
pathogens.

Macrophage Rac2 Regulates
NOX2-derived ROS
To determine the role of the impaired
lung macrophage immune response in
CS-mediated development of LRTI,
macrophages were exposed to cigarette
smoke extract (CSE). Membrane-derived
ROS generation was markedly reduced in
macrophages exposed to CSE in a dose-
dependent manner (Figure 2A). Cell
viability was not minimized by CSE (data
not shown). Silencing gp91phox had a
similar effect as exposing cells to CSE
(Figure 2B). In addition, phorbol myristate
acetate (PMA)–exposed macrophages
generated significantly more membrane-
derived ROS than vehicle-exposed
macrophages, and PMA generated no ROS
after CSE exposure (Figures E2A and E2B).

CSE did not alter p40phox or p47phox

membrane localization or disrupt p22phox

or gp91phox presence in the membrane;
however, CSE inhibited p67phox and
Rac2 membrane recruitment in a dose-
dependent manner (Figure 2C). Because
Rac2 binds p67phox to translocate it to the
membrane (7, 9, 11), we confirmed that
silencing Rac2 dramatically abolished

p67phox membrane localization (Figures 2D,
E2C, and E2D). The other NOX2
components were not altered by Rac2
silencing. Similarly, silencing p67phox

inhibited Rac2 membrane localization
(Figures 2E, E2E, and E2F). Validating the
intracellular interaction between p67phox

and Rac2, macrophages expressing p67phox-
V5-His had increased binding to Rac2, and
CSE inhibited this interaction (Figures 2F
and 2G). CSE also inhibited Rac2 membrane
activity in a dose-dependent manner
(Figure E2G).

Because Rac2 is critical for the
formation of NOX2, we determined that CS
attenuated Rac2 membrane localization
of BAL cells from mice (Figure 2H). CS
exposure also inhibited Rac2 membrane
activity in BAL cells from S. pneumoniae–
exposed mice (Figure 2I).

Although there is an increase in
neutrophils with S. pneumoniae infection,
CSE elicited no change in Rac2 activity
(Figure E2H) or membrane-derived ROS
(Figure E2I) in isolated membranes from
neutrophils. Furthermore, Rac2 activity
was significantly increased in isolated
membranes from BAL cells after S.
pneumoniae exposure, and macrophage
depletion abrogated this response
(Figure 2J), whereas mice depleted of
neutrophils showed no difference in
membrane Rac2 activity in BAL cells
compared with controls (Figure 2K). The
alteration in macrophage Rac2 activity
directly regulated NOX2-derived ROS
generation (Figure E2J).

Rac22/2 Mice Have Impaired Host
Defense
Although the Rac2-dependent immune
response of BAL cells from mice exposed to
CS has a key role in the development of
LRTI, wild-type and Rac22/2 mice had a
similar increase in BAL cells (Figure E3A)
and cell differential (Figure E3B) after
S. pneumoniae exposure. Wild-type mice
infected with S. pneumoniae had increased
Rac2 activity in the BAL cell membrane
(Figure 3A). Rac2 activity in Rac22/2 mice
was below that of saline controls and was
not altered with S. pneumoniae infection.
Rac2 membrane localization was enhanced

Figure 1. (Continued). A, G, and J. Mann-Whitney U statistical analysis was used for C–E. One-way ANOVA followed by Tukey’s multiple comparison test
was performed on B, F, H, and I. Results from A, B, F, and G were repeated at least five times; C–E were conducted once with representative plots of
three shown, and H–J were repeated three times. BALC = BAL cells; Clod = clodronate; FITC = fluorescein isothiocyanate; Lymph = lymphocyte; Mac =
macrophage/monocyte; PMN = polymorphonuclear neutrophil; S.p. = Streptococcus pneumoniae.
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Figure 2. Macrophage Rac2 (Ras-related C3 botulinum toxin substrate 2) regulates NOX2 (NADPH oxidase 2)-derived reactive oxygen species (ROS). (A
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in BAL cells from infected wild-type mice
(Figure 3B). The absence of Rac2 markedly
reduced ROS generation in the BAL cell
membrane (Figure 3C).

The proinflammatory cytokines TNF-a
and MIP-2 (Figures E3C and E3D) showed
similar responses to infection in wild-type
and Rac22/2 BALF, whereas IL-6 was
increased in Rac22/2 BALF compared with
wild type (Figure E3E). The deletion of
Rac22/2 did not alter normal lung
architecture (Figure 3D); however, Rac22/2

mice infected with S. pneumoniae had
lobar consolidation associated with
hemorrhage, whereas the wild-type mice
had peribronchial infiltrates. The
histological findings were confirmed as
Rac22/2 mice had significantly greater lung
colony-forming units than did wild-type
mice (Figure 3E). Moreover, the Rac2
deletion increased mortality after infection
(Figure 3F).

We then determined the role of CS
exposure in Rac22/2 mice. Both strains had
a similar increase in BAL cells after CS and
S. pneumoniae exposure (Figure E3F), and
no differences were detected in the cell
differential (Figure E3G). CS exposure
reduced NOX2-derived ROS generation in
wild-type BAL cell membrane to a level
similar to that seen in Rac22/2 mice
(Figure E3H). CS significantly increased
colony-forming units in the lungs from
wild-type mice to a similar level as seen in
Rac22/2 mice (Figure E3I). Furthermore,
CS-exposed wild-type mice had similar
mortality to the Rac22/2 mice (Figure E3J).
Taken together, these data suggest that CS
exposure increases the severity of LRTI by
modulating Rac2.

Cadmium in CS Impairs Macrophage
Innate Immunity by Inhibiting Rac2
Studies suggest that significantly higher
levels of metals are present in lung tissue
of smokers (26, 27). We found that the
concentration of cadmium was 11-fold
greater in BALF from CS-exposed than
air-exposed mice (n = 4); however, no
difference was detected for other metals
(Figure 4A). We determined that cadmium
had a similar effect as CS. CdCl2 significantly
diminished Rac2 membrane activity in

empty- and Flag-Rac2WT-transfected
macrophages and had no effect on
macrophages expressing constitutively
active Rac2 (YFP-Rac2CA) (Figure E4A).
CdCl2 significantly reduced NOX2-derived
ROS to the level present in macrophages
with Rac2 silenced (Figure E4B). The
other major GTPase in macrophages,
Rac1, was not altered by CdCl2 exposure
(Figure E4C).

To determine whether cadmium had
a similar effect as CS regarding host
defense, we exposed mice to cadmium at
the mean concentration found in BALF
from CS-exposed mice. CdCl2- and
S. pneumoniae–exposed wild-type mice
showed an increase in the total number of
BAL cells (Figure E4D), with the majority
being lung macrophages (Figure E4E). Rac2
activity was increased in isolated BAL
membranes from S. pneumoniae–exposed
mice, and CdCl2 exposure significantly
reduced its activity below that of saline
controls (Figure 4B). Rac2 membrane
localization in BAL cells was also absent in
CdCl2-exposed mice (Figure 4C). Infection
with S. pneumoniae dramatically induced
membrane-derived H2O2 generation in
BAL cells, whereas BAL cells from CdCl2-
exposed mice exhibited a significant
reduction in ROS (Figure 4D). Although
manganese is known to be increased in
lung epithelial cells from patients with
chronic obstructive pulmonary disease
(28), Rac2 activity was not altered in
BAL cells from MnCl2-exposed mice,
using the concentration found in BALF
from CS-exposed mice (Figure E4F),
suggesting that this is a specific effect of
cadmium.

As seen with CS exposure, the
proinflammatory cytokines TNF-a and
MIP-2 (Figures E4G and E4H) were similar
in BALF from infected mice; however, IL-6
expression was significantly increased in
CdCl2-exposed mice after S. pneumoniae
infection (Figure E4I). CdCl2 exposure
resulted in significantly greater lung
colony-forming units (Figure 4E), which
was associated with increased mortality
(Figure 4F) compared with saline-exposed
mice. These data indicate CS and cadmium
have similar effects in mediating Rac2

inhibition in lung macrophages, resulting in
diminished host defense against bacterial
pathogens.

We determined the role of cadmium
exposure in Rac22/2 mice. Both strains had
an increase in BAL cells (Figure E4J) and
had a similar cell differential (Figure E4K).
CdCl2 exposure reduced ROS generation
in wild-type BAL cells to levels seen in
Rac22/2 mice (Figure E4L). This resulted
in similar colony-forming units (Figure
E4M) and mortality as seen in Rac22/2

mice (Figure E4N).

CSE and Cadmium Alter Rac2
Isoprenylation
Rac2 has seven cysteine residues, and the
C-terminal cysteine residue of Rho GTPases
is modified by isoprenylation. This post-
translational modification is required for
activation and its interaction with other
proteins (29, 30) (Figure 5A). Because
CdCl2 and CSE altered Rac2 activity,
we separated lysates into aqueous
(nonprenylated) and detergent (prenylated)
fractions. CdCl2 and CSE impaired
isoprenylation as Rac2 expression remained
in the aqueous fraction (Figure 5B). In
vehicle-treated cells, Rac2 was present in
the detergent fraction, indicating it was
active, and these effects were enhanced
with overexpression of Flag-Rac2WT. We
confirmed that Cys189 was required
for isoprenylation by mutating the
C-terminal cysteine residue to a serine
(Flag-Rac2C189S), as Rac2 remained in the
aqueous fraction regardless of the exposure
(Figure 5C).

Rac2 isoprenylation is mediated
through the mevalonate pathway, which is
also responsible for protein farnesylation,
cholesterol production, and ubiquinone
generation. CdCl2 and CSE did not
modulate these branches of the pathway
(Figures E5A–E5C).

Unlike vehicle-treated macrophages
expressing Flag-Rac2WT, Rac2 membrane
localization was inhibited by CdCl2 and
CSE (Figure 5D). In contrast, the Flag-
Rac2C189S construct remained in the
cytoplasm under all conditions (Figure
E5D). Expression of p67phox followed
the expression pattern of Rac2 in both

Figure 2. (Continued). mice infected with vehicle or S. pneumoniae (n = 5–6). **P, 0.001; ***P, 0.0001. Values shown represent means6 SEM. One-
way ANOVA followed by Tukey’s multiple comparison test was used for A, B, and I–K. Results from A, B, and J were repeated three times; immunoblot
analyses were performed three times, with representative immunoblots shown in C–F and H; I was conducted at least five times. Cyto = cytosol; IB =
immunoblot; Mem =membrane; PD = pull-down; Scr = scrambled; S.p. = Streptococcus pneumoniae.
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fractions. Flag-Rac2WT and YFP-Rac2CA
increased macrophage Rac2 activity in the
membrane fraction of vehicle-treated
cells (Figure E5E). CSE inhibited Rac2
activity only in macrophages expressing
Flag-Rac2WT. Because macrophages

expressing YFP-Rac2CA were able to
abrogate the effects of CSE, we found that
Rac2 remained isoprenylated in cells
expressing YFP-Rac2CA (Figures 5E, 5F,
and E5F). YFP-Rac2CA altered Rac2
localization when coexpressed with Flag-

Rac2C189S. Because Rac2 and p67phox

must directly interact for membrane
recruitment, we determined that Rac2-
p67phox interaction required Rac2
isoprenylation (Figures 5G and E5G).
In aggregate, these data suggest that

A

0.5

0.4

0.3

0.2

0.1

0.0

S.p.Saline Saline S.p.

0.6

R
ac

2 
A

ct
iv

ity
(O

D
 4

90
nm

/m
g 

pr
ot

ei
n)

WT Rac2–/–

BAL Cell
Membrane

** ***

C

0

2

4

6

8

H
2O

2 
G

en
er

at
io

n
(p

m
ol

es
/m

g/
m

in
)

Saline S.p.

Rac2–/–

S.p.Saline

WT

BAL Cell
Membrane

*** ***
B

C

Saline

M

WT Rac2–/–

Rac2

GAPDH

gp91phox

Saline

C

BAL Cell

MC M C M

S.p.

C M C M

S.p.

F

0

25

50

S
ur

vi
va

l (
%

)

75

100

0 12 24

Hours post Infection

Log Rank, p = 0.028

WT

Rac2–/–

36 48

E

***

4

5

WT Rac2–/–

6

lo
g 1

0 
C

F
U

/m
l l

un
g

7
D

WT Rac2–/–

Saline

S. pneumoniae

Figure 3. Rac22/2 mice have impaired host defense. Wild-type and Rac22/2 mice were infected with Streptococcus pneumoniae. (A) Rac2 activity in
BAL cell membrane (n = 4–5), (B) immunoblot analysis in cytosol and membrane fractions of BAL cells, and (C) NOX2 (NADPH oxidase 2)-derived reactive
oxygen species generation in BAL cell membrane (n = 5). (D) Hematoxylin and eosin staining of lung tissues was performed (n = 4–5); and (E) lung colony-
forming units (n = 9) and (F) Kaplan-Meier survival curves (n = 8–9) were determined. Scale bars, 600 mm. The second and fourth rows in D show
magnifications of the boxed regions in the first and third rows, respectively. **P, 0.001; ***P, 0.0001. Values shown represent means6 SEM. One-way
ANOVA followed by Tukey’s multiple comparison test was used for A and C; two-tailed Student’s t-test statistical analysis was used for E, and a log-rank
(Mantel-Cox) test was used for F. Results from A–F were repeated three times with representative immunoblot and histology micrographs shown.
C = cytosol; M =membrane; Rac2 = Ras-related C3 botulinum toxin substrate 2; S.p. = Streptococcus pneumoniae; WT =wild type.

ORIGINAL ARTICLE

1294 American Journal of Respiratory and Critical Care Medicine Volume 198 Number 10 | November 15 2018



macrophage function is impaired by
inhibiting Rac2 isoprenylation at Cys189.

Rac2 Activity Is Reduced in BAL Cells
from Smokers
BAL samples were obtained from
nonsmokers and current smokers. Other
than smoking history, demographics were
similar between nonsmokers and smokers
(Table 1). Lung macrophages were the
predominant cells in BALF from both
groups (Figure 6A). Similar to the cadmium
concentration in CS-exposed mice, we
found that BALF from smokers had a

ninefold greater cadmium concentration
compared with nonsmokers (Figure 6B).
No other metal showed a significant
difference. Isolated membrane from the
BAL cells of current smokers had a
significant reduction in Rac2 activity
(Figure 6C). Rac2 and p67phox membrane
localization was essentially absent in BAL
cells from current smokers (Figures 6D and
E6A), as the proteins remained in the
cytosol (Figures 6E and E6B). The absence
of Rac2 recruitment to the membrane
corresponded to a significant diminution
in membrane-derived ROS generation in

current smokers (Figure 6F), suggesting
that smoking mediates a defect in lung
macrophage host defense by inhibiting
Rac2.

Rac2 Ameliorates CS-mediated Lung
Infection
To determine whether Rac2 deficiency
(Rac21/2) was similar to Rac22/2, we
found that there was no difference in lung
bacterial burden compared with CdCl2-
exposed wild-type mice (Figure E7A).
CdCl2 increased mortality in wild-type
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mice to a similar extent as Rac21/2 mice
(Figure E7B).

Because lung macrophages are
effectively transduced by lentiviral vectors

(25), we confirmed that resident
alveolar macrophages (CD11c1) were
transduced by lentiviruses (RFP1)
(Figure 7A). We also found that

lentiviral administration transduced
early recruited monocytes (Ly6C1) 2
days after infection, as they are increased
with CS exposure.
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Six weeks after lentivirus
administration, lung macrophages were the
predominant cell in BALF from mice
transduced with tdTomato (empty) or Flag-
Rac2CA-tdTomato (Rac2CA) lentiviral
vector after CS exposure and S. pneumoniae
infection (Figure E7C). Neither lentiviral
administration nor S. pneumoniae infection
altered CdCl2 concentration (data not
shown). Rac2 and p67phox localization in

the membrane fraction was significantly
increased with Rac2CA transduction
(Figures 7B, E7D, and E7E), whereas Rac2
and p67phox were in the cytosol in empty-
transduced mice after CS (Figure 7C).
The content of Rac2 in the membrane
correlated with Rac2 activity, which was
significantly increased in macrophages
from Rac2CA-transduced mice regardless of
exposure (Figure 7D). This difference in

Rac2 activity was not due to increased Rac2
content as Rac2 expression in whole-cell
isolates was similar in BAL cells isolated
from empty- or Rac2CA-transduced mice
(Figure E7F). Membrane-derived ROS
generation mirrored the Rac2 activity
in Rac2CA-transduced mice (n = 5)
(Figure 7E).

The reduction in membrane-derived
ROS production was associated with a

Table 1. Clinical Characteristics of Subjects

Total (n = 10) Nonsmoker (n = 4) Current Smoker (n = 6) P Value

Age, yr 526 7 566 7 506 5 0.165
Male sex 5 (50%) 2 (50%) 3 (50%) 1.000
White race 6 (60%) 2 (50%) 4 (67%) 0.598
Pack-years 216 19 26 2 356 10 ,0.0001
FEV1 post-BD, L 2.986 0.59 2.856 0.77 3.116 0.54 0.597
FEV1 post-BD, % 966 11 976 11 956 13 0.777
FVC post-BD, L 3.756 0.85 3.486 1.0 4.126 0.55 0.364
FVC post-BD, % 946 11 946 14 956 9 0.892
FEV1/FVC 0.816 0.03 0.826 0.02 0.806 0.03 0.337

Definition of abbreviation: BD = bronchodilator.
Data expressed as means6 SD or n (%). Independent Student’s t test was used to compare means for continuous variables, and x2 test was used for
categorical variables.
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significant difference in lung colony-
forming units from Rac2CA-transduced
mice (Figure 7F). S. pneumoniae infection
led to complete lobar consolidation in
empty-transduced CS-exposed mice,
whereas the Rac2CA-transduced mice had
peribronchial infiltrates (Figures 7G and 7H).

Macrophages were the primary cell
type in the BAL from empty- and Rac2CA-
transduced mice exposed to saline or CdCl2
(Figure E7G). The macrophages in BALF
showed a reduction in resident lung
macrophages and a dramatic increase
in recruitment of early inflammatory
monocytes after infection (Figures E7H
and E7I); however, no neutrophils were
positive for RFP expression (data not
shown). Similar to mice exposed to CS,
Rac2CA-transduced mice exposed to CdCl2
showed significantly less lung colony-
forming units than empty-transduced mice
(Figure E7J).

Lung Macrophage Rac2 Promotes
Macrophage Host Defense
Because selective expression of Rac2CA in
lung macrophages was protective in CS-
exposed mice, we determined whether
lentiviral transduction with constitutive
active Rac2 in Rac22/2 mice enhanced
host defense. Administration of Rac2CA
lentivirus rescued Rac2 activity in isolated
BAL cell membrane from Rac22/2 mice
(Figure 8A). Rac2 and p67phox expression
were also localized in membrane isolated
from the BAL cells of Rac22/2 mice
infected with Rac2CA lentivirus (Figures
E8A and E8B). Type II alveolar epithelial
cells isolated from Rac2CA-transduced wild-
type mice showed no Flag expression,
suggesting these cells were not transduced
by the lentivirus (Figure E8C), because
vesicular stomatitis virus protein G binds to
receptors located on the basolateral side of
the epithelium (25, 31).

Rac22/2 mice transduced with Rac2CA
lentivirus showed increased membrane-
derived ROS generation (Figure 8B).
Recovery of Rac2 activity in the Rac22/2

mice led to a reduction in lung bacterial
burden (Figure 8C) and increased
survival (Figure 8D). In aggregate, these
observations uncover a molecular
mechanism by which CS increases the

incidence of LRTI and suggest that
potentiating Rac2 activation in mononuclear
phagocytes is a novel therapeutic modality
to lessen the severity of infection in
those that smoke.

Discussion

Accumulating data indicate that CS
compromises the immune system by
suppressing the clearance of bacteria from
lungs (2–4, 32). Cadmium, which can
generate oxidative stress, is one of the metal
compounds present in CS, as a single
cigarette contains nearly 3 mg of cadmium
and has a high rate of transfer from tobacco
to CS (33, 34). Lung tissue from smokers

has increased cadmium content (26, 35).
Our data demonstrate that cadmium levels
are significantly increased in BALF from
healthy smokers and uncover a mechanism
by which cadmium from CS attenuates host
defense.

Cadmium is not redox-active, but the
generation of ROS is a critical mediator
for cadmium-triggered tissue injury (36).
Studies indicate that cadmium-induced
oxidative stress is mediated through
cellular redox disruption by depletion of
antioxidant enzymes (37). Our data are the
first to indicate that cadmium within CS
alters the isoprenylation of Rac2, thereby
inhibiting Rac2 activation.

NOX2 is the primary source of ROS
generation in macrophages and participates

Figure 7. (Continued). generation in BAL cell membrane (n=5). (F) Lung colony-forming units (cfu; n=5). Hematoxylin and eosin staining was performed in (G) empty-
transduced (n=5) and (H) Rac2CA-transduced wild-type mice (n=5). Scale bars, 600 mm. The second and fourth rows inG andH showmagnifications of the boxed
regions in the first and third rows, respectively. *P,0.05; ***P,0.0001. One-way ANOVA with Tukey statistical analysis were used for D–F. Representative
immunoblots and histology micrographs are shown. Mem=membrane; OD=optical density; RFP= red fluorescent protein; S.p.=Streptococcus pneumoniae.
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Figure 8. Lung macrophage Rac2 (Ras-related C3 botulinum toxin substrate 2) promotes
macrophage host defense. Rac22/2 mice were administered pLVX-IRES-tdTomato (empty) or pLVX-
IRES-tdTomato-Rac2CA (Rac2CA) lentivirus (53 107 TU, intratracheally). Six weeks later mice were
exposed to saline or Streptococcus pneumoniae. (A) Rac2 activity in BAL cell membrane from
Rac22/2 mice (n = 3–5). (B) NOX2 (NADPH oxidase 2)-derived reactive oxygen species generation in
BAL cell membrane was determined (n = 5). (C) Lung colony-forming units (cfu; n = 5) and (D) Kaplan-
Meier survival curves were performed (n = 7–9). **P, 0.001; ***P, 0.0001. Values shown represent
means6 SEM. One-way ANOVA followed by Tukey’s multiple comparison test was used for A and B,
two-tailed t-test statistical analysis was used for C, and a log-rank (Mantel-Cox) test was used for D.
OD = optical density; S.p. = Streptococcus pneumoniae.
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in host defense and cellular signaling (38).
Increased membrane-derived ROS is
critical for removing damaged tissue and
eradicating invading microbes (39, 40),
whereas decreased NOX2-derived ROS is
associated with the clearance of apoptotic
cells (41). Some studies show that lung
macrophages from smokers have increased
antioxidant activity (42, 43), whereas others
suggest that macrophages from smokers
generate significantly greater levels of ROS
than those from nonsmokers (44). The
validity of this finding is uncertain as ROS
was measured after stimulation with PMA,
a known inducer of NOX2. The present
study indicates that lung macrophages from
healthy smokers have diminished NOX2-
derived ROS generation. It is known that
macrophage depletion decreases bacterial
containment and survival (6, 10). Here we
provide a molecular mechanism by which
this occurs.

Lung macrophages facilitate the
clearance of bacteria as well as the resolution
of inflammation by removing apoptotic
neutrophils by phagocytosis (8). We
determined that macrophage-depleted mice

showed a significant increase in neutrophil
number compared with mice with intact
macrophages. This imbalance may be due
to the impaired neutrophil clearance by
lung macrophages, thus potentiating the
bacterial burden. Although we were unable
to completely deplete lung macrophages,
we cannot rule out the possible role of
dendritic cells as clodronate also depletes
these cells. CCR2-mediated monocyte
recruitment is known to exacerbate
infection after Listeria monocytogenes
inoculation (45). In contrast, only a high
inoculum of Mycobacterium tuberculosis
mediates a serious infection in CCR22/2

mice (46). CCR2 has been shown to
improve the innate immune response as
well as play no role in protective immunity,
which may be strain dependent (47, 48).
Our data show that early infiltrating
monocytes play a critical role in innate
immunity, whereas neutrophils have less
of an effect against bacterial respiratory
pathogens.

Although we cannot rule out that
other toxic agents in CS may alter lung
macrophage host defense, we have identified

that cadmium, which is increased in the
BALF, abrogates NOX2-derived ROS
production, leading to increased bacterial
burden. One study showed that NOX2-
derived ROS is not important in mediating
acrolein-induced lung dysfunction (49). In
addition, N-acetylcysteine antioxidant
therapies have failed to improve lung
function or quality of life (50), suggesting
that approaches reliant on scavenging
oxidants are not effective therapeutic
strategies. Our observations suggest that
targeting Rac2 is required for innate
immunity in lung macrophages and that
potentiating its activity is a therapeutic
modality to reduce the severity of CS-
induced bacterial pneumonia. n

Author disclosures are available with the text
of this article at www.atsjournals.org.

Acknowledgment: The authors thank the UAB
Neuroscience NINDS Vector and Virus Core for
generating the lentiviral constructs (NINDS
P30NS047466), Dr. Igor Chesnokov for use of the
Beckman TL-100 ultracentrifuge, and Michael
Glogauer (University of Toronto) for his generous
gift of Rac22/2 mice.

References

1. U.S. Department of Health and Human Services, Centers for Disease
Control and Prevention, National Center for Chronic Disease
Prevention and Health Promotion, Office on Smoking and Health. The
health consequences of smoking—50 years of progress: a report of
the surgeon general. Atlanta, GA: Centers for Disease Control and
Prevention; 2014.

2. Garmendia J, Morey P, Bengoechea JA. Impact of cigarette smoke exposure
on host–bacterial pathogen interactions. Eur Respir J 2012;39:467–477.

3. Nuorti JP, Butler JC, Farley MM, Harrison LH, McGeer A, Kolczak MS,
et al.; Active Bacterial Core Surveillance Team. Cigarette smoking and
invasive pneumococcal disease. N Engl J Med 2000;342:681–689.
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