Table 6.
Feature performance evaluation using SVM classifier and ground-truth segmentation on mouse-NIAID.
TP | TN | FP | FN | Precision | Recall | Accuracy | F1 | |
---|---|---|---|---|---|---|---|---|
YCbCr | 779 | 652 | 42 | 78 | 0.95 | 0.91 | 0.92 | 0.93 |
LBP | 813 | 666 | 28 | 44 | 0.97 | 0.95 | 0.95 | 0.96 |
NG | 757 | 620 | 74 | 100 | 0.91 | 0.88 | 0.89 | 0.90 |
NGSL | 811 | 668 | 26 | 46 | 0.97 | 0.95 | 0.95 | 0.96 |
NRGB | 817 | 662 | 32 | 40 | 0.96 | 0.95 | 0.95 | 0.96 |
NRGB + JAMBP | 821 | 640 | 54 | 36 | 0.94 | 0.96 | 0.94 | 0.95 |