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Implementing a method for studying longitudinal DNA methylation variability
in association with age
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ABSTRACT
Interindividual variability of DNA methylation is a mechanism of the epigenetic drift in aging.
Studies on cross-sectional data have discovered a change in methylation variability in association
with age. However, thus far, no method explored DNA methylation variability in longitudinal data,
which was the aim of this study. First, we performed a simulation study to explore methods for
estimating methylation variability in longitudinal data. Second, an epigenome-wide association
study (EWAS) on 1011 longitudinal samples (385 individuals followed up to 18 years) was
performed to identify age-varying methylation sites using these methods. Following Breusch–
Pagan test of heteroscedasticity, we showed that a linear regression model, where the residuals
were used in a mixed effect model with a random intercept, properly estimated the change of
interindividual variability over time. Our EWAS identified 570 CpG sites where methylation
variability was significantly associated with age (P < 1.3 × 10−7). Gene regions of identified loci
were enriched in nervous system development functions. In conclusion, we provide a method for
analyzing methylation variability in longitudinal data and further identified age-varying methyla-
tion loci in a longitudinal analysis using these methods.
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Background

DNA methylation levels change in individuals as we
age. These longitudinal changes, due to genetic,
environmental, and stochastic effects, are best
explained by changes on average methylation levels,
so called age-associated, or by changes on methyla-
tion variability between individuals, so called age-
varying (Figure 1). Many previous studies using
DNA methylation data mainly focused on identify-
ing age-associated differentially methylated positions
[1–5]. However, studying age-varying methylation
sites captures divergence of methylomes between
individuals over time, usually described as epigenetic
drift. Studies on epigenetic drift have been conducted
using various methods, which include observing
methylation differences between monozygotic twins
[6,7], counting extreme methylation outliers as epi-
genetic mutations [8] and computing methylation
variability using a test of heteroskedasticity [1,9].

Nevertheless, most studies on epigenetic drift in
relation to aging were based on cross-sectional
data, while with longitudinal data we are able to

follow changes of methylation patterns of indivi-
duals over time. Specifically, with longitudinal data
we can monitor how the methylation variability of
a certain group of people changes with age.

The Breusch–Pagan test [10] for heteroscedasticity
can be used to estimate the change of interindividual
variability with age, but thus far applications on long-
itudinal data are missing. Here, we performed a simu-
lation study to explore a propermethod for estimating
interindividual variability in association with age, and
applied it to real longitudinal DNA methylation data.

Results

Model selection

We performed a simulation study to determine the
most appropriate method to estimate the interin-
dividual methylation variability in longitudinal
data. The simulated longitudinal data, including
30 individuals and 5 follow-ups, were generated
from a mixed model with a random intercept and
slope. The individual intercepts and slopes were
positively correlated so that the interindividual
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variance increased with age (See methods for
details). We used the Breusch–Pagan test [10] for
heteroscedasticity and determined appropriate
models to apply to longitudinal data (Figure 2).
The Breusch–Pagan test includes two steps: regres-
sing out the independent variable and obtaining

residuals from a regression model, and then
regressing absolute residuals on the independent
variable. In the first step, we tested a simple linear
model (Model 1.1, Figure 3(a)), a random inter-
cept and slope model (Model 1.2, Figure 3(e)), and
a random intercept model (Model 1.3, Figure 3

Figure 1. Simplified plots illustrating the concept of age-associated and age-varying methylation patterns. a) In age-associated
methylation patterns, the average methylation level changes with age while the variability stays unchanged. b) In age-varying
methylation patterns, the variance between individuals changes with age while the average methylation level does not change. c) In
age-associated and age-varying methylation patterns, both average methylation level and between-subject variance change with
age. Lines represent individual changes in methylation levels over time.
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(g)). Model 1.2 best fitted the data, but the resi-
duals only captured intraindividual variability,
which had a constant variance in the simulated
data by design. Hence, absolute residuals were
not associated with age (Figure 3(f)). Moreover,
residuals from Model 1.3 failed to capture inter-
individual variability, and only described the
deviation of data points from the individual
regression lines with an average slope (Figure 3
(h)). Instead, residuals from Model 1.1 illustrated
the interindividual variability. The absolute resi-
duals were then positively associated with age as
expected (Figure 3(b–d)). In the second step, we
tested the same three models, simple linear model
(Model 2.1, Figure 3(b)), random intercept and
slope model (Model 2.2, Figure 3(c)) and random
intercept model (Model 2.3, Figure 3(d)), to fit the
association between absolute residuals from Model
1.1 and age. All three models gave similar esti-
mates of effect sizes but different confidence inter-
vals (Table 1). The high Akaike information
criterion (AIC) suggested that Model 2.1 was not
a good choice because the absolute residuals were
correlated within individuals. Comparing results
from the two mixed models, Model 2.2 had a

lower AIC as it best described the association
between the absolute residual and age. However,
considering that the simulation data were ideal,
Model 2.2 had a relatively high P value because
the individuals close to the linear regression line in
the first step had smaller absolute residuals and
increased less with age. The effect sizes estimated
for those individuals were much smaller and thus
reduced the power of detecting the change of
variability. As we aimed to perform regressions
on an epigenome-wide analysis, Model 2.3 had
enough power to identify the change of variability
with age. Therefore, we concluded that performing
a linear regression followed by a random intercept
model was the best approach to measure the
change of interindividual variability over time.

Longitudinal EWAS on variability

Next, we performed an epigenome-wide association
study (EWAS) on real data to estimate the interindi-
vidual variability of DNA methylation and how that
changed with age. Data were taken from the Swedish
Adoption/Twin Study of Aging (SATSA), described
previously [7]. In brief, age and sex effects were

Figure 2. Flowchart of the study design. The simulation study determined appropriate models in a two-step Breusch–Pagan test to
measure variability of longitudinal data. The three different models (linear regression, mixed model with a random intercept and
slope, mixed model with a random intercept) were tested for both steps. The optimized procedure was to use residuals from a linear
regression to capture interindividual variability, and then to use a mixed model with a random intercept to fit absolute residuals
from step one.

Table 1. The statistical results of the three regression models testing absolute residuals from a linear regression (Model 1.1).

Model Estimate t value P value AIC Comment

Model 2.1: Simple linear regression 0.0145 2.473 0.015 373.5 Failed to measure inter-individual correlation

Model 2.2: Mixed model of random intercept and slope 0.0122 2.982 0.006 278.1 Poor statistical power

Model 2.3: Mixed model of random intercept 0.0139 4.097 8.31 × 10−05 293.5 Selected model
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regressed out from a linear regression and a random
intercept model was fitted to the absolute residuals to
estimate interindividual variability over time. The
results showed that 90.4% of all CpG sites
(n = 390,894) had positive effect sizes, indicating that
their methylation variability increased with age. In
total, 570 CpGs had methylation variability signifi-
cantly changing with age using a Bonferroni corrected
threshold (P < 1.3 × 10−7). Among them, the effect
sizes of age were positive for all but two CpGs
(Supplementary File 1). We further compared those
CpGs to the 1316 age-associated CpGs identified ear-
lier in this dataset [7], and 7 CpGs were both age-
associated and age-varying (two examples shown in
Figure 4(a,b)), but most were only age-varying CpGs
(an example shown in Figure 4(c)). Furthermore, 14
age-varying CpGs were associated with genetic var-
iants (methylation quantitative trait loci, meQTL,
which were identified in the same data described pre-
viously [7]), including one (cg06464078) for which
methylation variability decreased with age (Figure 4
(d)). The 570 age-varying CpGs were mapped to 246
genes based on Illumina manifest file (Supplementary
File 1) and functional analysis of those genes in
DAVID database [11] indicated that the genes were
enriched in the GO term ‘nervous system develop-
ment’ (P = 1.9 × 10−5, FDR = 0.034).

Sensitivity analysis

We analyzed how the total follow-up time influenced
the test of variability in a simulation study. We
simulated three datasets with age ranges 20–100,
40–100, and 60–100 y, followed every 20, 15, and
10 y, respectively, while keeping other parameters
the same. Each dataset was generated 100 times, with
different seeds for random number generation, to
statistically compare results. The test of variability
indicated that the age-effect estimator of variability
was the same for the three datasets, but that longer
follow-up time rendered better power (Figure S1).

The differences between t-values from the three
datasets were statistically significant (P < 0.05).

Next, we investigated whether the number of
measures and individuals influenced the test of
variability. We generated four datasets: 1) 30 indi-
viduals with 5 measures; 2) 50 individuals with 3
measures; 3) 75 individuals with 2 measures; and
4) 75 individuals with 5 measures respectively.
Again, each dataset was generated 100 times,
with different seeds for random number genera-
tion. The age effect on variability from the four
datasets stayed unchanged. The first three datasets
included 150 samples each, and the third dataset,
with 75 individuals and 2 measures, had the best
power. Additionally, dataset 4, with 75 individuals
and 5 measures, had the highest t-value, indicating
that both the number of individuals and measure-
ments can influence the test power (Figure S2).
The differences between t-values from the four
datasets were statistically significant (P < 0.05).

Finally, to test whether the change in variability
with age was constant or not, we tested a quadratic
effect of age in model 2.3 for the 570 age-varying
CpGs. We identified 4 CpGs with a significant
quadratic effect (P < 0.05; Figure S3). We also
tested the sex effect and age-sex interaction on
methylation variability for the 570 age-varying
CpGs. Of these, 28 CpGs were significantly asso-
ciated with sex (P < 0.05), where the variability in
women was smaller than in men for 22 of those
CpGs (Figure S4). In 42 CpGs, we found signifi-
cant age-sex interactions (P < 0.05; Figure S5).

Discussion

We developed a method based on simulated data
to estimate the variability of DNA methylation in
longitudinal data, and used this method on real
data that provided evidence for increasing inter-
individual methylation variability with time. We
identified both age-associated and age-unrelated

Figure 3. Models were run on simulated data to determine the best method for testing heteroscedasticity in longitudinal data. a)
The simple linear model (Model 1.1) was applied on simulated data to generate absolute residuals that measured interindividual
variability. The association between absolute residuals from the linear regression and age was further estimated by b) a simple linear
regression (Model 2.1), c) a random intercept and slope model (Model 2.2), and d) a random intercept model (Model 2.3). e)
Although the random intercept and slope model (Model 1.2) best fitted the simulated data. f) The absolute residuals from Model 1.2
captured intraindividual variability that did not change with age. g) The random intercept model (Model 1.3) was also tested for the
simulated data. h) But absolute residuals from Model 1.3 were not associated with the age.
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CpGs within the age-varying methylation sites.
Moreover, we found that some of the age-varying
CpGs were associated with genetic variants, indi-
cating that genetic effects can influence methyla-
tion variability. Functional analysis identified
enrichment of age-varying loci in nervous system
development, implying that increasing variation of
methylation patterns plays a role in brain aging.

When studying age-related changes in methyla-
tion variability, longitudinal data can be used to
illustrate individual trends over time and to com-
pute the change in interindividual variability.
Hence, results from longitudinal data are more
convincing since confounders such as genetic asso-
ciation and batch effects may be eliminated. The
development of a method for analyzing methyla-
tion variability in longitudinal data that could
provide evidence for successful implementation
in real data, as done in this study, was therefore
warranted.

A previous study on methylation variability,
including 3295 cross-sectional samples with an age
range of 10 to 90 y [9], reported 6366 age-varying
CpGs, including 218 of the 570 CpGs identified in
our study. Their functional analysis also discovered
enriched gene function in neuron development.
Considering our study’s smaller sample size (1011
samples from 385 individuals) and narrower age
range (48 to 99 y), the high replication rate suggests
that our method was appropriate for measuring
interindividual variability in longitudinal data.

Age-associated changes in methylation patterns
are considered biomarkers of human aging [12],
thus the increasing dissimilarities of such patterns
provide epigenetic evidence of different aging rates
among individuals [1]. However, in our study on
individuals of old age, only a small proportion of
the age-varying CpGs (7 out of 570) were also con-
sidered age-associated CpGs. In other words, we
suggest that individual methylation levels deviate

Figure 4. Examples of significant age-varying CpG sites. a) The methylation levels of cg21585707 decreased with age while
methylation variability increased with age. b) Both methylation level and methylation variability of cg05666820 increased with
age. c) The methylation variability of cg03689146 increased with age but age-associated changes were not detected. d) The
methylation variability of cg06464078 decreased with age, and was also identified as a methylation quantitative trait loci site
(associated with a genetic variant).
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from the population mean, while the population
mean stays unchanged. Similar results were reported
previously by Slieker et al., where age-varying CpGs
were distinct from age-associated CpGs [9]. They
further proposed that age-varying CpGs could play
a role in cancer development, since those CpGs had
greater variability in cancer tissues [9]. However,
studies are still required to prove whether there is a
causal relationship between age-varying CpGs and
cancer. Nevertheless, the function of DNA methyla-
tion in the pace of aging, where both mean methyla-
tion levels and methylation variability have a role,
remains unclear.

Methods

Simulation study

We simulated data that included 30 individuals with
5 observations per person. The age at entry was
normally distributed with a pre-defined mean age
and standard deviation. The time interval between
measures was constant and the same for every per-
son. Various values for the age at entry and follow-
up intervals were entered when generating the simu-
lated datasets. Any sample over the age of 100 y was
removed as they were not likely to be collected in real
data. The dependent variable, simulated methylation
level inM-values, was generated from amixedmodel
with a random slope and intercept:

Mi;j ¼ β0 þ β1Agei;j þ ω0i þ ω1iAgei;j þ �i;j

β0 ¼ 1; β1 ¼ 0:005

ω0i eN 0; 0:52
� �

; ω1i ¼ 0:04ω0i

þei; �i;j eN 0; 0:52
� �

ei eN 0; 0:012
� � ð1Þ

where i and j denote individuals and measures, j
and β1 denote fixed intercept and slope, ω0i and
ω1i denote random intercept and slope, ω1i

denotes random error. Since the random inter-
cepts and slopes were positively correlated, the
variance between individuals increased with age.

We tested three regression models for both
steps in the Breusch–Pagan test [10]: a linear
model, a random intercept and slope model,
and a random intercept model. The model equa-
tions are listed below, where β0 and β1 denote
fixed intercept and fixed slope, u and ω denote
random intercept and random slope, e and ε
denote regression residuals. The dependent vari-
ables in the second step were absolute residuals
from Model 1.1, as they best captured interindi-
vidual variability.

Methylation data

DNA methylation data were obtained from the
Swedish Adoption/Twin Study of Aging (SATSA)
as described previously [7]. This study used 1011
longitudinal blood samples collected from 385
twins (60% female) at five time-points from 1992
to 2012. The age of baseline samples ranged from
49 to 94 y with a mean age of 69 y. The DNA
collected from blood samples were bisulfite con-
verted using EZ-96 DNA MagPrep methylation kit
(Zymo Research Corp., Orange, CA) and methyla-
tion profiles were measured by Illumina
HumanMethylation450 BeadChip (Illumina Inc.,
San Diego, CA).

The preprocessing of methylation data was
performed using the R package RnBeads [13].
The raw methylation data were normalized
using ‘noob’ background correction [14] in com-
bination with ‘dasen’ normalization [15].
Normalized data were then adjusted for cellular
composition using the Houseman method [16]
and the Combat method [17] was used to correct
for batch effects.

Model 1.1 Model 1.2 Model 1.3

yi;j ¼ β0 þ β1xi;j þ ei;j yi;j ¼ β0 þ β1xi;j þ ui þ ωixi;j þ ei;j yi;j ¼ β0 þ β1xi;j þ ui þ ei;j

Model 2.1 Model 2.2 Model 2.3

ei;j
�� �� ¼ β0 þ β1xi;j þ εi;j ei;j

�� �� ¼ β0 þ β1xi;j þ εi;j ei;j
�� �� ¼ β0 þ β1xi;j þ ui þ εi;j
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EWAS on interindividual variability with age

The analysis of methylation variability was per-
formed on each CpG using the two regression
steps chosen from the simulation study. M-value,
which is the Logit2 transformation of methylation
fraction, was used in the test. First, we implemen-
ted a simple linear model (Equation 2) to regress
out age and sex effects from methylation levels,
and used the absolute residual from the model to
measure the interindividual variability of DNA
methylation. We then applied a random intercept
model (Equation 3) to estimate the association
between the absolute residuals and age. The effect
size of age in the second regression indicated the
change of methylation variance with age.

Mi; j ¼ β0 þ β1Agei; j þ β2Sexi; j
þ Residuali;j (2)

Residuali;j;k
�� �� ¼ β0 þ β1Agei;j þ ui;j þ εi;j (3)
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