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ABSTRACT
Evolving evidence links maternal stress exposure to changes in placental DNA methylation of
specific genes regulating placental function that may have implications for the programming of a
host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using
the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental
DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors
over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We
found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112
CpGs. Additionally, we observed three clusters that exhibited differential methylation in response
to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine
degradation to be the most significant pathway associated with maternal lifetimes stress expo-
sure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap
statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions
(i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in
the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles
in multiple physiological functions necessary for proper fetal development. Further, two genes
were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1,
TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting
multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to
mothers with increased lifetime stress exposure.
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Introduction

Maternal psychosocial stress exposure occurring
preconceptionally and during gestation is associated
with increased risk for a range of maladaptive out-
comes in offspring, including lower birth weight,
smaller head circumference, asthma, and altered
stress-related hormone levels (e.g., cortisol) [1,2].
These links are likely mediated by stress-induced
physiological changes that affect the in utero envir-
onment. Cumulative lifetime stress, particularly
exposure to traumatic events, is especially likely to

lead to persistent psychophysiological alterations in
the mother [3,4] that, in turn, influence perinatal
outcomes, offspring neurobehavioral development,
and other complex disorders [5–7]. Notably, trauma
exposures are more highly prevalent among low-
income and racial/ethnic minority populations [8].
Thus, consideration of lifetime exposures to trau-
matic events and other stressors in these groups
may be particularly informative of health disparities.
However, the role of epigenetics in these associations
remain poorly defined.
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Epigenetics is properly defined as heritable
changes in gene expression that occur without
changes to the underlying DNA sequence. There
are many types of epigenetic changes which
include DNA methylation (the most widely stu-
died epigenetic regulator), histone modifications,
microRNA, and prions. By utilizing an epigenetic
approach, we are able to incorporate the role of the
environment as a potential regulator of gene
expression that likely plays a key part in fetal
programming [9,10]. Animal [9,11,12] and
human [13,14] data show that epigenetic modifi-
cations of disease risk begin in utero and can
undergo stable regulation that mediates persistent
changes in biologic and behavioral phenotypes
over the lifespan. The demonstration of inter-indi-
vidual variation in DNA methylation profiles in
newborns as a result of maternal lifetime stress is
fundamental to establishing a role for epigenetic
variation in response to maternal stress in the
programming of human diseases.

Studies examining associations between prenatal
maternal stress or stress correlates (e.g., maternal
psychological functioning, socioeconomic adver-
sity) and DNA methylation have largely examined
epigenetic changes in cord blood at birth or child
blood DNA and have focused on a handful of can-
didate genes [e.g., the promoter region of the glu-
cocorticoid (GC) receptor, brain-derived
neurotrophic factor (BDNF), imprinted genes such
as insulin-like growth factor 2 (IGF2), nuclear
Receptor Subfamily 3 Group C Member 1
(NRC31), and guanine nucleotide-binding protein,
alpha stimulating extra-large (GNASXL)] [15–20].
Growing evidence suggests that the placenta may
constitute a model organ to explore the role of
epigenetics in linking maternal exposures to devel-
opmental programming of children’s health [21].
The placenta is a significant regulator of maternal-
fetal signaling throughout pregnancy influencing a
range of physiological functions via release of cyto-
kines, neurosteroids, and neurotransmitters into
the fetal circulation [22]. Moreover, environmen-
tally induced perturbations in the maternal milieu
can result in changes in placental function and
signaling that impact fetal development [23].
While a growing number of animal and human
studies have explored associations between prenatal
environmental exposures and DNA methylation

changes in the placenta, including particulate air
pollution, endocrine disrupting chemicals, tobacco
smoke, and nutrition [24–27], research considering
prenatal maternal stress in this regard remains
sparse. A study in rodents linked maternal stress
during pregnancy with gene-specific (HSD11B2
gene promoter) changes in placental DNA methy-
lation [28]. Further, two small human studies
examined associations between prenatal maternal
perceived stress (n = 61) [29] and chronic war-
related stressors (n = 24) [30] and differences in
placental DNA methylation in glucocorticoid path-
way genes.

The goal of this study is to examine associations
between maternal cumulative lifetime exposures to
traumatic and non-traumatic stressors and epigen-
ome-wide methylation in the placenta among
women enrolled in a longitudinal ethnically
diverse pregnancy cohort.

Results

Sample characteristics

Maternal and child characteristics for the full sample
(n = 238) and the analytic sample (n = 207) are
presented in Table 1. The analytic sample is composed
of those participants with complete stress exposure

Table 1. Sample characteristics.

Full Sample
(n = 238)

Analytic
Sample
(n = 207)

Categorical Characteristics No. (%) No. (%)
Education
≤High School degree 62 (26) 56 (27)
Missing 7 (2) 3 (1)

Race
White 78 (33) 70 (34)
Black 94 (40) 90 (43)
Hispanic 46 (19) 35 (17)
Other/Mixed 20 (8) 13 (6)

Child sex
Male 129 (54) 109 (52)

Child born full term
Yesa 217 (91) 189 (91)

Continuous Characteristics mean ± SDb mean
± SD

Age at enrollment in years 30.2 ± 5.6 30.2 ± 5.7
Gestational age at delivery in
weeks

39.0 ± 1.8 39.0 ± 1.8

Life Stressor Checklist-Revised,
weighted score (LSCRwt)

– 12.5 ± 12.3

aChildren born from 37 to 42 weeks of gestation; bSD, Standard
Deviation
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data and placental tissue. In the full sample, the aver-
age maternal age at enrollment was 30.2 years; the
majority of the sample were racial/ethnic minorities
(Black/Haitian, 40%;Hispanic, 19%;multi-racial, 8%);
26% reported having less than or atmost a high school
degree; 54% of the children were male, and nearly all
children (91%) were born full term. There were no
significant differences between the full sample and the
analytic sample on maternal age, race/ethnicity, or
education or child sex or gestational age.

Epigenome-wide analysis

Figure 1 outlines the probe filtering steps taken
prior to analysis. We tested the association
between methylation levels of 365,193 CpGs
and maternal stress exposures using semi-con-
tinuous linear regression models. In these
regression models, population structures were
accounted for through incorporating four prin-
ciple components of CpGs near cis-SNPs [31];
cell type heterogeneity was accounted for by
including Reference-Free Adjustment for Cell

Type Composition (ReFACTor) components
[32]. The resulting P values and their distribu-
tion on the genome are illustrated in Figure 2.
The genome inflation factor of the resulting P
value distribution is 1.158 (Supplemental
Figure S1 and Table S1), suggesting there is no
or minimum inflation of type-I errors. Using
FDR correction (Benjamini-Hochberg) for
365,193 tests, we observed epigenome-wide sta-
tistically significant (FDR = 0.05) associations
between maternal lifetime traumatic and non-
traumatic stressors and placental DNA methyla-
tion for 112 CpGs in covariate-adjusted analyses;
616 CpGs were differentially methylated at the
FDR = 0.20 level (Supplement Table S2). The
616 CpGs were enriched for enhancers (P value
<0.0001) and CpG islands (P value <0.0001) but
not shores, shelves, or promoters; enrichment
for CpGs located in enhancers, islands, shores,
shelves, or promoters was not observed at the
FDR = 0.05 level. Further stability selection and
permutation analysis suggests the CpG probe,
cg22065664, to be the most significantly

Figure 1. Flowchart of Probe Filtering. The flow chart outlines the filtering steps used prior to analysis.
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associated with maternal lifetime stress
(Supplement Table S2). This probe does not
annotate to a gene but it is located in an enhan-
cer near RNA, U7 small nuclear 24 pseudogene
(U7). Results from all models [i.e., semi-contin-
uous, simple linear regression and generalized
additive model (GAM)] can be found in the
online data supplement (Supplement Tables S1
and S2). The magnitude of methylation change
was calculated as the absolute differences
between averages of covariate adjusted methyla-
tion M-values from the subjects whose stress
scores were in the upper 5th percentile and
that from the subjects whose stress scores were
in the lower 5th percentile (Supplement
Table S2). For 111 out of the 112 probes signifi-
cant at the FDR = 0.05 level, the magnitude of
change was at least 0.05 folds of the standard
deviation.

Epigenome-wide pathway enrichment analysis
using an FDR level of 0.20

The enrichment analysis – based on the 616 probes
that showed strong to moderate association with
stress exposures (FDR = 0.20) and correspond to
459 genes – revealed 43 enriched pathways
(Supplement Table S3). The top 10 significant

KEGG biological pathways are listed in Table 2.
The most significant KEGG pathway was Lysine
Degradation (FDR = 3.04E-08), which includes 56
genes; 9 of those genes correspond to our set of
significant probes. Other significant KEGG path-
ways encompass multiple KEGG classes including
cellular processes, environmental information pro-
cessing, human diseases, metabolism, and organis-
mal systems and development.

Associations at FDR level equal to 0.20 with
heatmap

For the 616 CpGs associated with maternal lifetime
stress at the FDR level of 0.20 (Supplement Table S2),
a heatmap was generated to visualize the placental
DNA methylation pattern. The gap statistic [33] was
used to identify the optimal number of clusters
(Supplement Figure S2). Based on initial clustering
into 10 groups (Supplement Figure S3), we selected
the top 3 largest clusters for further analysis. We
observed distinct patterns of demethylation among 2
clusters of probes and one cluster showed increased
methylation in association with increased maternal
lifetime stress (Figure 3). Pathway enrichment ana-
lyses conducted among each cluster of probes and
their corresponding genes (top cluster = 112, middle
cluster = 111, bottom cluster = 94) observed in the
heatmap revealed further enrichment of 3 of our top

Figure 2. Epigenome-wide Association Results between Maternal Lifetime Stress and Methylation of 365,193 CpGs
Measured in Placenta for the Semi-Continuous Model. Each point represents the genomic location (x-axis) and the – log10 P
values based on the semi-continuous model for association test (y-axis) for a single probe. Horizontal lines depict the epigenome-
wide significance level corresponding to FDR = 0.05 (red) and FDR = 0.20 (black). The set of probes/genes highlighted in the text are
indicated by red triangles.
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10 KEGG pathways: endocytosis (middle cluster),
metabolic pathways (top cluster), and tight junction
(bottom cluster) (Figure 3). The threemost significant
probes, mapping to genes associated with the three
clusters, were cg13976799 [mapping to small ArfGAP
1 (SMAP1) as part of the endocytosis pathway],
cg14024579 [mapping to inositol polyphosphate-5-
phosphatase E (INPP5E) as part of the metabolic
pathway], and cg13531977 [mapping to erythrocyte
membrane protein band 4.1 like 4B (EPB41L4B) as
part of the tight junction pathway]. All three probes
were significant at the FDR = 0.10 level; cg13531977
(EPB41L4B) was significant at the FDR = 0.05 level.
Generally speaking, CpG probes located in genes
found in the endocytosis and metabolic pathways
showed patterns of hypomethylation while probes
associated with genes in the tight junction pathway
were hypermethylated. Though there appeared to be
additional regions of hyper- and hypomethylation
among a small fraction of participants with low
maternal lifetime stress, these regions were not asso-
ciated with low maternal lifetime stress across all
participants, nor were the patterns associated with
covariates (i.e., maternal race/ethnicity, maternal age,
child’s sex).

Identification of probes with ‘multiple’ hits

Of the 112 CpGs significant at the FDR = 0.05
level, 3 probes mapped to two genes where at least

one other neighboring probe with an FDR value
<0.05 was located. These include the following
genes: transmembrane 6 superfamily member 1
(TM6SF1, probe cg03063639) and ankyrin repeat
and FYVE domain containing 1 (ANKFY1, probes
cg24084898 and 13,303,203). Locus-zoom-in plots
of P value distributions along the genome were
generated for TM6SF1 (Figure 4) and ANKFY1
(Figure 5). Within these genes, we observed spikes
of multiple probes showing associations with
higher maternal lifetime stress; the top most sig-
nificant hits are highlighted in red (FDR = 0.10).
Scatterplots showing the relationship between
maternal lifetime stress and the methylation status
of the significant probes listed above can be found
in the supplement (Supplement Figure S4).

Discussion

To our knowledge, this is the first human study to
examine associations between cumulative lifetime
maternal experiences of traumatic and non-trau-
matic stressors and epigenome-wide placental DNA
methylation. We observed epigenome-wide statisti-
cally significant associations between increased
maternal lifetime stress and placental methylation
at 112 CpGs using a strict FDR of 0.05; a more liberal
FDR of 0.20 resulted in an additional 504 significant
CpGs, mapping to 459 genes.

Maternal lifetime exposure to stress was most
significantly (FDR = 2.22E-6) associated with the

Table 2. Top 20 significant KEGG biological pathways affected by maternal lifetime stress, grouped by KEGG class.
KEGG Class/Path ID KEGG Pathway Name n DE FDR

Cellular Processes
hsa04530 Tight junction 162 9 2.11E-05
hsa04144 Endocytosis 252 13 1.00E-06

Environmental Information Processing
hsa04151 PI3K-Akt signaling pathway 317 13 6.56E-06
hsa04080 Neuroactive ligand-receptor interaction 257 11 5.67E-06
Hsa04015 Rap1 signaling pathway 206 11 6.93E-06

Human Diseases
hsa05165 Human papillomavirus infection 302 11 0.0002
hsa05200 Pathways in cancer 384 15 4.74E-06

Metabolism
hsa00310 Lysine degradation 56 9 3.04E-08
hsa01100 Metabolic pathways 1190 20 6.41E-05

Organismal Systems/Development
hsa04914 Progesterone-mediated oocyte maturation 86 7 4.42E-05

Based on 616 significant probes (FDR = 0.20) using a background probe set based on the 365,193 probes used in association testing. Abbreviations:
n, number of genes corresponding to the full set of probes used in our association test that belong to that pathway; DE, number of genes
corresponding to our set of significant probes (FDR = 0.20) that belong to the KEGG pathway in question; FDR, false discovery rate using
Benjamini-Hochberg correction.

EPIGENETICS 669



placental methylation status of cg22065664. This
finding was very robust, as it remained the top hit
following our permutation analysis. While
cg22065664 is not located within a gene, there
are some characteristics that make it an interesting
target for future studies. The probe is located in an

intergenic enhancer and distal enhancers play a
major role in the cell type-specific regulation of
gene expression. While it is unclear whether the
DNA methylation status of this upstream enhan-
cer has an effect on gene expression, many inter-
genic enhancers have been associated with adverse

Figure 3. Heatmap of M-values for 130 Gene-annotated Probes Significantly Associated with Maternal Lifetime Stress at
the FDR = 0.10 Level. Heatmap shows adjusted and normalized methylationβ-values with genetic background and cell hetero-
geneity factors removed, for the leading three clusters that consist of 317 probes of the 616 significant probes (FDR = 0.20). For each
gene/probe (rows), the cluster membership is shown in the bar to the left and the significance level based on the semi-continuous
regression model is shown to the immediate right. Pathway enrichment testing was conducted for the probes belonging to each
cluster; genes belonging to enriched KEGG pathways (P <0.05) are highlighted in the bars to the far right. For each sample (column),
the LSCRwt is plotted (top) and the child’s sex and maternal age is shown in the bars directly above the heatmap.

670 K. J. BRUNST ET AL.



birth outcomes (e.g., early-onset preeclampsia)
and their methylation status has been shown to
be retained in adult tissues [34,35]. Tissue-specific
DNA methylation of intergenic enhancers are
notably most variable in cancer cells [36] and
global loss of DNA methylation in cancer cells
has been shown to activate a large number of
enhancer regions [37]. Whether maternal lifetime
stress results in global hypomethylation, conse-
quent activation of intergenic enhancers, and ulti-
mately changes in gene expression in placenta
requires further investigation. Further, the probe
is located next to U7, a pseudogene. Although

previously treated as ‘junk DNA’, it has been
shown that some pseudogenes have important
gene regulatory roles and are capable of being
transcribed into RNA. How the methylation status
of cg22065664 impacts the expression and func-
tion of U7 is unclear [38,39].

Enrichment analyses revealed the KEGG lysine
degradation as the most significant pathway. In
humans, lysine is an essential amino acid, and
thus must come from food. Lysine is incorporated
into collagen, one of the most important compo-
nents of connective tissue; therefore, its supply is
required during embryonic development and early

Figure 4. Zoomed-in plot featuring functional annotations for TM6SF1. Zoomed-in plot (top panel) shows the – log10 P values
for the semi-continuous model within a 10 Kb neighbor of cg03063639/TM6SF1 on the genome. Functional annotations are derived
from the ENCODE project and include regulatory, gene, CpG island, and GC content tracks. The lower panel shows pairwise
correlations among the CpG sites selected. The plot was generated using the ‘CoMet’ packaged in R.
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childhood [40]. The main catabolic pathway for
lysine is the Saccharopine (e-N-[L-Glutaryl-2]-L-
lysine) pathway; this is a mitochondrial pathway
leading to the formation of Acetyl-CoA (Acetyl-
Coenzyme-A), which is oxidized and used for
energy production [41]. Research suggests that
decreases in lysine can lead to placental insuffi-
ciency, and reduced placental transport of lysine is
observed in cases of intrauterine growth restriction
[42,43]. Other significant KEGG pathways identi-
fied highlight the potential associations between
maternal lifetime stress and cellular processes
(tight junction and endocytosis), environmental

information processing (PI3K-Akt signaling path-
way, neuroactive ligand-receptor interaction, rap1
signaling pathway), human diseases (human papil-
lomavirus infection, pathways in cancer), metabo-
lism (metabolic pathways), and organismal
systems and development (progesterone-mediated
oocyte maturation). Interestingly, increased prena-
tal maternal perceived stress has been associated
with multiple differentially methylated regions
involved in the neuroactive ligand receptor inter-
action KEGG pathway in cord blood [44]. While
the characterization of stress exposure and timing
of exposure in the study by Trump and colleagues

Figure 5. Zoomed-in plot featuring functional annotations for ANKFY1. Zoomed-in plot (top panel) shows the – log10 P values
for the semi-continuous model within a 16 kb neighbor of cg13303203/ANKFY1 on the genome. Functional annotations are derived
from the ENCODE project and include regulatory, gene, CpG island, and GC content tracks. The lower panel shows pairwise
correlations among the CpG sites selected. The plot was generated using the ‘CoMet’ packaged in R.
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[44] differ from our study, these findings suggest
some stressors may affect similar biological
mechanisms (i.e., neuroactive ligand receptor
interactions).

Targeted pathway enrichment analyses, con-
ducted among the 3 largest clusters of probes
observed in our heatmap, revealed further enrich-
ment of three of our top 10 KEGG pathways: endo-
cytosis, metabolic pathways, and tight junction. The
most significant probe identified in the endocytosis
cluster is located in the gene SMAP1. SMAP1
encodes for a type II membrane glycoprotein which
plays an important role in the erythropoietic stimu-
latory activity of stromal cells whose deficiency can
lead to embryonic lethality [45]. While there are no
studies to support our finding that maternal lifetime
stress has an impact on SMAP1 methylation and/or
gene expression, other environmental exposures
have been associated with SMAP1 gene expression,
specifically metal mixture exposures [46]. The
expression of INPP5E and EEF1B2, where two of
the most significant probes identified in the meta-
bolic cluster of our heatmap are mapped, has also
been shown to be impacted by environmental expo-
sures. INPP5E expression appears to be influenced
by current smoking status [47], while EEF1B2
expression correlates with maternal tobacco smoke
exposure during pregnancy [48]. Despite the fact
that maternal lifetime stress is not a chemical expo-
sure, both tobacco smoke and psychosocial stress
have been shown to induce similar biological
responses, such as oxidative stress [49–53].
Maternal lifetime stress was also associated with
increased methylation of a probe located in the
gene EPB41L4B. This gene is part of the tight junc-
tion cluster and plays important roles in cytoskeleton
changes associated with steroid-induced cell differ-
entiation and development [54,55]. This is likely due
to its involvement in the glucocorticoid receptor
(GR) pathway, a main target for the stress-related
steroid hormone cortisol, where it serves as a GR
stimulatory gene [56].While glucocorticoids are vital
to the development and survival of the fetus, expo-
sure to maternal stress and excess glucocorticoids in
utero can be harmful for fetal development and
growth [57,58]. Given our results and the findings
highlighted above, it is plausible that INPP5E,
EEF1B2, and EPB41L4B play roles in environmen-
tally-induced (via both physical and psychosocial

exposures) placental changes that may lead to
adverse perinatal outcomes.

The gene targets outlined below exhibited multi-
ple probes whose methylation status is associated
with increased maternal lifetime stress (Figures 4
and 5). TM6SF1 encodes a widely expressed lysoso-
mal transmembrane protein which is vital for facil-
itating protein trafficking via organelle fusion [59].
Interestingly, lysosomal dysfunction has been asso-
ciated with neonatal intestinal disorders preventing
proper nutritional absorption [60]. Placental expres-
sion of TM6SF1 appears to be upregulated by envir-
onmental exposures such as prenatal alcohol
consumption [61]. However, in some instances the
regulation of TM6SF1, as a result of postnatal envir-
onmental insult (i.e., house dust mite exposure) does
not appear to be associated with the methylation
status of its promotor [62]. This raises the question
of whether TM6SF1 expression is regulated by DNA
methylation and thus warrants further investigation.
The other gene to exhibit differential methylation of
multiple cpg probes associated with maternal life-
time stress is ANKFY1, also known as Rabakyrin-5.
ANKFY1 is widely expressed in adults and in fetal
tissues during development and plays a major role in
endocytosis [63]. Overexpression of ANKFY1 has
been shown to increase macropinocytosis, the non-
selective uptake of solute molecules and nutrients,
while knockdown ofANKFY1 suppresses the process
[63]. Macropinocytosis serves as a feeding mechan-
ism and is particular relevant for nutrient-deprived
environments [64] and nanoparticle uptake [65].
Nanoparticles can cross the placenta barrier [66]
and cause fetotoxicity in offspring by disrupting
placental function and structure [67].
Environmental exposure to nanoparticles can occur
through many sources such as consumer spray pro-
ducts and cosmetics. [68,69] Thus, one could
hypothesize that maternal lifetime stress exposure
could result in increased uptake of nanoparticles at
the maternal-fetal interface due to altered expression
of ANKFY1 and its subsequent increase in macro-
pinocytosis. Together, these findings underscore the
potential importance of TM6SF1 and ANKFY1 in
fetal and infant development consequent tomaternal
stress exposure.

This study has notable strengths. The study is
comprised of a largely racial/ethnic minority
population of pregnant women at increased risk
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for stress exposure and consequent adverse health
outcomes among their offspring. Further, because
PRISM is a longitudinal cohort, we will be able to
examine the impact of these epigenetic changes on
child developmental outcomes in future studies.
Moreover, in the data analysis, we implemented a
novel semi-continuous regression model to better
detect associations with high stress exposures.
When compared with traditional approaches,
such as the ordinary linear regression and GAM
(generalized additive model) on our data set, the
semi-continuous regression model showed more
favorable control of type-I errors and/or power
(Supplementary Table S1).

There are also limitations worth noting. First, our
study focused on maternal lifetime stress/trauma
using a self-report survey of cumulative lifetime
stress/trauma rather than examining specific timing
of exposure. Despite many studies showing the nega-
tive impact chronic/lifetime stress has on health [3–7],
using a measure of cumulative lifetime stress/trauma
makes it challenging to identify the importance of
timing, type, and duration of stress on placental
DNA methylation. Second, our analyses were limited
to placental samples. The effects of maternal lifetime
stress/trauma on other easy-to-sample fetal tissues
(e.g., umbilical cord blood) and maternal biological
samples should be explored as differential effects
across these various biosamples likely exist. [70,71]
Third, the sample size prevented us from examining
differences by sex and racial/ethnic groups; potential
sex and racial/ethnic differences should be tested
among larger diverse cohorts as they might provide
insight into racial inequalities and sex differences in
health. Fourth, it is important to replicate our EWAS
and pathway analysis findings. To date, we have been
unable to locate a cohort suitable for replication due
to differences in tissue type and the operationalization
(e.g., psychopathology, natural disaster) and timing
(e.g., current vs. lifetime) of stressors. While we took
precautions in avoiding erroneous associations in our
pathway analysis by using missMethyl, follow-up stu-
dies would help confirm the importance of the iden-
tified pathways observed in this study. Fifth, the use of
ReFACTor to adjust for cell-type heterogeneity in
tissues other than whole blood needs further valida-
tion [72]. Lastly, it is important to explore the role of
lifestyle and health related factors (e.g., diabetes,
hypertension, obesity, smoking behaviors) in the

associations between stress and placental DNA
methylation. Cumulative lifetime trauma/stress can
be related to maternal behavioral and health factors
such as smoking and obesity, which can also influence
methylation profiles. However, in this context these
indicators may be considered as mediators (or in the
pathway) so further consideration herein was beyond
the scope of the intended analyses. It is also worth
noting that in our sample of mothers, maternal smok-
ing status (for which only 7% of participants reported
smoking during pregnancy) was not associated with
increased maternal exposure to traumatic and non-
traumatic events (Fisher’s Exact P value = 0.09); this
finding suggests smoking may not be a major con-
founder in our study. While we are unable to suffi-
ciently explore these relationships given our sample
size, larger studies could pursue these issues more
definitively. Future studies should also explore the
impact of the identified methylation marks on rele-
vant birth and perinatal outcomes.

In summary, the placenta’s role in nutrient
transfer and organ development is important for
the proper development of the fetus. Epigenetic
modification of the placental epigenome may pro-
vide a possible connection between maternal stress
exposure and alteration in gene expression that
might set in motion fetal programming signatures
that shape early childhood conditions. Our study
found that maternal lifetime stress/trauma is asso-
ciated with changes in the epigenome-wide methy-
lation status of multiple loci in genes that have key
roles in cellular processes and metabolism. Both of
these processes broadly speaking, and more speci-
fically the genes for which the significant loci were
mapped, appear to be important for early embryo
development and metabolism. These findings may
provide insight into possible biological mechan-
isms linking maternal stress exposure and adverse
perinatal/child health outcomes.

Methods

Study population

Participants included women enrolled in the
PRogramming of Intergenerational Stress
Mechanisms (PRISM) study, a prospective preg-
nancy cohort of mother-child pairs originally
designed to examine how perinatal stress influences
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child development as well as examining the role of
the placenta in environmental programming. In
brief, 238 women were recruited from prenatal
clinics during the first or second trimester
(27 ± 8 weeks of gestation) from the Beth Israel
Deaconess Medical Center (BIDMC) from March
2011 to August 2012 and from the Icahn School of
Medicine at Mount Sinai from November 2012 to
August 2014. Eligibility criteria included: (i) English-
or Spanish-speaking; (ii) age≥18 years at enrollment;
(iii) singleton pregnancy; and (iv) willingness to
provide placenta samples at birth. Women who
endorsed drinking more than seven alcoholic drinks
per week prior to pregnancy recognition or any
alcohol after pregnancy recognition and children
born with congenital abnormalities that would
impact neurodevelopment were excluded.
Procedures were approved by the institutional
review boards at the Brigham and Women’s
Hospital (BWH) and the Icahn School of Medicine
at Mount Sinai. BIDMC relied on BWH for review
and oversight of the protocol. Written informed
consent was obtained from all participants in their
primary language.

Maternal lifetime stress

Maternal lifetime exposure to stress and poten-
tially traumatic events was assessed in the second
trimester using the validated 30-item Life Stressor
Checklist-Revised (LSC-R) [73]. The LSC-R
includes experiences particularly relevant to
women (e.g., sexual assault, interpersonal violence)
and questions reflecting the participant’s assess-
ment of the severity of the negative impact [ran-
ging from 1 (not at all) to 5 (extremely)] of each
endorsed event during the past 12 months. The
LSC-R has established test-retest reliability and
validity in diverse populations [73,74]. A weighted
score of all endorsed stressful life events (traumatic
and non-traumatic) that considered the self-
reported negative impact of each event was com-
puted (weighted Life Stressor Checklist Revised,
LSCRwt); scores could range from 0–150 (range
in present sample = 0–96), with higher scores
indicating greater exposure to and impact of expo-
sure to stressful and traumatic events.

Placenta specimen collection and processing

Placentas were sampled per a published protocol
[75] immediately after birth in 238 women. Each of
four samples (~1 cm3) was taken on the fetal side
~4 cm from the cord insertion site and ~1–1.5 cm
below the fetal membrane to avoid membrane con-
tamination. The decidua and fetal membranes were
removed, the sample was rinsed in a cold PBS bath,
cut into smaller pieces (~0.1 cm3), and placed into
30 cc saline solution and placed at −80°C until DNA
extraction.

DNA extraction and bisulfite treatment

DNA was isolated using the Gentra Puregene kit
(Qiagen, Germantown, MD) and quantified using
an Implen Nanophotometer Pearl (Westlake
Village, CA). The origin of placental tissue from
the fetal side of the organ was confirmed by the
near-perfect agreement of placenta and cord blood
samples in 64 genotyping probes used for identity
verification. Across these 64 genotyping probes,
the range of the Pearson correlation coefficients
between cord blood and placenta within each par-
ticipant was 0.99 to 1.00.

DNA (500 ng) was bisulfite-treated using the EZ
DNA Methylation-Gold™ Kit (Zymo Research,
Orange, CA) analyzed by the Infinium Methylation
Assay. Samples were arranged on chips and plates
with a stratified randomization followed by statistical
checks for balance on birthweight z-score, gesta-
tional age, sex, and city of collection.

DNA methylation profiling

Illumina infinium humanmethylation450 array
HumanMethylation450 BeadChips (Illumina Inc.,
San Diego, CA, USA) were used to interrogate
485,577 DNA methylation sites and to generate a
measure of the methylation proportion at each
site. Specifically, single-CpG-site methylation
values were quantified after bisulfite conversion
using fluorescence measures at site-specific probes,
which was computed as the methylated intensity
divided by the sum of both the methylated and
unmethylated intensities. Methylation values ran-
ged from zero (for a fully unmethylated CpG site)
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to one (for a fully methylated CpG site). Extensive
efforts were made to avoid confounding by batch
effects by use of a stratified randomization of
samples to chips and plates as well as a randomi-
zation of position within chip. Further, all samples
were run consecutively at the Partners HealthCare
Translational Genomics Core Labs.

Quality control, preprocessing and normalization
The presence of failed arrays or outliers was
checked with detection P values (all samples passed
with detection P values <0.05 in >99% of probes),
through visualization of principal components ana-
lysis (PCA) and the clustering of PCs among the
10,000 highest varying probes, and evidence of
sample swapping or contamination in 65 finger-
printing SNP probes (one sample was excluded
due to maternal contamination). PCA plots and
the analysis of five pairs of technical replicates that
were arranged across chips and plates were further
used to evaluate precision (of raw data and after
pre-processing) and monitor for large batch effects.
Sample identity was checked via imputed sex and
agreement of genotype with paired tissues. Data
were preprocessed using background correction
[76], dye bias, and probe type adjustment [77].
BMIQ (Beta Mixture Quantile dilation) intra-sam-
ple normalization was applied to all probes to adjust
the methylation values of Infinium II probes into a
statistical distribution characteristic of Infinium I
probes. The BMIQ function in the R package
wateRmelon was used [78].

Probe filtering
Prediction models were not performed on all
485,577 methylation probes and the probe filtering
steps used in PRISM has previously been reported
[71]. In brief, probe filtering included the removal
of 1217 probes with detection P value >0.05 in
>1% of the samples, 64 SNPs, 3089 CpH sites,
29,127 cross-reactive probes, 74,645 CpG sites
with variants within 10 base pairs common to
Asian, American, African, and European popula-
tions (frequency >1%), and 9323 and 48 probes on
chromosomes X and Y, respectively. An additional
2865 CpG sites with a multimodal distribution of
methylation (Dip test’s P value <0.05) were
excluded (Figure 1).

Statistical analysis

Placenta tissue, LSC-R data, and covariates were
available for 207 participants.

ReFACTor analysis for cell heterogeneity
adjustment
The cell heterogeneity adjustment was conducted
using a Reference-Free Adjustment for Cell-Type
composition (ReFACTor) analysis. ReFACTor is an
unsupervised method for the correction of cell-type
heterogeneity in epigenome-wide association studies
(EWAS), which is based on a variant of principal
component analysis (PCA) [32]. The ReFACTor
algorithm requires a CpG sites-by-samples matrix
of beta-normalized methylation levels, a number of
assumed cell types (k) and a number of CpG sites to
use for computing the ReFACTor components (t).
As suggested by the authors of this method (https://
github.com/cozygene/refactor), before running
ReFACTor a subset of probes are defined that
exclude problematic probes, as well as consistently
methylated probes and consistently unmethylated
probes. Specifically, filtered-out probes included
1,217 probes with a detection P value >0.05 in >1%
of the samples, 64 genotyping SNPs, 3,089 CpH sites,
29,127 cross-reactive probes [2], 74,645 CpG sites
with variants within 10 base pairs that are common
to Asian, American, African and European popula-
tions with a frequency of >1% [3], 9,371 probes on
chromosome X or Y, 99,878 and 141,322 CpG sites
with mean methylation value >0.8 or <0.2, respec-
tively. The resulting dataset for the ReFACTor ana-
lysis included 126,864 probes (i.e., reduced number
of probes due to the additional filtering required by
ReFACTor) and 238 unique samples. Guidelines for
parameter selection guided us to set k and t equal to
3 and 500, respectively. Since the authors of this
method observed that adjusting the methylation
levels, before running ReFACTor, for genome-wide
affecting factors, such as gender and global ancestry,
improves the performance of ReFACTor, we decided
to pass to ReFACTor also a samples-by-covariates
matrix of covariates including gender and principal
components for ancestry. The software output is a
matrix with the first k ReFACTor components for
each individual which can be included in down-
stream analyses as covariates. We noted from a

676 K. J. BRUNST ET AL.

https://github.com/cozygene/refactor
https://github.com/cozygene/refactor


scatterplot matrix that these three derived variables
were uncorrelated with each other (as we would
expect).

EPISTRUCTURE analysis for ancestry adjustment
The adjustment for population structure was con-
ducted using principal components calculated on a
subset of 4,905 CpG sites pre-screened to be highly
correlated with local single nucleotide polymorph-
isms (cis-SNPs) [31]. Scatter plots showed the first
four principal components of the between-probe
relations of these CpGs capturing genetic informa-
tion separated samples by the maternal self-
reported race/ethnicity and thus were included in
further association testing to avoid confounding
due to population stratification. The four PCs
included in association testing were not correlated
(Pearson Correlation Coefficient P values ranged
from 0.60 to 0.87)

Epigenome-wide association (EWAS) analysis
Association testing was performed using CpG
methylation β-values based on data from 207 par-
ticipants, excluding 1 individual with a very high
stress score (LSCRwt >80) and 30 individuals with
missing data on maternal lifetime stress. For each
probe, outliers were evaluated on the methylation
M-value scale. Methylation β-values were first
transformed into M-values through logit transfor-
mation. Any M-value above or below the inter-
quartile range (defined as having values outside 3
times the interquartile range below Q1 or above
Q3) was truncated to its nearest range value prior
to association testing. Evidence supports the
notion that low to moderate levels of stress are
normative (i.e., commonly encountered in the
population) and thus, when stress exposure is
within this range it is likely to have limited impact
on epigenetic processes; however, when stress
exposure and/or the perceived impact of the stres-
sor is high or more severe, there is more likely to
be biological consequences at the cell level [79,80].
This hypothesis is supported by the empirical dis-
tributions of LSCRwt scores and M-values
observed in our study. As the examples in the
supplement illustrate (Figure S4), the scatterplots
of LSCRwt vs. the M-value of individual CpG
probes across all subjects consistently shows a
mass of data points at the low LSCRwt end (i.e.,

weaker effect is observed between LSCRwt and
methylation). This observation motivated us to
introduce two variables (LSCRwtBi ; LSCRwt

T
i Þ to

better capture the information in the LSCRwt dis-
tribution above the threshold and at the same time
to prevent the variability among small LSCRwt
scores to dilute the signals in statistical tests.
Ultimately, if there is a dosage effect in the high
stress spectrum, the proposed semi-continuous
model will better detect the effect than a model
only using LSCRwtBi . Specifically, we define these
variables as follows:

LSCRwtBi ¼ 1; ifLSCRwti � α
0; otherwise

�

LSCRwtTi ¼ LSCRwti; ifLSCRwti � α
0; otherwise

�

In the above definition, LSCRwtBi is a binary vari-
able indicating whether the participant was
exposed to high or low stress; while LSCRwtTi is
a truncated continuous variable measuring the
effect of extreme stress exposures among the high
stress group.

We then used the following model to test for
associations between methylation and stress,
where yij represents the methylation M-value of
individual i (1,. . .,207) for probe j (1,. . .,365,193):

yij ¼ αþ βBLSCRwt
B
i þ βTLSCRwt

T
i þ

X
kβkXki

Where the k = 1,. . .,8 covariates (Xik) included:
child’s sex, 4 PCs to adjust for population stratifi-
cation [31], and 3 PCs to adjust for cell hetero-
geneity [32].

Statistical testing was performed jointly on

LSCRwtBi and LSCRwtTi using the ANOVA
F-statistic, comparing the model stated above to a
null model containing neither stress related term.
We compared results from our semi-continuous
model with those based on a simple linear model
and a generalized additive model based on fitting a
smoothed spline to the data as implemented in R
the ‘gam’ package (Supplement Table S1). For the
semi-continuous model we considered many
values of α corresponding to percentile increments
from the 80th to the 96st percentile of LSCRwt.
For further investigations, we selected the semi-
continuous model where α = 31 corresponding to
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the 92nd percentile of LSCRwt. This model shows
low genomic inflation (λGC = 1.16, Supplement
Figure S1), maintains an adequate number of sam-
ples above the threshold (n = 15), and demon-
strates enhanced power to detect associations as
compared to either the simple linear or the gen-
eralized additive model. The –log10 (ANOVA P
values) from the semi-continuous linear regression
for 365,193 CpGs across the genome were plotted
(Figure 2). Information about the direction and
strength of association for the binary and trun-
cated stress terms was obtained using a multiple-
partial F-test. To further substantiate our findings,
we also conducted a stability selection [81] based
permutation test to identify methylation probes
significantly associated with LSCRwt scores (see
Supplement Text). FDR adjusted P values from
the ANOVA (FDRANOVA), as well as beta-coeffi-
cients for each stress term (βt and βb) and their
associated P values (Pt and Pb), are included in
Supplementary Table S2.

Heatmap visualization of methylation data
Methylation beta values for the 616 probes signifi-
cant at FDR = 0.20 were first adjusted for genetic
and cell background and then normalized before
hierarchical clustering was performed (see
Supplement Text). The number of clusters
(K = 10) was selected based on gap statistic
(Supplemental Figures S2 and S3) [33]. Visual
inspection for patterns of methylation in associa-
tion with maternal lifetime stress (LSCRwt) was
conducted. Figure 3 presents a heatmap based on
the top three largest clusters (K = 3).

Epigenome-wide enrichment analysis
We performed gene ontology (GO) and KEGG
pathway analyses for the set of 616 probes signifi-
cant at the FDR = 0.20 level (Supplementary
Table S2) and for the each of the probe sets corre-
sponding to the top 3 clusters shown in Figure 3.
The epigenome-wide enrichment analyses for GO
Terms and KEGG Pathways was conducted using
the Bioconductor ‘missMethyl’ package for R [41].
Enrichment analyses were conducted based on a
background probe set comprising the full set of
365,193 probes used in EWAS analysis. We uti-
lized the modified hypergeometric test option of

the ‘gometh’ function to account for selection bias
due to the increased probability of finding an
association for genes with a larger numbers of
probes [41,82]. All significant KEGG biological
pathways at an FDR = 0.05 can be found in the
supplementary table S3. Figure 3 shows adjusted
methylation values for the top 3 clusters, where
cluster membership is shown on the left bar; the
probes/genes belonging to each of the enriched
pathways are highlighted in the bars to the right
of the heatmap. We further performed pathway,
CpG region, and promoter enrichment analysis
using the two-sided doubling mid P value hyper-
geometric test [83] for probes selected for signifi-
cance at the FDR = 0.05 (n = 112), FDR = 0.10
(n = 267), and FDR = 0.20 (n = 616) levels.
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