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Abstract

We consider the situation of estimating Cox regression in which some covariates are subject to
missing, and there exists additional information (including observed event time, censoring
indicator and fully observed covariates) which may be predictive of the missing covariates. We
propose to use two working regression models: one for predicting the missing covariates and the
other for predicting the missing probabilities. For each missing covariate observation, these two
working models are used to define a nearest neighbor imputing set. This set is then used to non-
parametrically impute covariate values for the missing observation. Upon the completion of
imputation, Cox regression is performed on the multiply imputed datasets to estimate the
regression coefficients. In a simulation study, we compare the nonparametric multiple imputation
approach with the augmented inverse probability weighted (AIPW) method, which directly
incorporates the two working models into estimation of Cox regression, and the predictive mean
matching imputation (PMM) method. We show that all approaches can reduce bias due to non-
ignorable missing mechanism. The proposed nonparametric imputation method is robust to mis-
specification of either one of the two working models and robust to mis-specification of the link
function of the two working models. In contrast, the PMM method is sensitive to misspecification
of the covariates included in imputation. The AIPW method is sensitive to the selection
probability. We apply the approaches to a breast cancer dataset from Surveillance, Epidemiology
and End Results (SEER) Program.
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Introduction

For survival time data with covariates, Cox regression is often used to specify the
relationship between survival time and covariates.? For time-independent covariates, Cox
regression has the proportional hazards property. It estimates the regression coefficients of
the model using the partial likelihood function without specifying the baseline hazard
function.2 The estimators of regression coefficients have been shown to be consistent,
normally distributed and semi-parametrically efficient.3 However, in many situations, some
of the covariates are not fully observed. Missing covariates could compromise the
asymptotic properties of the estimators if missing data are not accounted for in estimation.
Specifically, it has been shown that the estimators of the regression coefficients derived from
the subjects with all of the covariates observed (i.e. complete-case analysis) not only lose
efficiency, but may also generate biased regression coefficient estimates when missingness
depends on the survival outcome (i.e. survival time and censoring indicator).* When
missingness depends on the survival outcome (i.e. survival time and censoring indicator) and
some fully observed covariates, missing mechanism is considered as missing at random
(MAR).5 For the survival outcome data, MAR can be even further classified into two
scenarios: failure- ignorable MAR (i.e. missingness does not depend on failure time) and
censoring-ignorable MAR (i.e. missingness does not depend on censoring time but may
depend on failure time).6 When missingness is failure-ignorable MAR, complete-case
analysis can still produce valid regression coefficient estimates. However, when missingness
is censoring-ignorable MAR, complete-case analysis may produce biased regression
coefficient estimates.

Several approaches have been proposed to deal with missing covariates in Cox regression.
Of the existing approaches, the augmented inverse probability weighted (AIPW) method,:8
where the weight is derived from a fully specified model for the missing status conditional
on the observed data and an augmentation term derived from a fully specified model for the
missing covariate conditional on the observed data is added to estimation to correct the
potential bias, has been shown to have a double robustness property. Specifically, the AIPW
method uses two fully specified parametric models (one for the missing covariate and the
other for the missing probability) to account for missing covariates while estimating the
regression coefficients of Cox regression model. This indicates that at least one of the two
models has to be correctly specified, including the distribution and link function for the
missing covariate and the missing status, respectively. Of the two models, the model for the
missing covariate is more important since in a sense it is directly associated with estimation
in Cox regression. However, it is more challenging to correctly specify the model for the
missing covariate than the model for the missing probability based on the observed data.
Because of the double robustness property, the AIPW method is a popular method for
researchers who do not want to solely rely on the model for estimating the conditional
distribution of the missing covariate on the observed data in Cox regression with missing
covariates. To weaken the reliance on parametric assumptions behind the two models, non-
parametric regression has been used to estimate the two models without fully specifying the
relationship between the missing covariates and the observed data.® As the dimensionality of
the observed data increases, it becomes extremely difficult to use non- parametric regression
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to estimate the two models. In addition, the AIPW method is also sensitive to
misspecification of the missing probability model, because even mild lack of fit in outlying
regions of the covariate space where the missing probability is extreme (i.e. very close to 1)
translates into large errors in the weights.510.11

We previously developed a nonparametric multiple imputation (M) approach to deal with
missing data in a situation without censored data.}! The approach indirectly uses two
working models to recover information for missing data observations. Specifically, we use
two working regression models, one for predicting the missing covariate values and one for
predicting the missing probabilities. The parameter estimates from these two working
models are then used to give two predictive scores for each subject, defined as the linear
combination of the covariates in the corresponding model. The method then selects an
imputing set of observations for each missing data observation, which consists of subjects
who have their data fully observed and have similar predictive scores as the subject with
missing data. Then the missing data value is randomly drawn from this imputing set. The
idea is similar to predictive mean matching®2 and propensity score matching®3 in the missing
data literature. In a situation with missing outcome data, we have shown that this
nonparametric multiple imputation approach can generate a consistent mean estimator. In
this paper, we generalize the nonparametric multiple imputation approach,! in which no
statistical model is directly used to perform multiple imputation, to handle estimation of Cox
regression with missing covariates to weaken the reliance on the two models and produce
stable regression coefficient estimates even if the missing probability is extreme.
Specifically, we propose to use two working regression models, one for predicting the
missing covariates and one for predicting the missing probabilities, to derive two predictive
scores to select an imputing set for each missing covariate observation. It has been shown
that the survival outcome data (specifically cumulative baseline hazard and censoring
indicator) need to be included in predicting the missing covariates.1# In addition, the survival
outcome data can be also included in the regression model for missing probabilities as the
covariates to account for potentially censoring-ignorable MAR. The two working regression
models are only used to derive two predictive scores to select an imputing set. Hence, the
approach can easily handle the multi-dimensional structure of the observed data and is
expected to be less affected by the mis-specification of the two working models (especially
the mis-specification of the missing probability model) than the AIPW method. Due to the
simplicity in estimation and the availability in statistical software, the Ml method simply
based on the predictive model of the missing covariates is widely used. Qil® compared the
AIPW method with the M1 method using predictive mean matching (PMM) based on
multiple imputation by chain equations (MICE) in the estimation of Cox regression with
missing covariates and concluded the PMM method is sensitive to misspecification of the
predictive model of the missing covariates. In this paper, not only will we study the
performance of the proposed multiple imputation approach but will also compare its
performance with the AIPW and PMM methods.

This paper is organized as follows. In Section 2, we review the complete-case analysis and
the AIPW method. In Section 3, we describe the proposed multiple imputation method and
the associated properties. In Section 4, we apply the techniques to data from a breast cancer
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study. In Section 5, we give results from a simulation study. A discussion follows in Section
6.

2 Review of methods

In this section, we begin with describing the setting of the situation: estimation of Cox
regression with time- independent covariates and one of the covariates subject to missing.
Let 7 denote the failure time, Cdenote the censoring time, Y= min(7,C) denote the
observed time, 5, = I[T < C] denote the censoring indicator and N@®O=5I(T <t) denote the
counting process. Assume 7 has a hazard function of i(t) = Ao(t)eﬁxxwzz where A(t) is an

unspecified baseline hazard function, X is subject to missing and Z is fully observed. Let dy
denote the missing indicator for X (i.e. 8¢ =1 if X is observed; otherwise, 0) and 1t Pr(64 =
1) denote the selection probability. We assume that 7and Care independent conditional on
X and Z and X is missing at random (i.e. E[ 5 1Y, 8 .Z X|=E[ 5, 1Y, §_.Z|) and there is a

random sample of 77subjects.

2.1 Complete-case analysis
The complete-case (CC) analysis of B = (Bx,B,) is based on the partial likelihood estimator

using observations that have X observed. Let r.(B,t) = eﬁxXJrﬁ AR

1 = (x.Z,)'r,(p.v) The CC analysis involves solving the following estimating equations
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CC analysis and it is consistent when the missingness depends only on Z. However, it loses

efficiency due to discarding data from incomplete observations, especially when the missing
rate is greater than 25%,16 and is inconsistent when missingness depends on T or &;.

2.2 AIPW method

The AIPW method was first proposed by Robins et al.” to modify the CC analysis to
produce consistent estimators of B and furthermore improve efficiency of the CC analysis.
The AIPW method has been studied and further developed by a few groups for various
scenarios. For Cox regression with a missing covariate, it involves solving the estimating
equations®:9
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Based on the above expression, it can be seen that the conditional expectation in A{B, i)

depends on the baseline cumulative hazard and the conditional distribution of XIT, 5, Z The

EM algorithm can be used to derive the AIPW estimates.8 To perform the EM algorithm, the
conditional distribution of XIT, 5, Z and the selection probability r need to be estimated. It

has been shown that if one of them is estimated correctly, the AIPW estimator is consistent
(so called double robustness property). Often two parametric working models are used to
estimate the conditional distribution of estimate the conditional distribution XIT, 5, Z and the

selection probability rt, respectively, and then directly incorporate them into estimation of
AIPW estimator. To relax the reliance on the distributional assumptions, nonparametric
techniques have been proposed to estimate the conditional distribution and the selection
probability. However, as the number of fully observed covariates (i.e. Z) increases, it gets
difficult to estimate the conditional distribution and the selection probability
nonparametrically. In this paper, we will mainly focus on the performance of the AIPW
estimator where two parametric working models are used to estimate the conditional
distribution and the selection probability, respectively, and one of the two models is mis-
specified. The estimate of standard error for AIPW is derived from 500 bootstrap samples.

3 Nonparametric multiple imputation

3.1

Instead of directly incorporating the working models into estimation, we propose to use two
working regression models, one for predicting the missing covariates and one for predicting
the missing probabilities, to derive two predictive scores to select an imputing set for each
missing covariate observation. The two working regression models are only used to derive
two predictive scores to select an imputing set. Hence, the approach is expected to be less
affected by the mis-specification of the two working models. To conduct nonparametric
multiple imputation, for each missing covariate observation we seek an imputing set
consisting of subjects who have similar predictive scores as the subject with missing
covariate observation. We describe the imputation procedures in detail below.

Imputation procedures for missing covariate X

3.1.1 Step 1: Estimate the two predictive scores on a Bootstrap sample

To define each imputing set, we first reduce the observed survival data and Z to two scalar
indices (predictive scores), which provide an indicator of an individual’s value of X and
chance of having missing X. Whitel4 showed that in Cox regression with missing covariates
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only under certain cases the conditional distribution of XIT, 5, Z can be exactly specified

using cumulative baseline hazard Hy(t), 6;and Z. Specifically, when both X and Z are binary
variables, the conditional distribution of XIT, 5, Z exactly follows a binomial distribution,

where logit[Pr(X = 1)IT, 5, Z] = a, + 2,8, + a,Hy(t) + a,Z + a,ZH,(1). When there is no Z, the
conditional distribution reduces to logit|Pr(X = 11T,5,)] = a, +a,8, + a,H,(0). In other cases,
only approximate conditional distribution of XIT, 5, Z can be obtained. The approximate

conditional distribution depends on cumulative baseline hazard Hy(t), censoring indicator &;
and the fully observed covariate Z.14 Hence, all of them will be included in the working
regression model for predicting X. To account for potential censoring-ignorable MAR and
misspecification of the conditional distribution of XIT, &, ,Z, we will include the survival

outcome data (i.e. Y and &), as well as Z, in the working regression model for predicting the
missing probabilities. This strategy summarizes the multi-dimensional structure of the
observed survival data and Z into a two-dimensional summary. The hope is that this two-
dimensional summary contains most, if not all, the information about the value of missing X
and missingness.

Specifically, a linear/generalized linear model with Hy(t), 6;and Z as the covariates can be
fitted to the complete cases to derive a predictive score for X. This score summarizes the
relationship between X and Hy(t), 6;and Z. A logistic regression model with the observed Y,
&rand Z as the covariates will be fitted to the missing indicator data (i.e. 6,) to derive a
predictive score for missingness. This score summarizes the relationship between
missingness and Y, &yand Z. The two models will be fitted on a nonparametric bootstrap
samplel’ of the original dataset to incorporate the uncertainty of parameter estimates from
the working models. This step results in proper multiple imputation (Nielsen18 and

references therein). More specifically, let (Y°,5,, 5%, z%) denote the bootstrap sample. Two

working models are conducted on the bootstrap sample to calculate two predictive scores,
S,(B) and Sg,(B), for each individual in the bootstrap sample. We further standardize these
scores by subtracting their sample mean and dividing by their standard deviation, and denote
the standardized scores by S,°(B) and S, °(B), respectively. Combinations of these two
predictive scores will be studied to see to what extent a double robustness property1? for
model mis-specification can be established and whether a robustness property for link
function mis-specification can be established for the non-parametric multiple imputation
method.

3.1.2 Step 2: Define the imputing set—For subject j with missing X in the original
dataset, two predictive scores are derived using the regression coefficient estimates obtained
from the bootstrap sample (i.e. S¢(j) and Sgx(j)) and then standardized by subtracting the
sample mean of the corresponding bootstrap sample predictive scores and dividing by the
standard deviation of the corresponding bootstrap sample predictive scores, respectively
(denoted as S,°(j) and Sgy(j)). The distance between subject j in the original dataset and
subject k in the bootstrap sample is then defined as

d(j, k) = S SC(B)k2 S¢ ( SC(B)kzwhr w; and w» are non-negativi
(k) = w8500 =SSP+ w, 5 ()= 8570, where wy and ware non-negative
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weights that sum to one. Non-zero weights for w, may be useful in reducing the bias
resulting from model mis-specification. Specifically, a small weight w> (e.g. 0.2) will result
in incorporating the predictive scores from the missing probability model into defining a set
of nearest neighbors for subjects with missing X. There are alternative ways to calculate the
distance between subjects such as Mahalanobis distance, which accounts for the correlation
between the two predictive scores. Once the distance is derived, for subject j, the distance is
then employed to define a set of nearest neighbors. This neighborhood consists of NN
subjects who have their X observed and have a small distance from subject j in terms of two
predictive scores.

3.1.3 Step 3: Impute a value from the imputing set—After the imputing set is
defined, a value of X is randomly drawn from the imputing set. Thus, the procedure imputes
X only from the subjects with X observed. The non-parametric multiple imputation method
based on a nearest neighborhood is denoted as NNMI(NN, w3, wy).

3.1.4 Step 4: Repeat Steps 1 to 3 independently M times—Each of the M
imputed datasets is based on a different Bootstrap sample. Once the M multiply imputed
datasets are obtained, we carry out the MI analysis procedure established in Rubin.®
Specifically for our purposes, Cox regression analysis with X and Z as the covariates is
performed on the M imputed datasets to estimate By and B,. For both By and B, the final
estimate is the average of the M corresponding regression coefficient estimates (i.e. 3 ) and
the final variance (denoted var[ﬁ]) is the sum of the sample variances (denoted as 5g) of the
M regression coefficient estimates and the average (denoted as Up) of the M variance
estimates of 3. As shown in Rubin,S for both By and B, the quantity 5 — g]y/var| 4|

UﬁM

I+ |55

2
approximately follows a t distribution with a degree of freedom, v = (M - 1) /Bﬂ]

We use a value of 10 or higher for M.

4 lllustration of the method on a breast cancer dataset

We demonstrate the nonparametric multiple imputation approach on a dataset which consists
of 7050 women diagnosed with stage IV breast cancer between 2005 and 2011 in California.
This dataset was extracted from the breast cancer registries under Surveillance,
Epidemiology and End Results (SEER) Program. Of the 7050 patients, besides survival data
(i.e. survival status and survival time) after diagnosed with breast cancer, for each patient
there are several variables collected at diagnosis, as well as Age, Race (Black, White,
Other), HER2, Radiation and Surgery. Those variables are summarized in Table 1. HER2 is
a member of the human epidermal growth factor receptor family and has been shown to be
strongly associated with increased disease recurrence and a poor prognosis for breast cancer
patients.20 According to Table 1, of the 7050 patients, 1293 (18.34%) had missing HER2
value. Table 2 identifies variables predictive of HER2 value and missing probability.
Specifically, based on univariate logistic regression analysis for HER2 positive indicator
using patients with their HER2 value available (i.e. complete case analysis), Age, Race,
Surgery and baseline cumulative hazard, respectively, are predictive of HER2 value and used
for performing the PMM method. The results indicate younger patients who did not have
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surgery and had a higher hazard rate are more likely to have a positive HER2 value. Based
on univariate logistic regression for missing indicator, Age, Surgery, Radiation, survival
status (Dead indicator) and baseline cumulative hazard, respectively, are predictive of
missing probability. The results indicate older patients who did not have surgery and
radiation and had a lower hazard rate are more likely to have a missing HER2 value. Those
predictive covariates are then used to derive the conditional distribution of HER2 given the
observed data and the selection probability for performing the AIPW estimation and derive
two predictive scores for conducting the proposed multiple imputation method. Specifically,
a working logistic regression model for HER2 positive indicator with Age, Race and
Surgery, as well as survival status and baseline cumulative hazard, as covariates is fitted to
derive the conditional distribution of HER2 given the observed data and a HER2 predictive
score for each patient. A working logistic regression model for HER2 missing indicator with
Age, Radiation and Surgery, as well as survival status and baseline cumulative hazard, as
covariates is fitted to derive the selection probability (i.e. = = 1-missing probability) and a
predictive score of HER2 missing probability for each patient. To perform the AIPW
estimation, the derived conditional distribution of HER2 is then used to derive the
conditional expectations and the selection probability is incorporated into the estimation as
the weight. To conduct the proposed multiple imputation approach (i.e. NNMI), the two
predictive scores are then used to calculate the distance between patients and then select an
imputing set for each patient with missing HER2. The number of imputes M is set at 50.
Upon the completion of multiple imputation, Cox regression analysis with Age, Black and
Others (White as the reference group), HER2, Radiation and Surgery as the covariates is
performed on each of the imputed datasets and Rubin’s rule® is applied to derive the final
estimate for each regression coefficient.

The results of the Cox regression estimation for the CC, PMM, AIPW and NNMI methods
are provided in Table 3. Table 3 displays the hazard ratio estimate of each covariate along
with the associated 95% confidence interval (Cl) and p-value. The CC and AIPW methods
produce similar results. The results indicate that Age, Black and Surgery are significantly
associated with survival after diagnosis with stage IV breast cancer. Specifically, older
patients tend to have a higher hazard rate than younger patients, Black patients tend to have
a higher hazard rate than White patients, and patients without surgery tend to have a higher
hazard rate than patients with surgery. Others patients have a slightly lower hazard rate than
white patients but not significant at a significance level of 5%. Radiation and HER2 are not
significantly associated with survival after diagnosis with stage IV breast cancer. The PMM
and NNMI method produces similar results as the CC and AIPW methods, except for
Others. The results of PMM and NNMI methods indicate that Others patients have a
significantly lower hazard rate than White patients. In addition, the PMM and NNMI
methods produce a tighter 95% CI than the CC and AIPW method except for HER2.

5 Simulation study

We perform several simulation studies to investigate the properties of the AIPW, NNMI and
PMM methods when Cox regression has a covariate subject to missing and an additional
fully observed covariate that is predictive of the missing covariate, and the quantities of
interest are the regression coefficients of the Cox regression model. We investigate the
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effects of sample size, mis-specification of one of the two working models and mis-
specification of the two link functions under a situation with dependent censoring. The
simulation program is written in R and is available upon request.

For each of 1000 independent simulated datasets, the predictive covariate Z is generated
from a U(0, 1 Mistribution. The covariate X subject to missing is generated from either a
Bernoullifp(Z)] distribution, where

1
an+a,Z
1+e0 1

p(2) s either based on a logit link (i.e. p(2) = or a complementary log—log link
L + a1Z

(i.e. pZ)y=¢"* ), or a normal distribution with mean ag+a;Z and variance s . The

failure time T is generated from either an exponential distribution with a hazard rate of

BX+pZ BX+pZ

e < or a Weibull distribution with a hazard rate of |¢ * Nt~ Lattime ¢ The

censoring time C is also generated from either an exponential distribution with a hazard rate

0X+07Z . o ) 0X+027\ _, .
ofe * % oraWeibull distribution with a hazard rate of (e roz )yﬂ’ attimet. LetY

=min(T,C) and 8, =1( T<C). The missing indicator 8 _ (8, =1 if Xis observed) if X is

observed) is generated from a Bernoullifp(Z, Y)] distribution, where p(Z, Y) (i.e. selection
1
Z Y
140 LTy

probability) is based on a logit link (i.e. p(Z,Y) = ) or a complementary

U +nzZ + nyY
log-log link (i.e. p(zZ,Y) =" ¢ ) The regression coefficients and hazard rates are

selected to give a desired censoring rate and missing rate.

For the *“Fully-Observed’’ (FO) analysis, treated as the gold standard, we derive Cox
regression coefficient estimates for each simulated dataset before any missingness is applied.
For the ““Complete-Case’’ (CC) analysis, we derive Cox regression coefficient estimates
from the data with X observed. For the AIPW and NNMI methods, a working logistic
regression model (denoted by M,) is fitted to the data with X observed to derive the
conditional distribution of X given the observed data and the predictive score of X. A
working logistic regression model (denoted by M) is fitted to the missing indicator to derive
the missing probability and the predictive score of missingness. When both working models
include all of the correct covariates in the models (i.e. M;:Z.5,, ﬁo(t);Mzzz,Y ), they are

denoted by AIPW1; and NNMI 4, respectively. When the working model for predicting X
includes all of the correct covariates but the working model for predicting the missing
probability does not (i.e. M,:Z3,, ﬁo(t); M,:Z), they are denoted by AIPW;; and NNMIyp,

respectively. When the working model for predicting X does not include all of the correct
covariates but the working model for predicting the missing probability does (i.e.
M,:Z3,;M,:Z,Y), they are denoted by AIPW;; and NNMIyy, respectively. When X and &x

are generated from a complementary log—log model, both AIPW and NNMI methods are
considered as mis-specified even if both working models include all of the correct covariates
in the models (i.e. AIPW11 and NNMI;1) since the true models are not logit models. The
PMM method includes all of the correct covariates for predicting X (i.e. Z, & ,ﬁo(z) is
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denoted by PMM;. Based on our prior experience on dealing with missing data (for both
missing outcome and missing covariate values) using multiple imputation,11:21.22 for the
NNMI method we set M = 10, NN =5 and (w;, wy) = (0.8, 0.2) or (0.2, 0.8).

The results are provided in Tables 4 to 7. The FO analysis, which is the gold standard
method, in all situations targets the true values, has the lowest root mean square error
(RMSE) and produces coverage rates comparable to the nominal level, 95%. The CC
analysis as expected produces biased regression coefficient estimates, especially for the
estimate of regression coefficient for Z (i.e. B,), which results in a much larger RMSE than
AIPW and NNMI and a slightly lower coverage rate than the nominal level in some
situations due to the bias. When X is binary (Table 4), the PMM; method (i.e. all of the
correct covariates are included into imputation method) produces reasonable regression
coefficient estimates and coverage rates and tends to have a smaller RMSE than AIPW and
NNMI in which the missing probability working model is correctly specified. However,
when X is continuous (Table 5), the bias of PMM¢ is much larger than AIPW and NNMI in
which the missing probability working model is correctly specified.

When both working models include all of the correct covariates (i.e. AIPW1; and NNMl4),
in all situations, both AIPW1; and NNMIq; methods produce reasonable regression
coefficient estimates and coverage rates. The bias of the NNMI11; method is comparable to
that of the AIPW1; method. For both AIPW1; and NNMI1; methods, the bias for By
decreases with sample size and the decrease is larger than PMM. For NNMI17, when X is
binary (Table 4) a larger weight on the missing probability predictive score, i.e. (Ww;, W) =
(0.2, 0.8), can reduce the bias of the estimate of by but not that of the estimate of B,.
However, when X is continuous (Table 5), a larger weight on the missing probability
predictive score increases the bias of both regression coefficient estimates.

When the working logistic regression model for missing indicator dy (i.e. M) is mis-
specified (i.e. AIPW15 and NNMly5), for both binary (Table 4) and continuous (Table 5) X,
NNMI1, has a smaller bias than AIPW, especially when X is continuous. For NNMI;
with a larger weight on the predictive score for X,i.e. (w;, wy) = (0.8, 0.2), the bias
decreases with sample size in all situations. When N % 400 and X is binary (Table 4), the
bias of NNMI 5 is comparable to PMM;y. When X is continuous (Table 5), the bias of
NNMI 1, is smaller than PMM; in all situations. The bias of AIPW15 does not reduce as
much as NNMlI4, with sample size, especially when X is continuous (Table 5). This is
because the performance of the AIPW method highly depends on whether a correct model is
used to derive the selection probability. Also, in all situations, AIPWy,’s standard errors tend
to underestimate the variability of the regression coefficient estimates, and the underestimate
is substantial when X is continuous (Table 5). As a result, AIPW15’s coverage rates are
lower than the nominal level. NNMI 1, has a smaller RMSE than NNMI 1. This is because
the mis-specification of missing probability working model induces a much smaller SD for
NNMI 1, even if the bias is larger than NNMIq1. For NNMI1,, when X is binary (Table 4) a
larger weight on the missing probability predictive score, i.e. (w;, wy) = (0.2, 0.8), has a
smaller bias than NNMIq; when N = 200. However, when sample size is larger or X is
continuous (Table 5), a larger weight on the missing probability predictive score increases
the bias of both regression coefficient estimates. When the working logistic regression
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model for X (i.e. My) is mis-specified (i.e. AIPW5; and NNMI51), for a binary X (Table 4),
NNMI,1 method has a larger bias than NNMI1; and NNMI1,, especially when the sample
size is equal to 200. The bias decreases with sample size in all situations. However, for a
continuous X (Table 5), in some situations NNMI,; method has a smaller bias than NNMI 14
and NNMI . This is because the working model for predicting a missing continuous
covariate is simply based on some approximation. Similar to NNMI41, when X is binary
(Table 4) for NNMl»q a larger weight on the missing probability predictive score, i.e. (wy,
wy) = (0.2, 0.8), can reduce the bias of the estimate of By but not that of the estimate of {,.
However, when X is continuous (Table 5), a larger weight on the missing probability
predictive score increases the bias of both regression coefficient estimates. When the link
function for both X and &, is mis-specified (Table 6), the NNMI methods can still produce
reasonable estimates of regression coefficients. This indicates the NNMI method is also
robust to mis-specification of the link functions of the two working models. When both T
and C are generated from a Weibull distribution (Table 7), the PMM, NNMI and AIPW
methods all produce reasonable estimates. This is because they do not need to specify the
underlying distributions of failure and censoring times while performing estimation.

In summary, all methods reduce the bias of the standard CC analysis, but the amount of the
remaining bias, the efficiency and the validity of the estimated standard errors vary between
methods. The performance of the AIPW method depends on whether a correct model is used
to derive the selection probability. In contrast, the NNMI method in which two predictive
scores are derived from two working regression models can provide reasonable regression
coefficient estimates for both X independent and dependent of Z and is robust to mis-
specification (the covariates include and the link function) of either one of the two working
regression models.

6 Discussion

In this paper we propose a nonparametric multiple imputation approach to handle a missing
covariate in Cox regression analysis and compare it with an existing popular AIPW
approach. Based on the simulation results, the performance of the AIPW method depends on
whether the selection/missing probability model is correctly specified. This indicates while
performing the AIPW method, one has to be sure the corresponding model is correct, and
specifically requires all aspects of the models including the link functions and choice of
covariates to be correct. In contrast, for the nonparametric multiple imputation approach the
two working regression modelsare only used to derive two predictive scores to select
imputing sets for missing covariate observations. Once the imputing sets are selected,
nonparametric multiple imputation procedures are conducted on the sets. Therefore, this
approach is expected to have weak reliance on the two working regression models compared
to the AIPW method.

The performances of the proposed nonparametric multiple imputation method will depend
on the missing rate. Specifically, the missing rate will affect the number of similar
““donors’’ for each missing covariate observation. In a situation with a high missing rate,
say, 0.90, a much larger sample size is required for the proposed method to perform well,
than a situation with a low missing rate.
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As pointed out in the literature,23-26 when the imputation model is incompatible to the
analysis model, multiple imputation may impute covariates that are incompatible with the
analysis model and then lead to biased estimates of parameters and the associated variances.
To avoid the incompatibility, one can specify a joint model for outcome and covariates for
which the conditional distribution of outcome given covariates matches the analysis model
and then using the imputation model implied by this joint model.26 However, it can be
challenging to specify the joint model in a situation with missing covariates. The proposed
nonparametric multiple imputation does not directly use a statistical model to perform
multiple imputation and is, therefore, expected to be less tangible to the incompatibility as
long as the right covariates are included in one of the two working models. Based on the
numerical results, we do not observe any under-estimation in variation of the parameter
estimates and the bias is mainly due to finite sample even if the link function is mis-
specified.

In this paper, we assume missingness only depends on the observed data (i.e. MAR
mechanism). This assumption is untestable. It is possible that missingness also depends on
some unobserved data (i.e. missing not at random mechanism). This indicates non-ignorable
missing mechanism may still remain even conditioning on all of the observed data.
Sensitivity analysis2” would be a possible way to evaluate the impact of unobserved data on
the proposed multiple imputation approaches. The proposed nonparametric multiple
imputation might be less affected by the violation of the MAR assumption since it does not
directly use statistical models for performing imputation.
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Table 1.

Data analysis: description of the 7050 stage IV breast cancer patients.

Standard Deviation/

Variable Mean/Frequency Percentage
Age 60.91 14.41
Race

White 5585 79.22

Black 721 10.23

Others 744 10.55
HER2

Negative 4180 59.29

Positive 1577 23.37

Missing 1293 18.34
Surgery

No 3916 55.55

Yes 3134 44.45
Radiation

No 4484 63.60

Yes 2566 36.40
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Data analysis: identification of factors associated with missing value and probability of HER2.

Table 2.

Variable Missing HER?2 Value Missing HER2 Probability

orR? 5% cCI? pC OR  95%Cl p
Age 0.987 (0.983, 0.991) <0.0001 1.031 (1.026,1.035)  <0.0001
Black 1.187 (0.983,1.433) 0.08 1.007 (0.825, 1.229) 0.94
Others 1.360 (1.135,1.629) <0.001  0.908 (0.742,1.112) 0.35
No Radiation  0.913 (0.811, 1.028) 0.13 1580 (1.385,1.804)  <0.0001
No Surgery 0.884 (0.787,0.993) 0.04 2.146  (1.885,2.443)  <0.0001
Dead 0.997 (0.888, 1.120) 0.96 2.205 (1.937,2.510)  <0.0001
Ho(t)d 1416 (1235, 1.624) <0.0001 0.641 (0.549,0.747)  <0.0001

aOdds ratio (HER2+ vs. H
b95% Confidence interval.

cp-VaIue.

ER-).

a . !
Baseline cumulative hazard.
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Table 3.
Data analysis: results of Cox regression estimation

Variable CcC

HR? 950 C1? p°
Age 1.015 (1.012,1.017) <0.01
Black 1.437 (1.286, 1.695) <0.01
Others 0.887 (0.781, 1.007) 0.06
No Radiation 1.056 (0.978, 1.140) 0.16
No Surgery 1.893 (1.755, 2.042) <0.01
Her2 0.940 (0.867, 1.020) 0.14

PMM AlPW NNMI(5, 0.8, 0.2)

Variable HR 95% Cl p HR  95%Cl P HR  95%CI P
Age 1.018  (1.015,1.020) <0.01 1.015 (1.012,1.017) <0.01 1.018 (1.015,1.020) <0.01
Black 1443 (1.308,1.591) <0.01 1436 (1.276,1615) <0.01 1.442 (1.307,1.591)  <0.01
Others 0879  (0.786,0.984) 0.03 0.886 (0.776,1.011) 0.07 0.879 (0.785,0.983)  0.02
No Radiaion 1.044  (0.976,1.118) 021 1.056 (0.981,1.137) 015 1.044 (0.976,1.118)  0.21
NoSurgery  1.885  (1.762,2.016) <0.01 1.894 (1.756,2.042) <0.01 1.896 (1.773,2.028)  <0.01
Her2 0932  (0.860,1.010) 0.9 0958 (0.874,1.049) 0.35 0.939 (0.864,1.021)  0.14

a .
Hazard ratio.

b95% Confidence interval.

cp-VaIue.
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Table 4.
Monte Carlo simulation study: estimation of Cox regression with dependent censoring, where
T~ ~Exp0nential[eln(2) x —In(2)Z]’ Cn~ Exponential[e_2X+O‘IZ],X ~ Bernoulli|p(Z) = W and
6X ~ Bernoulli p(Z,ShY) = m
+e
Bx = In (2) = 0.693 B,=-In(2) = -0.693
Method Est? spP SeC rvsed  cr®  Est SD SE RMSE CR  pif
N =200
FO 0601 0191 0194 0191 953  -0.696 0333 0.316 0333 937
cc 0652 0358  0.334 0360 941  -0953 0563  0.543 0620 924
PMM, 0719 0337 0322 0338 954  -0.685 0342 0.330 0342 939
AIPW,, 0715 0362 0319 0363 913  -0.698 0355  0.408 0355 977 0
NNMI,(0802) 0726 0360  0.343 0361 941  -0.689 0347  0.333 0.347 949
NNMI,(0.20.8) 0705 0368  0.352 0368 937  -0.674 0343  0.330 0344 945
AIPW), 0735 0335  0.199 0338 746  -0.765 0.440  0.480 0446 957 187
NNMI,(080.2) 0721 0317 0313 0318 961  -0695 0347 0332 0347 942
NNMIp(0.2,0.8) 0716 0298  0.301 0299 964  -0697 0345 0.332 0345 939
AIPW,, 0714 0363 0319 0364 915  -0.698 0355  0.409 0355 977 0
NNMI,(0.80.2) 0736 0348  0.339 0351 944  -0690 0346 0.332 0346 949
NNMI,(0.2,0.8) 0713 0364  0.351 0365 937 0677 0342  0.330 0342 945
N= 400
FO 0691 0135  0.136 0135 956  -0.696 0226  0.220 0226 946
cc 0661 0235 023 0237 941  -0947 038  0.370 0461  89.1
PMM, 0710 0219 0225 0220 959  -0.691 0228  0.230 0228 950
AIPW,, 0701 0234 0222 0234 943  -0698 0230 0.263 0230 974 0
NNMI,(0802) 0703 0238 0233 0238 949  -0692 0227  0.230 0227 952
NNMI,(0.20.8) 0698 0241  0.237 0241 944  -0682 0225 0.229 0225 949
AIPW) 0723 0224 0138 0226 801  -0.761 0281  0.305 0289 961 115
NNMI,(080.2) 0709 0214 0216 0215 954  -0.699 0226  0.230 0226 952
NNMI;,(02,0.8) 0719 0201  0.204 0203 953  -0.704 0228  0.229 0228 952
AIPW,, 0701 0236 0222 0236 934  -0698 0230 0.263 0230 973 0
NNMI»(0.8,0.2) 0706 0235 0233 0235 953  -0.694 0227  0.230 0227 949
NNMI,(0.2,0.8)  0.699 0241 0238 0241 947  -0684 0226 0.229 0226 949

Note: Censoring rate: 0.35; Missing rate: 0.63.
aAverage of 1000 point estimates.

bEmpiricaI standard deviation.

cAverage estimated standard error.

a .
Root mean square error: square root of bias? + SD2,
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eCoverage rate of 1000 95% confidence intervals.

fNumber of disconvergences for AIPW.
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p(Z,6 I’Y) =

I+

I

eI.5 +0.52-2Y *

Table 5.

By = In (2) = 0.693

Bz = —In(2) = -0.693

a

b

Cc

Est

SD

SE

RMSE

CR

Method Est® sD SE RMSE" CR Div
N= 200
FO 0668 0113 0114 0116 944 -0690 0318 0324 0318 958
cc 0700 0168 0170 0168  96.1 -0.869 0.446 0447 0479 944
PMM, 0592 0123 0143 0459 925 -0.621 0329 0346 0337 952
AIPWy; 0666 0160 0151 0162 934 -0.687 0346 0373 0346 965 1
NNMIy (0.80.2) 0656 0150 0150 0155 943 -0.670 0337 0350 0338 956
NNMI;(0.20.8) 0655 0154 0153 0159 945 -0.643 0334 0349 0338 954
AIPW,, 0902 0322 0097 0384 603 -0.814 0575 0517 0588 898 1765
NNMI,(0.80.2) 0616 0127 0142 0149 929 -0645 0329 0347 0333 959
NNMI(0.20.8) 0594 0116 0138 0153 918 -0.628 0324 0344 0330 954
aipwy, 0667 0162 0151 0164 934 -0.688 0347 0373 0347 965 1
NNMI»(0.80.2) 0656 0148 0149 0153 942 -0.667 0337 0349 0338 957
NNMI»(0.20.8) 0655 0154 0154 0159 941 -0641 0334 0348 0338 954
N =400
FO 0677 0080 0080 0082 941 -0.695 0224 0227 0224 949
cc 0716 0120 0118 0122 956 -0.870 0307 0309 0354 916
PMM, 0602 0088 0099 0127 855 -0.639 0234 0243 0240 954
AIPWy; 0676 0106 0106 0107 946 -0.695 0241 0254 0241 956 0
NNMIy; (080.2) 0673 0105 0106 0107 947 -0.686 0240 0244 0240 954
NNMI;(0.20.8) 0673 0108 0107 0110 951 -0.667 0240 0243 0241 956
AIPW, , 0926 0224 0069 0323 440 -0.829 0371 0424 0395 887 159
NNMI(080.2) 0631 0093 0101 0112 908 -0.663 0233 0243 0235 963
NNMI1,(0.20.8) 0609 0084 0098 0119 872 -0643 0228 0242 0233 956
aipwy, 0676 0107 0106 0108 946 -0.695 0241 0254 0241 956 0
NNMI»(0.80.2) 0672 0105 0105 0107 949 -0.685 0240 0244 0240 957
NNMI»(0.20.8) 0672 0107 0107 0109 949 -0.667 0239 0243 0240 953

Note: Censoring rate: 0.33; Missing rate: 0.47.

aAverage of 1000 point estimates.

bEmpiricaI standard deviation.

c .
Average estimated standard error.

a .
Root mean square error: square root of bias2+SD2
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eCoverage rate of 1000 95% confidence intervals.

fNumber of disconvergences for AIPW
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Table 6.
Monte Carlo simulation study: estimation of Cox regression with dependent censoring, where T ~ Exponential
[eln@X-In(2)Z] C ~ Exponential[e~2%*0-1Z], X~Bernoulli|p(Z) = e P
—0.15+025Z-Y
8, ~Bernoulli p(Z,St, Y) =e° .
B, = In(2) = 0.693 B, = -In(2) = -0.693
Method Et®  spP Se® rvsed  CR®  Est sD SE RMSE  CR Divf
N =200
FO 0.682 0194 0198  0.194 95.7 -0710 0341 0.337 0.341 94.6
cc 0.662 0262  0.267 0.264 95.2 -0.846  0.455 0456  0.480 94.0
PMM; 0.686 0251 0258  0.251 95.7 -0721  0.352 0348  0.353 93.8
AIPWy; 0.685 0.245 0.246 0.245 95.0 -0.713 0.354 0.366 0.355 95.6 0
NNMI13(0.8,0.2) 0.695 0250 0255  0.250 95.7 -0.718  0.352 0348  0.353 94.2
NNMI13(0.2,0.8) 0.692 0255 0256  0.255 94.5 -0.730  0.349 0346  0.351 94.2
AIPWy, 0.700  0.246  0.209 0.246 90.3 -0726 0364 0373  0.365 95.4 74
NNMI1,(0.8,0.2) 0.694 0.241 0.25 0.241 96.2 -0.712 0.353 0.348 0.354 94.5
NNMI1,(0.2,0.8) 0.696 0232  0.247 0.232 96.8 -0.709  0.351 0.347 0.351 94.0
AIPWy, 0.686 0243 0246  0.243 94.9 -0713 0354 0366  0.355 95.6 0
NNMI,3(0.8,0.2) 0.702 0.247 0.252 0.247 95.6 -0.715 0.352 0.347 0.353 94.0
NNMI5;(0.2,0.8) 0.696 0.252 0.255 0.252 94.4 -0.730 0.349 0.346 0.351 94.4
N'= 400
FO 0.688  0.138  0.139 0.138 95.2 -0.701  0.247 0236  0.247 93.6
cc 0.670 0181  0.187 0.182 95.2 -0.832  0.319 0318  0.348 93.9
PMM; 0.688 0171 0178 0171 95.8 -0.707 0250  0.243  0.250 94.4
AIPWy, 0.690 0171 0171 0171 94.9 -0.702  0.251 0250  0.251 95.2 0
NNMI1;(0.8,0.2) 0.695 0.178 0.177 0.178 94.4 -0.706 0.252 0.243 0.252 94.2
NNMI1;(0.2,0.8) 0.695 0.178 0.178 0.178 94.2 -0.714 0.250 0.242 0.251 94.8
AIPW, 0701 0169 0145  0.169 89.7 -0.717 0254  0.254  0.255 95.2 65
NNMI1,(0.8,0.2) 0.696 0170 0174  0.170 95.4 -0699  0.251 0.243  0.251 94.7
NNMI1,(0.2,0.8) 0.703 0.164 0.171 0.164 95.8 -0.695 0.250 0.242 0.250 94.8
AlIPWy, 0.692 0.170 0.171 0.170 95.0 -0.701 0.251 0.250 0.251 95.2 0
NNMI;3(0.8,0.2) 0.697 0177 0176 0177 94.6 -0.704  0.252 0243  0.252 94.5
NNMI,3(0.2,0.8) 0.697 0178  0.177 0.178 94.4 -0.688  0.249 0.242 0.249 94.7

Note: Censoring rate: 0.37; Missing rate: 0.44.
a . .
Average of 1000 point estimates.
b_ .. o
Empirical standard deviation.
c .
Average estimated standard error.

a .
Root mean square error: square root of bias? + SD2,
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eCoverage rate of 1000 95% confidence intervals.

fNumber of disconvergences for AIPW.
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Table 7.

Monte Carlo simulation study: estimation of Cox regression with dependent censoring, where T ~

Weibull(eN@X-In)Z 1 5) C ~ Weibull(e2X*0-1Z 1 4), X~Bernoulli|p(Z) = W and
SX ~Bernoulli P(Z,St, Y) = m
1+e :
B, = In(2) = 0.693 B, =In(2) = 0.693

Method Es®  sp” Se® rRvsed  cR®  Est SD SE RMSE CR D

N=200
FO 0.688 0201 0195  0.201 94.3 -0.714  0.308 0316  0.309 95.5
cc 0.671 0329 0320  0.330 94.2 -0.940 0531 0518  0.586 92.6
PMM, 0721 0310 0303 0311 96.1 -0.703  0.319 0330  0.319 95.2
AIPWyy 0.705 0331 029  0.331 91.8 -0716  0.327 0373  0.328 926.1 0
NNMI;(0.8,0.2) 0717 0338 0315  0.339 93.0 -0.705  0.322 0.332 0.322 94.3
NNMI13(0.2,0.8) 0692 0339 0320  0.339 94.1 -0.690  0.317 0330 0317 94.3
AIPWy, 0.739 0321 0208  0.324 81.5 -0.779  0.378 0450  0.388 2.1 191
NNMI1,(0.8,0.2) 0.721 0.304 0.296 0.305 95.5 -0.713 0.325 0.331 0.326 94.1
NNMI1,(0.2,0.8) 0.720 0.286 0.286 0.287 96.6 -0.714 0.322 0.331 0.323 94.7
AIPWy; 0.706 0331 029  0.331 92.1 -0.715  0.327 0373  0.328 96.2 0
NNMI,3(0.8,0.2) 0724 0331 0313 0332 94.0 -0.707  0.322 0.332 0.322 94.1
NNMI,1(0.2,0.8) 0.696 0.335 0.319 0.335 94.4 -0.690 0.317 0.329 0.317 94.5

N=400
FO 0.683 0143 0136  0.143 93.6 -0.701  0.228 0.221 0.228 95.0
cc 0.660 0235 0220  0.237 92.2 -0.927  0.379 0.358  0.445 88.8
PMM, 0.699 0.219 0.217 0.219 95.1 -0.698 0.238 0.231 0.238 94.9
AIPWyy 0.691 0230 0206  0.230 92.2 -0.706  0.241 0.247 0.241 96.4 0
NNMI1,(0.8,0.2) 0.697 0233 0217 0.233 94.0 -0.700 0240 0231 0.240 94.7
NNMI11(0.2,0.8) 0.688 0.234 0.224 0.234 94.2 -0.687 0.236 0.230 0.236 95.2
AIPWy, 0.713 0.217 0.144 0.218 81.0 -0.760 0.279 0.270 0.287 949 150
NNMI1,(0.8,0.2) 0700 0213 0205 0213 94.5 -0.705  0.239 0230  0.239 95.3
NNMI1,(0.2,0.8) 0708 0199 019  0.200 95.8 -0.708  0.238 0230  0.238 94.8
AIPWj, 0.690 0230 0206  0.230 92.3 -0.706 0240  0.247 0.240 96.3 0
NNMI;;(0.8,0.2) 0.700 0.232 0.216 0.232 94.1 -0.701 0.240 0.231 0.240 94.6
NNMI;3(0.2,0.8) 0.688 0234 0221 0.234 94.4 -0.687  0.236 0229  0.236 95.1

Note: Censoring rate: 0.35; Missing rate: 0.60.
aAverage of 1000 point estimates.

bEmpiricaI standard deviation.

cAverage estimated standard error.

a .
Root mean square error: square root of bias? + SD2.
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eCoverage rate of 1000 95% confidence intervals.

fNumber of disconvergences for AIPW.
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