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Abstract

We consider the situation of estimating Cox regression in which some covariates are subject to 

missing, and there exists additional information (including observed event time, censoring 

indicator and fully observed covariates) which may be predictive of the missing covariates. We 

propose to use two working regression models: one for predicting the missing covariates and the 

other for predicting the missing probabilities. For each missing covariate observation, these two 

working models are used to define a nearest neighbor imputing set. This set is then used to non-

parametrically impute covariate values for the missing observation. Upon the completion of 

imputation, Cox regression is performed on the multiply imputed datasets to estimate the 

regression coefficients. In a simulation study, we compare the nonparametric multiple imputation 

approach with the augmented inverse probability weighted (AIPW) method, which directly 

incorporates the two working models into estimation of Cox regression, and the predictive mean 

matching imputation (PMM) method. We show that all approaches can reduce bias due to non-

ignorable missing mechanism. The proposed nonparametric imputation method is robust to mis-

specification of either one of the two working models and robust to mis-specification of the link 

function of the two working models. In contrast, the PMM method is sensitive to misspecification 

of the covariates included in imputation. The AIPW method is sensitive to the selection 

probability. We apply the approaches to a breast cancer dataset from Surveillance, Epidemiology 

and End Results (SEER) Program.
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1 Introduction

For survival time data with covariates, Cox regression is often used to specify the 

relationship between survival time and covariates.1 For time-independent covariates, Cox 

regression has the proportional hazards property. It estimates the regression coefficients of 

the model using the partial likelihood function without specifying the baseline hazard 

function.2 The estimators of regression coefficients have been shown to be consistent, 

normally distributed and semi-parametrically efficient.3 However, in many situations, some 

of the covariates are not fully observed. Missing covariates could compromise the 

asymptotic properties of the estimators if missing data are not accounted for in estimation. 

Specifically, it has been shown that the estimators of the regression coefficients derived from 

the subjects with all of the covariates observed (i.e. complete-case analysis) not only lose 

efficiency, but may also generate biased regression coefficient estimates when missingness 

depends on the survival outcome (i.e. survival time and censoring indicator).4 When 

missingness depends on the survival outcome (i.e. survival time and censoring indicator) and 

some fully observed covariates, missing mechanism is considered as missing at random 

(MAR).5 For the survival outcome data, MAR can be even further classified into two 

scenarios: failure- ignorable MAR (i.e. missingness does not depend on failure time) and 

censoring-ignorable MAR (i.e. missingness does not depend on censoring time but may 

depend on failure time).6 When missingness is failure-ignorable MAR, complete-case 

analysis can still produce valid regression coefficient estimates. However, when missingness 

is censoring-ignorable MAR, complete-case analysis may produce biased regression 

coefficient estimates.

Several approaches have been proposed to deal with missing covariates in Cox regression. 

Of the existing approaches, the augmented inverse probability weighted (AIPW) method,7,8 

where the weight is derived from a fully specified model for the missing status conditional 

on the observed data and an augmentation term derived from a fully specified model for the 

missing covariate conditional on the observed data is added to estimation to correct the 

potential bias, has been shown to have a double robustness property. Specifically, the AIPW 

method uses two fully specified parametric models (one for the missing covariate and the 

other for the missing probability) to account for missing covariates while estimating the 

regression coefficients of Cox regression model. This indicates that at least one of the two 

models has to be correctly specified, including the distribution and link function for the 

missing covariate and the missing status, respectively. Of the two models, the model for the 

missing covariate is more important since in a sense it is directly associated with estimation 

in Cox regression. However, it is more challenging to correctly specify the model for the 

missing covariate than the model for the missing probability based on the observed data. 

Because of the double robustness property, the AIPW method is a popular method for 

researchers who do not want to solely rely on the model for estimating the conditional 

distribution of the missing covariate on the observed data in Cox regression with missing 

covariates. To weaken the reliance on parametric assumptions behind the two models, non-

parametric regression has been used to estimate the two models without fully specifying the 

relationship between the missing covariates and the observed data.9 As the dimensionality of 

the observed data increases, it becomes extremely difficult to use non- parametric regression 
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to estimate the two models. In addition, the AIPW method is also sensitive to 

misspecification of the missing probability model, because even mild lack of fit in outlying 

regions of the covariate space where the missing probability is extreme (i.e. very close to 1) 

translates into large errors in the weights.5,10,11

We previously developed a nonparametric multiple imputation (MI) approach to deal with 

missing data in a situation without censored data.11 The approach indirectly uses two 

working models to recover information for missing data observations. Specifically, we use 

two working regression models, one for predicting the missing covariate values and one for 

predicting the missing probabilities. The parameter estimates from these two working 

models are then used to give two predictive scores for each subject, defined as the linear 

combination of the covariates in the corresponding model. The method then selects an 

imputing set of observations for each missing data observation, which consists of subjects 

who have their data fully observed and have similar predictive scores as the subject with 

missing data. Then the missing data value is randomly drawn from this imputing set. The 

idea is similar to predictive mean matching12 and propensity score matching13 in the missing 

data literature. In a situation with missing outcome data, we have shown that this 

nonparametric multiple imputation approach can generate a consistent mean estimator. In 

this paper, we generalize the nonparametric multiple imputation approach,11 in which no 

statistical model is directly used to perform multiple imputation, to handle estimation of Cox 

regression with missing covariates to weaken the reliance on the two models and produce 

stable regression coefficient estimates even if the missing probability is extreme. 

Specifically, we propose to use two working regression models, one for predicting the 

missing covariates and one for predicting the missing probabilities, to derive two predictive 

scores to select an imputing set for each missing covariate observation. It has been shown 

that the survival outcome data (specifically cumulative baseline hazard and censoring 

indicator) need to be included in predicting the missing covariates.14 In addition, the survival 

outcome data can be also included in the regression model for missing probabilities as the 

covariates to account for potentially censoring-ignorable MAR. The two working regression 

models are only used to derive two predictive scores to select an imputing set. Hence, the 

approach can easily handle the multi-dimensional structure of the observed data and is 

expected to be less affected by the mis-specification of the two working models (especially 

the mis-specification of the missing probability model) than the AIPW method. Due to the 

simplicity in estimation and the availability in statistical software, the MI method simply 

based on the predictive model of the missing covariates is widely used. Qi15 compared the 

AIPW method with the MI method using predictive mean matching (PMM) based on 

multiple imputation by chain equations (MICE) in the estimation of Cox regression with 

missing covariates and concluded the PMM method is sensitive to misspecification of the 

predictive model of the missing covariates. In this paper, not only will we study the 

performance of the proposed multiple imputation approach but will also compare its 

performance with the AIPW and PMM methods.

This paper is organized as follows. In Section 2, we review the complete-case analysis and 

the AIPW method. In Section 3, we describe the proposed multiple imputation method and 

the associated properties. In Section 4, we apply the techniques to data from a breast cancer 
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study. In Section 5, we give results from a simulation study. A discussion follows in Section 

6.

2 Review of methods

In this section, we begin with describing the setting of the situation: estimation of Cox 

regression with time- independent covariates and one of the covariates subject to missing. 

Let T denote the failure time, C denote the censoring time, Y = min(T,C) denote the 

observed time, δt = I[T ≤ C] denote the censoring indicator and N(t)=δtI(T ≤ t) denote the 

counting process. Assume T has a hazard function of λ t = λ0 t eβ
x
X+β

z
Z where λ0(t) is an 

unspecified baseline hazard function, X is subject to missing and Z is fully observed. Let dx 

denote the missing indicator for X (i.e. δx =1 if X is observed; otherwise, 0) and π Pr(δx = 

1) denote the selection probability. We assume that T and C are independent conditional on 

X and Z and X is missing at random (i.e. E δx |Y, δt , Z, X = E δx |Y, δt , Z  ) and there is a 

random sample of n subjects.

2.1 Complete-case analysis

The complete-case (CC) analysis of β = (βx,βz) is based on the partial likelihood estimator 

using observations that have X observed. Let ri β,t = eβ
x
X+β

z
Z

i ≡ ri
0 β,t  and 

ri
1 = XiZi

tri β,t  The CC analysis involves solving the following estimating equations

Ucc = ∑
i = 1

n
δti

δxi

Xi
Zi

−
Scc

1 β , Ti

Scc
0 β , Ti

= 0

where Scc
m β,T i = n−1∑ j = 1

n δxi
I T j ≥ T i r j

m β , T i  for m = 0, 1. It is easy to implement the 

CC analysis and it is consistent when the missingness depends only on Z. However, it loses 

efficiency due to discarding data from incomplete observations, especially when the missing 

rate is greater than 25%,16 and is inconsistent when missingness depends on T or δt.

2.2 AIPW method

The AIPW method was first proposed by Robins et al.7 to modify the CC analysis to 

produce consistent estimators of β and furthermore improve efficiency of the CC analysis. 

The AIPW method has been studied and further developed by a few groups for various 

scenarios. For Cox regression with a missing covariate, it involves solving the estimating 

equations8,9

UAIPW = ∑
i = 1

n δti
δxi

πi

Xi
Zi

−
SAIPW

1 β , Ti

SAIPW
0 β , Ti

+ Ai β , πi = 0,
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Where 

SAIPW
m β , T i = n−1∑ j = 1

n
δx j
π j

I T j ≥ T i r j
m β , T i + 1 −

δx j
π j

I T j ≥ T i E r j
m β , T i |T i, δti

, Zi

for m = 0,1 and 

Ai β , πi = 1 −
δx j
π j

∫ 0
τ E

Xi
Zi

dNi t |Y i, δi, Zi −
SAIPW

1 β , Ti

SAIPW
0 β , Ti

E dNi t |Y i, δti
, Zi

Based on the above expression, it can be seen that the conditional expectation in Ai(β, πi) 

depends on the baseline cumulative hazard and the conditional distribution of X|T, δt, Z The 

EM algorithm can be used to derive the AIPW estimates.8 To perform the EM algorithm, the 

conditional distribution of X|T, δt, Z and the selection probability π need to be estimated. It 

has been shown that if one of them is estimated correctly, the AIPW estimator is consistent 

(so called double robustness property). Often two parametric working models are used to 

estimate the conditional distribution of estimate the conditional distribution X|T, δt, Z and the 

selection probability π, respectively, and then directly incorporate them into estimation of 

AIPW estimator. To relax the reliance on the distributional assumptions, nonparametric 

techniques have been proposed to estimate the conditional distribution and the selection 

probability. However, as the number of fully observed covariates (i.e. Z) increases, it gets 

difficult to estimate the conditional distribution and the selection probability 

nonparametrically. In this paper, we will mainly focus on the performance of the AIPW 

estimator where two parametric working models are used to estimate the conditional 

distribution and the selection probability, respectively, and one of the two models is mis-

specified. The estimate of standard error for AIPW is derived from 500 bootstrap samples.

3 Nonparametric multiple imputation

Instead of directly incorporating the working models into estimation, we propose to use two 

working regression models, one for predicting the missing covariates and one for predicting 

the missing probabilities, to derive two predictive scores to select an imputing set for each 

missing covariate observation. The two working regression models are only used to derive 

two predictive scores to select an imputing set. Hence, the approach is expected to be less 

affected by the mis-specification of the two working models. To conduct nonparametric 

multiple imputation, for each missing covariate observation we seek an imputing set 

consisting of subjects who have similar predictive scores as the subject with missing 

covariate observation. We describe the imputation procedures in detail below.

3.1 Imputation procedures for missing covariate X

3.1.1 Step 1: Estimate the two predictive scores on a Bootstrap sample

To define each imputing set, we first reduce the observed survival data and Z to two scalar 

indices (predictive scores), which provide an indicator of an individual’s value of X and 

chance of having missing X. White14 showed that in Cox regression with missing covariates 
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only under certain cases the conditional distribution of X|T, δt, Z can be exactly specified 

using cumulative baseline hazard H0(t), δt and Z. Specifically, when both X and Z are binary 

variables, the conditional distribution of X|T, δt, Z exactly follows a binomial distribution, 

where logit Pr X = 1 |T, δt, Z = a0 + a1δt + a2H0 t + a3Z + a4ZH0 t . When there is no Z, the 

conditional distribution reduces to logit Pr X = 1|T, δt = a0 + a1δt + a2H0 t . In other cases, 

only approximate conditional distribution of X|T, δt, Z can be obtained. The approximate 

conditional distribution depends on cumulative baseline hazard H0(t), censoring indicator δt 

and the fully observed covariate Z.14 Hence, all of them will be included in the working 

regression model for predicting X. To account for potential censoring-ignorable MAR and 

misspecification of the conditional distribution of X|T, δt , Z, we will include the survival 

outcome data (i.e. Y and δt), as well as Z, in the working regression model for predicting the 

missing probabilities. This strategy summarizes the multi-dimensional structure of the 

observed survival data and Z into a two-dimensional summary. The hope is that this two-

dimensional summary contains most, if not all, the information about the value of missing X 

and missingness.

Specifically, a linear/generalized linear model with H0(t), δt and Z as the covariates can be 

fitted to the complete cases to derive a predictive score for X. This score summarizes the 

relationship between X and H0(t), δt and Z. A logistic regression model with the observed Y, 

δt and Z as the covariates will be fitted to the missing indicator data (i.e. 6x) to derive a 

predictive score for missingness. This score summarizes the relationship between 

missingness and Y, δt and Z. The two models will be fitted on a nonparametric bootstrap 

sample17 of the original dataset to incorporate the uncertainty of parameter estimates from 

the working models. This step results in proper multiple imputation (Nielsen18 and 

references therein). More specifically, let YB, δt
B, δx

B, ZB  denote the bootstrap sample. Two 

working models are conducted on the bootstrap sample to calculate two predictive scores, 

Sx
(B) and Sδx

(B), for each individual in the bootstrap sample. We further standardize these 

scores by subtracting their sample mean and dividing by their standard deviation, and denote 

the standardized scores by Sx
c(B) and Sδx

c(B), respectively. Combinations of these two 

predictive scores will be studied to see to what extent a double robustness property19 for 

model mis-specification can be established and whether a robustness property for link 

function mis-specification can be established for the non-parametric multiple imputation 

method.

3.1.2 Step 2: Define the imputing set—For subject j with missing X in the original 

dataset, two predictive scores are derived using the regression coefficient estimates obtained 

from the bootstrap sample (i.e. Sx(j) and Sδx(j)) and then standardized by subtracting the 

sample mean of the corresponding bootstrap sample predictive scores and dividing by the 

standard deviation of the corresponding bootstrap sample predictive scores, respectively 

(denoted as Sx
c(j) and Sδx

c(j)). The distance between subject j in the original dataset and 

subject k in the bootstrap sample is then defined as 

d j, k = w1 Sx
c j − Sx

c B k
2 + w2 Sδx

c j − Sδx
c B k

2
, where w1 and w2 are non-negative 
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weights that sum to one. Non-zero weights for w2 may be useful in reducing the bias 

resulting from model mis-specification. Specifically, a small weight w2 (e.g. 0.2) will result 

in incorporating the predictive scores from the missing probability model into defining a set 

of nearest neighbors for subjects with missing X. There are alternative ways to calculate the 

distance between subjects such as Mahalanobis distance, which accounts for the correlation 

between the two predictive scores. Once the distance is derived, for subject j, the distance is 

then employed to define a set of nearest neighbors. This neighborhood consists of NN 

subjects who have their X observed and have a small distance from subject j in terms of two 

predictive scores.

3.1.3 Step 3: Impute a value from the imputing set—After the imputing set is 

defined, a value of X is randomly drawn from the imputing set. Thus, the procedure imputes 

X only from the subjects with X observed. The non-parametric multiple imputation method 

based on a nearest neighborhood is denoted as NNMI(NN, w1, w2).

3.1.4 Step 4: Repeat Steps 1 to 3 independently M times—Each of the M 

imputed datasets is based on a different Bootstrap sample. Once the M multiply imputed 

datasets are obtained, we carry out the MI analysis procedure established in Rubin.5 

Specifically for our purposes, Cox regression analysis with X and Z as the covariates is 

performed on the M imputed datasets to estimate βx and βz. For both βx and βz, the final 

estimate is the average of the M corresponding regression coefficient estimates (i.e. β ) and 

the final variance (denoted var β ) is the sum of the sample variances (denoted as Bβ) of the 

M regression coefficient estimates and the average (denoted as Uβ) of the M variance 

estimates of β. As shown in Rubin,5 for both βx and βz, the quantity β − β var β

approximately follows a t distribution with a degree of freedom, v = M − 1 1 +
UβM

M + 1 /Bβ

2

We use a value of 10 or higher for M.

4 Illustration of the method on a breast cancer dataset

We demonstrate the nonparametric multiple imputation approach on a dataset which consists 

of 7050 women diagnosed with stage IV breast cancer between 2005 and 2011 in California. 

This dataset was extracted from the breast cancer registries under Surveillance, 

Epidemiology and End Results (SEER) Program. Of the 7050 patients, besides survival data 

(i.e. survival status and survival time) after diagnosed with breast cancer, for each patient 

there are several variables collected at diagnosis, as well as Age, Race (Black, White, 

Other), HER2, Radiation and Surgery. Those variables are summarized in Table 1. HER2 is 

a member of the human epidermal growth factor receptor family and has been shown to be 

strongly associated with increased disease recurrence and a poor prognosis for breast cancer 

patients.20 According to Table 1, of the 7050 patients, 1293 (18.34%) had missing HER2 

value. Table 2 identifies variables predictive of HER2 value and missing probability. 

Specifically, based on univariate logistic regression analysis for HER2 positive indicator 

using patients with their HER2 value available (i.e. complete case analysis), Age, Race, 

Surgery and baseline cumulative hazard, respectively, are predictive of HER2 value and used 

for performing the PMM method. The results indicate younger patients who did not have 
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surgery and had a higher hazard rate are more likely to have a positive HER2 value. Based 

on univariate logistic regression for missing indicator, Age, Surgery, Radiation, survival 

status (Dead indicator) and baseline cumulative hazard, respectively, are predictive of 

missing probability. The results indicate older patients who did not have surgery and 

radiation and had a lower hazard rate are more likely to have a missing HER2 value. Those 

predictive covariates are then used to derive the conditional distribution of HER2 given the 

observed data and the selection probability for performing the AIPW estimation and derive 

two predictive scores for conducting the proposed multiple imputation method. Specifically, 

a working logistic regression model for HER2 positive indicator with Age, Race and 

Surgery, as well as survival status and baseline cumulative hazard, as covariates is fitted to 

derive the conditional distribution of HER2 given the observed data and a HER2 predictive 

score for each patient. A working logistic regression model for HER2 missing indicator with 

Age, Radiation and Surgery, as well as survival status and baseline cumulative hazard, as 

covariates is fitted to derive the selection probability (i.e. π = 1-missing probability) and a 

predictive score of HER2 missing probability for each patient. To perform the AIPW 

estimation, the derived conditional distribution of HER2 is then used to derive the 

conditional expectations and the selection probability is incorporated into the estimation as 

the weight. To conduct the proposed multiple imputation approach (i.e. NNMI), the two 

predictive scores are then used to calculate the distance between patients and then select an 

imputing set for each patient with missing HER2. The number of imputes M is set at 50. 

Upon the completion of multiple imputation, Cox regression analysis with Age, Black and 

Others (White as the reference group), HER2, Radiation and Surgery as the covariates is 

performed on each of the imputed datasets and Rubin’s rule5 is applied to derive the final 

estimate for each regression coefficient.

The results of the Cox regression estimation for the CC, PMM, AIPW and NNMI methods 

are provided in Table 3. Table 3 displays the hazard ratio estimate of each covariate along 

with the associated 95% confidence interval (CI) and p-value. The CC and AIPW methods 

produce similar results. The results indicate that Age, Black and Surgery are significantly 

associated with survival after diagnosis with stage IV breast cancer. Specifically, older 

patients tend to have a higher hazard rate than younger patients, Black patients tend to have 

a higher hazard rate than White patients, and patients without surgery tend to have a higher 

hazard rate than patients with surgery. Others patients have a slightly lower hazard rate than 

white patients but not significant at a significance level of 5%. Radiation and HER2 are not 

significantly associated with survival after diagnosis with stage IV breast cancer. The PMM 

and NNMI method produces similar results as the CC and AIPW methods, except for 

Others. The results of PMM and NNMI methods indicate that Others patients have a 

significantly lower hazard rate than White patients. In addition, the PMM and NNMI 

methods produce a tighter 95% CI than the CC and AIPW method except for HER2.

5 Simulation study

We perform several simulation studies to investigate the properties of the AIPW, NNMI and 

PMM methods when Cox regression has a covariate subject to missing and an additional 

fully observed covariate that is predictive of the missing covariate, and the quantities of 

interest are the regression coefficients of the Cox regression model. We investigate the 
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effects of sample size, mis-specification of one of the two working models and mis-

specification of the two link functions under a situation with dependent censoring. The 

simulation program is written in R and is available upon request.

For each of 1000 independent simulated datasets, the predictive covariate Z is generated 

from a U(0,1)distribution. The covariate X subject to missing is generated from either a 

Bernoulli[p(Z)] distribution, where

p(Z) is either based on a logit link (i.e. p Z = 1

1 + e
α0 + α1Z  or a complementary log–log link 

(i.e. p Z = e−e
α0 + α1Z

), or a normal distribution with mean a0+a1Z and variance s . The 

failure time T is generated from either an exponential distribution with a hazard rate of 

e
βxX + βzZ

 or a Weibull distribution with a hazard rate of e
βxX + βzZ

τtτ − 1 at time t. The 

censoring time C is also generated from either an exponential distribution with a hazard rate 

of e
θxX + θzZ

 or a Weibull distribution with a hazard rate of e
θxX + θzZ

γtγ − 1 at time t. Let Y 

= min(T,C) and δt = I T≤C . The missing indicator δx δx = 1 if X is observed  if X is 

observed) is generated from a Bernoulli[p(Z,Y)] distribution, where p(Z,Y) (i.e. selection 

probability) is based on a logit link (i.e. p Z, Y = 1

1 + e
η0 + ηzZ + ηyY ) or a complementary 

log–log link (i.e. p Z, Y = e−e
η0 + ηzZ + ηyY

) The regression coefficients and hazard rates are 

selected to give a desired censoring rate and missing rate.

For the ‘‘Fully-Observed’’ (FO) analysis, treated as the gold standard, we derive Cox 

regression coefficient estimates for each simulated dataset before any missingness is applied. 

For the ‘‘Complete-Case’’ (CC) analysis, we derive Cox regression coefficient estimates 

from the data with X observed. For the AIPW and NNMI methods, a working logistic 

regression model (denoted by M1) is fitted to the data with X observed to derive the 

conditional distribution of X given the observed data and the predictive score of X. A 

working logistic regression model (denoted by M2) is fitted to the missing indicator to derive 

the missing probability and the predictive score of missingness. When both working models 

include all of the correct covariates in the models (i.e. M1:Z,δt, H0 t ; M2:Z,Y ), they are 

denoted by AIPW11 and NNMI11, respectively. When the working model for predicting X 

includes all of the correct covariates but the working model for predicting the missing 

probability does not (i.e. M1:Z,δt, H0 t ; M2:Z), they are denoted by AIPW12 and NNMI12, 

respectively. When the working model for predicting X does not include all of the correct 

covariates but the working model for predicting the missing probability does (i.e. 

M1:Z,δt; M2:Z,Y), they are denoted by AIPW21 and NNMI21, respectively. When X and δx 

are generated from a complementary log–log model, both AIPW and NNMI methods are 

considered as mis-specified even if both working models include all of the correct covariates 

in the models (i.e. AIPW11 and NNMI11) since the true models are not logit models. The 

PMM method includes all of the correct covariates for predicting X (i.e. Z , δt , H0 t  is 
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denoted by PMM1. Based on our prior experience on dealing with missing data (for both 

missing outcome and missing covariate values) using multiple imputation,11,21,22 for the 

NNMI method we set M = 10, NN =5 and (w1, w2) = (0.8, 0.2) or (0.2, 0.8).

The results are provided in Tables 4 to 7. The FO analysis, which is the gold standard 

method, in all situations targets the true values, has the lowest root mean square error 

(RMSE) and produces coverage rates comparable to the nominal level, 95%. The CC 

analysis as expected produces biased regression coefficient estimates, especially for the 

estimate of regression coefficient for Z (i.e. βz), which results in a much larger RMSE than 

AIPW and NNMI and a slightly lower coverage rate than the nominal level in some 

situations due to the bias. When X is binary (Table 4), the PMM1 method (i.e. all of the 

correct covariates are included into imputation method) produces reasonable regression 

coefficient estimates and coverage rates and tends to have a smaller RMSE than AIPW and 

NNMI in which the missing probability working model is correctly specified. However, 

when X is continuous (Table 5), the bias of PMM1 is much larger than AIPW and NNMI in 

which the missing probability working model is correctly specified.

When both working models include all of the correct covariates (i.e. AIPW11 and NNMI11), 

in all situations, both AIPW11 and NNMI11 methods produce reasonable regression 

coefficient estimates and coverage rates. The bias of the NNMI11 method is comparable to 

that of the AIPW11 method. For both AIPW11 and NNMI11 methods, the bias for βx 

decreases with sample size and the decrease is larger than PMM1. For NNMI11, when X is 

binary (Table 4) a larger weight on the missing probability predictive score, i.e. (w1, w2) = 

(0.2, 0.8), can reduce the bias of the estimate of bx but not that of the estimate of βz. 

However, when X is continuous (Table 5), a larger weight on the missing probability 

predictive score increases the bias of both regression coefficient estimates.

When the working logistic regression model for missing indicator dx (i.e. M2) is mis-

specified (i.e. AIPW12 and NNMI12), for both binary (Table 4) and continuous (Table 5) X, 

NNMI12 has a smaller bias than AIPW12, especially when X is continuous. For NNMI12 

with a larger weight on the predictive score for X,i.e. (w1, w2) = (0.8, 0.2), the bias 

decreases with sample size in all situations. When N ¼ 400 and X is binary (Table 4), the 

bias of NNMI12 is comparable to PMM1. When X is continuous (Table 5), the bias of 

NNMI12 is smaller than PMM1 in all situations. The bias of AIPW12 does not reduce as 

much as NNMI12 with sample size, especially when X is continuous (Table 5). This is 

because the performance of the AIPW method highly depends on whether a correct model is 

used to derive the selection probability. Also, in all situations, AIPW12’s standard errors tend 

to underestimate the variability of the regression coefficient estimates, and the underestimate 

is substantial when X is continuous (Table 5). As a result, AIPW12’s coverage rates are 

lower than the nominal level. NNMI12 has a smaller RMSE than NNMI11. This is because 

the mis-specification of missing probability working model induces a much smaller SD for 

NNMI12 even if the bias is larger than NNMI11. For NNMI12, when X is binary (Table 4) a 

larger weight on the missing probability predictive score, i.e. (w1, w2) = (0.2, 0.8), has a 

smaller bias than NNMI11 when N = 200. However, when sample size is larger or X is 

continuous (Table 5), a larger weight on the missing probability predictive score increases 

the bias of both regression coefficient estimates. When the working logistic regression 
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model for X (i.e. M1) is mis-specified (i.e. AIPW21 and NNMI21), for a binary X (Table 4), 

NNMI21 method has a larger bias than NNMI11 and NNMI12, especially when the sample 

size is equal to 200. The bias decreases with sample size in all situations. However, for a 

continuous X (Table 5), in some situations NNMI21 method has a smaller bias than NNMI11 

and NNMI12. This is because the working model for predicting a missing continuous 

covariate is simply based on some approximation. Similar to NNMI11, when X is binary 

(Table 4) for NNMI21 a larger weight on the missing probability predictive score, i.e. (w1, 

w2) = (0.2, 0.8), can reduce the bias of the estimate of βx but not that of the estimate of βz. 

However, when X is continuous (Table 5), a larger weight on the missing probability 

predictive score increases the bias of both regression coefficient estimates. When the link 

function for both X and δx is mis-specified (Table 6), the NNMI methods can still produce 

reasonable estimates of regression coefficients. This indicates the NNMI method is also 

robust to mis-specification of the link functions of the two working models. When both T 

and C are generated from a Weibull distribution (Table 7), the PMM, NNMI and AIPW 

methods all produce reasonable estimates. This is because they do not need to specify the 

underlying distributions of failure and censoring times while performing estimation.

In summary, all methods reduce the bias of the standard CC analysis, but the amount of the 

remaining bias, the efficiency and the validity of the estimated standard errors vary between 

methods. The performance of the AIPW method depends on whether a correct model is used 

to derive the selection probability. In contrast, the NNMI method in which two predictive 

scores are derived from two working regression models can provide reasonable regression 

coefficient estimates for both X independent and dependent of Z and is robust to mis-

specification (the covariates include and the link function) of either one of the two working 

regression models.

6 Discussion

In this paper we propose a nonparametric multiple imputation approach to handle a missing 

covariate in Cox regression analysis and compare it with an existing popular AIPW 

approach. Based on the simulation results, the performance of the AIPW method depends on 

whether the selection/missing probability model is correctly specified. This indicates while 

performing the AIPW method, one has to be sure the corresponding model is correct, and 

specifically requires all aspects of the models including the link functions and choice of 

covariates to be correct. In contrast, for the nonparametric multiple imputation approach the 

two working regression modelsare only used to derive two predictive scores to select 

imputing sets for missing covariate observations. Once the imputing sets are selected, 

nonparametric multiple imputation procedures are conducted on the sets. Therefore, this 

approach is expected to have weak reliance on the two working regression models compared 

to the AIPW method.

The performances of the proposed nonparametric multiple imputation method will depend 

on the missing rate. Specifically, the missing rate will affect the number of similar 

‘‘donors’’ for each missing covariate observation. In a situation with a high missing rate, 

say, 0.90, a much larger sample size is required for the proposed method to perform well, 

than a situation with a low missing rate.
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As pointed out in the literature,23–26 when the imputation model is incompatible to the 

analysis model, multiple imputation may impute covariates that are incompatible with the 

analysis model and then lead to biased estimates of parameters and the associated variances. 

To avoid the incompatibility, one can specify a joint model for outcome and covariates for 

which the conditional distribution of outcome given covariates matches the analysis model 

and then using the imputation model implied by this joint model.26 However, it can be 

challenging to specify the joint model in a situation with missing covariates. The proposed 

nonparametric multiple imputation does not directly use a statistical model to perform 

multiple imputation and is, therefore, expected to be less tangible to the incompatibility as 

long as the right covariates are included in one of the two working models. Based on the 

numerical results, we do not observe any under-estimation in variation of the parameter 

estimates and the bias is mainly due to finite sample even if the link function is mis-

specified.

In this paper, we assume missingness only depends on the observed data (i.e. MAR 

mechanism). This assumption is untestable. It is possible that missingness also depends on 

some unobserved data (i.e. missing not at random mechanism). This indicates non-ignorable 

missing mechanism may still remain even conditioning on all of the observed data. 

Sensitivity analysis27 would be a possible way to evaluate the impact of unobserved data on 

the proposed multiple imputation approaches. The proposed nonparametric multiple 

imputation might be less affected by the violation of the MAR assumption since it does not 

directly use statistical models for performing imputation.
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Table 1.

Data analysis: description of the 7050 stage IV breast cancer patients.

Variable Mean/Frequency
 Standard Deviation/
 Percentage

Age  60.91  14.41

Race

 White 5585  79.22

 Black  721  10.23

 Others  744  10.55

HER2

 Negative 4180  59.29

 Positive 1577  23.37

 Missing 1293  18.34

Surgery

 No 3916  55.55

 Yes 3134  44.45

Radiation

 No 4484  63.60

 Yes 2566  36.40
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Table 2.

Data analysis: identification of factors associated with missing value and probability of HER2.

Variable Missing HER2 Value Missing HER2 Probability

OR
a

95% CI
b

p
c OR 95% CI p

Age 0.987 (0.983, 0.991)  <0.0001 1.031 (1.026, 1.035)  <0.0001

Black 1.187 (0.983, 1.433)   0.08 1.007 (0.825, 1.229)   0.94

Others 1.360 (1.135, 1.629)  <0.001 0.908 (0.742, 1.112)   0.35

No Radiation 0.913 (0.811, 1.028)   0.13 1.580 (1.385, 1.804)  <0.0001

No Surgery 0.884 (0.787, 0.993)   0.04 2.146 (1.885, 2.443)  <0.0001

Dead 0.997 (0.888, 1.120)   0.96 2.205 (1.937, 2.510)  <0.0001

H0(t)
d 1.416 (1.235, 1.624)  <0.0001 0.641 (0.549, 0.747)  <0.0001

a
Odds ratio (HER2+ vs. HER−).

b
95% Confidence interval.

c
p-Value.

d
Baseline cumulative hazard.
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Table 3.

Data analysis: results of Cox regression estimation

Variable CC

HR
a

 95% CI
b

    p
c

Age 1.015  (1.012, 1.017)      <0.01

Black 1.437  (1.286, 1.695)      <0.01

Others 0.887  (0.781, 1.007)       0.06

No Radiation 1.056  (0.978, 1.140)       0.16

No Surgery 1.893  (1.755, 2.042)      <0.01

Her2 0.940  (0.867, 1.020)       0.14

PMM AIPW NNMI(5, 0.8, 0.2)

Variable HR  95% CI p HR 95% CI p HR 95% CI p

Age 1.018  (1.015, 1.020) <0.01 1.015 (1.012, 1.017) <0.01 1.018 (1.015, 1.020)  <0.01

Black 1.443  (1.308, 1.591) <0.01 1.436 (1.276, 1.615) <0.01 1.442 (1.307, 1.591)  <0.01

Others 0.879  (0.786, 0.984)  0.03 0.886 (0.776, 1.011) 0.07 0.879 (0.785, 0.983) 0.02

No Radiation 1.044  (0.976, 1.118)  0.21 1.056 (0.981, 1.137) 0.15 1.044 (0.976, 1.118) 0.21

No Surgery 1.885  (1.762, 2.016) <0.01 1.894 (1.756, 2.042) <0.01 1.896 (1.773, 2.028)   <0.01

Her2 0.932  (0.860, 1.010)  0.09 0.958 (0.874, 1.049) 0.35 0.939 (0.864, 1.021)  0.14

a
Hazard ratio.

b
95% Confidence interval.

c
p-Value.
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Table 4.

Monte Carlo simulation study: estimation of Cox regression with dependent censoring, where 

T ∼ ~Exponential eIn 2 × ‐In 2 Z , C ∼ Exponential e−2X+0.IZ ,X ∼ Bernoulli p Z = I

I+e0.25 − 0.5Z  and 

δX ∼ Bernoulli p Z,δt,Y = I
I+eI.5 + 0.5Z‐2Y .

βx = In (2) = 0.693 βz=−ln(2) = −0.693

Method Est
a

SD
b

SE
c

RMSE
d

CR
e Est SD SE RMSE CR Div

f

N = 200

 FO 0.691 0.191 0.194 0.191 95.3 −0.696 0.333 0.316 0.333 93.7

 CC 0.652 0.358 0.334 0.360 94.1 −0.953 0.563 0.543 0.620 92.4

 PMMI 0.719 0.337 0.322 0.338 95.4 −0.685 0.342 0.330 0.342 93.9

 AIPWII 0.715 0.362 0.319 0.363 91.3 −0.698 0.355 0.408 0.355 97.7 0

 NNMIII(0.8,0.2) 0.726 0.360 0.343 0.361 94.1 −0.689 0.347 0.333 0.347 94.9

 NNMIII(0.2,0.8) 0.705 0.368 0.352 0.368 93.7 −0.674 0.343 0.330 0.344 94.5

 AIPWI2 0.735 0.335 0.199 0.338 74.6 −0.765 0.440 0.480 0.446 95.7 187

 NNMII2(0.8,0.2) 0.721 0.317 0.313 0.318 96.1 −0.695 0.347 0.332 0.347 94.2

 NNMI12(0.2,0.8) 0.716 0.298 0.301 0.299 96.4 −0.697 0.345 0.332 0.345 93.9

 AIPW2I 0.714 0.363 0.319 0.364 91.5 −0.698 0.355 0.409 0.355 97.7 0

 NNMI2I(0.8,0.2) 0.736 0.348 0.339 0.351 94.4 −0.690 0.346 0.332 0.346 94.9

 NNMI2I(0.2,0.8) 0.713 0.364 0.351 0.365 93.7 −0.677 0.342 0.330 0.342 94.5

N = 400

  FO 0.691 0.135 0.136 0.135 95.6 −0.696 0.226 0.220 0.226 94.6

  CC 0.661 0.235 0.23 0.237 94.1 −0.947 0.385 0.370 0.461 89.1

  PMMI 0.710 0.219 0.225 0.220 95.9 −0.691 0.228 0.230 0.228 95.0

  AIPWII 0.701 0.234 0.222 0.234 94.3 −0.698 0.230 0.263 0.230 97.4 0

  NNMIII(0.8,0.2) 0.703 0.238 0.233 0.238 94.9 −0.692 0.227 0.230 0.227 95.2

  NNMIII(0.2,0.8) 0.698 0.241 0.237 0.241 94.4 −0.682 0.225 0.229 0.225 94.9

  AIPWI2 0.723 0.224 0.138 0.226 80.1 −0.761 0.281 0.305 0.289 96.1 115

  NNMII2(0.8,0.2) 0.709 0.214 0.216 0.215 95.4 −0.699 0.226 0.230 0.226 95.2

  NNMII2(0.2,0.8) 0.719 0.201 0.204 0.203 95.3 −0.704 0.228 0.229 0.228 95.2

  AIPW2I, 0.701 0.236 0.222 0.236 93.4 −0.698 0.230 0.263 0.230 97.3 0

  NNMI2I(0.8,0.2) 0.706 0.235 0.233 0.235 95.3 −0.694 0.227 0.230 0.227 94.9

  NNMI2I(0.2,0.8) 0.699 0.241 0.238 0.241 94.7 −0.684 0.226 0.229 0.226 94.9

Note: Censoring rate: 0.35; Missing rate: 0.63.

a
Average of 1000 point estimates.

b
Empirical standard deviation.

c
Average estimated standard error.

d
Root mean square error: square root of bias2 + SD2.
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e
Coverage rate of 1000 95% confidence intervals.

f
Number of disconvergences for AIPW.
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Table 5.

Monte Carlo Simulation study: estimation of Cox regression with dependent censoring, where T Exponential 

T ∼ ~Exponential eIn 2 × ‐In 2 Z , C ∼ Exponential e−2X+0.IZ , X ∼ Normal 0.I5 + Z,I  and 

δX ∼ Bernoulli p Z,δt,Y = I
I + eI.5 + 0.5Z‐2Y .

βx = In (2) = 0.693 βZ = −ln(2) = −0.693

Method Est
a

SD
b

SE
c

RMSE
d

CR
e Est SD SE RMSE CR Div

f

N = 200

 FO 0.668 0.1 13 0.1 14 0.1 16 94.4 -0.690 0.318 0.324 0.318 95.8

 CC 0.700 0.168 0.170 0.168 96.1 -0.869 0.446 0.447 0.479 94.4

 PMM1 0.592 0.123 0.143 0.159 92.5 -0.621 0.329 0.346 0.337 95.2

 AIPW11 0.666 0.160 0.151 0.162 93.4 -0.687 0.346 0.373 0.346 96.5 1

 NNMI11 ,(0.8,0.2) 0.656 0.150 0.150 0.155 94.3 -0.670 0.337 0.350 0.338 95.6

 NNMI11(0.2,0.8) 0.655 0.154 0.153 0.159 94.5 -0.643 0.334 0.349 0.338 95.4

 AIPW12 0.902 0.322 0.097 0.384 60.3 -0.814 0.575 0.517 0.588 89.8 1765

 NNMI12(0.8,0.2) 0.616 0.127 0.142 0.149 92.9 -0.645 0.329 0.347 0.333 95.9

 NNMI12(0.2,0.8) 0.594 0.1 16 0.138 0.153 91.8 -0.628 0.324 0.344 0.330 95.4

 aipw21 0.667 0.162 0.151 0.164 93.4 -0.688 0.347 0.373 0.347 96.5 1

 NNMI21(0.8,0.2) 0.656 0.148 0.149 0.153 94.2 -0.667 0.337 0.349 0.338 95.7

 NNMI21(0.2,0.8) 0.655 0.154 0.154 0.159 94.1 -0.641 0.334 0.348 0.338 95.4

N = 400

 FO 0.677 0.080 0.080 0.082 94.1 -0.695 0.224 0.227 0.224 94.9

 CC 0.716 0.120 0.1 18 0.122 95.6 -0.870 0.307 0.309 0.354 91.6

 PMM1 0.602 0.088 0.099 0.127 85.5 -0.639 0.234 0.243 0.240 95.4

 AIPW11 0.676 0.106 0.106 0.107 94.6 -0.695 0.241 0.254 0.241 95.6 0

 NNMI11 (0.8,0.2) 0.673 0.105 0.106 0.107 94.7 -0.686 0.240 0.244 0.240 95.4

 NNMI11(0.2,0.8) 0.673 0.108 0.107 0.110 95.1 -0.667 0.240 0.243 0.241 95.6

 AIPW1 2 0.926 0.224 0.069 0.323 44.0 -0.829 0.371 0.424 0.395 88.7 1596

 NNMI12(0.8,0.2) 0.631 0.093 0.101 0.112 90.8 -0.663 0.233 0.243 0.235 96.3

 NNMI12(0.2,0.8) 0.609 0.084 0.098 0.119 87.2 -0.643 0.228 0.242 0.233 95.6

 aipw21 0.676 0.107 0.106 0.108 94.6 -0.695 0.241 0.254 0.241 95.6 0

 NNMI21(0.8,0.2) 0.672 0.105 0.105 0.107 94.9 -0.685 0.240 0.244 0.240 95.7

 NNMI21(0.2,0.8) 0.672 0.107 0.107 0.109 94.9 -0.667 0.239 0.243 0.240 95.3

Note: Censoring rate: 0.33; Missing rate: 0.47.

a
Average of 1000 point estimates.

b
Empirical standard deviation.

c
Average estimated standard error.

d
Root mean square error: square root of bias2+SD2
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e
Coverage rate of 1000 95% confidence intervals.

f
Number of disconvergences for AIPW
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Table 6.

Monte Carlo simulation study: estimation of Cox regression with dependent censoring, where T ~ Exponential 

[eln(2)X-ln(2)Z],C ~ Exponential[e−2X+0.1Z], X Bernoulli p Z = e−e−1.0 + 1.5Z
 and 

δx Bernoulli p Z,δt, Y = e−e−0.15 + 0.25Z − Y
.

 βx = ln(2) = 0.693  βz = −ln(2) = −0.693

Method  Est
a

 SD
b

 SE
c

 RMSE
d

 CR
e

 Est  SD  SE  RMSE  CR  Div
f

N = 200

 FO  0.682  0.194  0.198  0.194  95.7  −0.710  0.341  0.337  0.341  94.6

 CC  0.662  0.262  0.267  0.264  95.2  −0.846  0.455  0.456  0.480  94.0

 PMM1  0.686  0.251  0.258  0.251  95.7  −0.721  0.352  0.348  0.353  93.8

 AIPW11  0.685  0.245  0.246  0.245  95.0  −0.713  0.354  0.366  0.355  95.6  0

 NNMI11(0.8,0.2)  0.695  0.250  0.255  0.250  95.7  −0.718  0.352  0.348  0.353  94.2

 NNMI11(0.2,0.8)  0.692  0.255  0.256  0.255  94.5  −0.730  0.349  0.346  0.351  94.2

 AIPW12  0.700  0.246  0.209  0.246  90.3  −0.726  0.364  0.373  0.365  95.4  74

 NNMI12(0.8,0.2)  0.694  0.241  0.25  0.241  96.2  −0.712  0.353  0.348  0.354  94.5

 NNMI12(0.2,0.8)  0.696  0.232  0.247  0.232  96.8  −0.709  0.351  0.347  0.351  94.0

 AIPW21  0.686  0.243  0.246  0.243  94.9  −0.713  0.354  0.366  0.355  95.6  0

 NNMI21(0.8,0.2)  0.702  0.247  0.252  0.247  95.6  −0.715  0.352  0.347  0.353  94.0

 NNMI21(0.2,0.8)  0.696  0.252  0.255  0.252  94.4  −0.730  0.349  0.346  0.351  94.4

N = 400

 FO  0.688  0.138  0.139  0.138  95.2  −0.701  0.247  0.236  0.247  93.6

 CC  0.670  0.181  0.187  0.182  95.2  −0.832  0.319  0.318  0.348  93.9

 PMM1  0.688  0.171  0.178  0.171  95.8  −0.707  0.250  0.243  0.250  94.4

 AIPW11  0.690  0.171  0.171  0.171  94.9  −0.702  0.251  0.250  0.251  95.2  0

 NNMI11(0.8,0.2)  0.695  0.178  0.177  0.178  94.4  −0.706  0.252  0.243  0.252  94.2

 NNMI11(0.2,0.8)  0.695  0.178  0.178  0.178  94.2  −0.714  0.250  0.242  0.251  94.8

 AIPW12  0.701  0.169  0.145  0.169  89.7  −0.717  0.254  0.254  0.255  95.2  65

 NNMI12(0.8,0.2)  0.696  0.170  0.174  0.170  95.4  −0.699  0.251  0.243  0.251  94.7

 NNMI12(0.2,0.8)  0.703  0.164  0.171  0.164  95.8  −0.695  0.250  0.242  0.250  94.8

 AIPW21  0.692  0.170  0.171  0.170  95.0  −0.701  0.251  0.250  0.251  95.2  0

 NNMI21(0.8,0.2)  0.697  0.177  0.176  0.177  94.6  −0.704  0.252  0.243  0.252  94.5

 NNMI21(0.2,0.8)  0.697  0.178  0.177  0.178  94.4  −0.688  0.249  0.242  0.249  94.7

Note: Censoring rate: 0.37; Missing rate: 0.44.

a
Average of 1000 point estimates.

b
Empirical standard deviation.

c
Average estimated standard error.

d
Root mean square error: square root of bias2 + SD2.
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e
Coverage rate of 1000 95% confidence intervals.

f
Number of disconvergences for AIPW.
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Table 7.

Monte Carlo simulation study: estimation of Cox regression with dependent censoring, where T ~ 

Weibull(eln(2)X−ln(2)Z,1.5), C ~ Weibull(e−2X+0.1Z,1.4), X Bernoulli p Z = 1
1 + e0.25 − 0.5Z  and 

δx Bernoulli P Z,δt, Y = 1
1 + e1.5 + 0.5Z − 2Y .

 βx = ln(2) = 0.693 βz = ln(2) = 0.693

Method  Est
a

 SD
b

 SE
c

 RMSE
d

 CR
e

 Est  SD  SE  RMSE  CR Div
f

N = 200

 FO  0.688  0.201  0.195  0.201  94.3  −0.714  0.308  0.316  0.309  95.5

 CC  0.671  0.329  0.320  0.330  94.2  −0.940  0.531  0.518  0.586  92.6

 PMM1  0.721  0.310  0.303  0.311  96.1  −0.703  0.319  0.330  0.319  95.2

 AIPW11  0.705  0.331  0.296  0.331  91.8  −0.716  0.327  0.373  0.328  96.1 0

 NNMI11(0.8,0.2)  0.717  0.338  0.315  0.339  93.0  −0.705  0.322  0.332  0.322  94.3

 NNMI11(0.2,0.8)  0.692  0.339  0.320  0.339  94.1  −0.690  0.317  0.330  0.317  94.3

 AIPW12  0.739  0.321  0.208  0.324  81.5  −0.779  0.378  0.450  0.388  96.1 191

 NNMI12(0.8,0.2)  0.721  0.304  0.296  0.305  95.5  −0.713  0.325  0.331  0.326  94.1

 NNMI12(0.2,0.8)  0.720  0.286  0.286  0.287  96.6  −0.714  0.322  0.331  0.323  94.7

 AIPW21  0.706  0.331  0.296  0.331  92.1  −0.715  0.327  0.373  0.328  96.2 0

 NNMI21(0.8,0.2)  0.724  0.331  0.313  0.332  94.0  −0.707  0.322  0.332  0.322  94.1

 NNMI21(0.2,0.8)  0.696  0.335  0.319  0.335  94.4  −0.690  0.317  0.329  0.317  94.5

N = 400

 FO  0.683  0.143  0.136  0.143  93.6  −0.701  0.228  0.221  0.228  95.0

 CC  0.660  0.235  0.220  0.237  92.2  −0.927  0.379  0.358  0.445  88.8

 PMM1  0.699  0.219  0.217  0.219  95.1  −0.698  0.238  0.231  0.238  94.9

 AIPW11  0.691  0.230  0.206  0.230  92.2  −0.706  0.241  0.247  0.241  96.4 0

 NNMI11(0.8,0.2)  0.697  0.233  0.217  0.233  94.0  −0.700  0.240  0.231  0.240  94.7

 NNMI11(0.2,0.8)  0.688  0.234  0.224  0.234  94.2  −0.687  0.236  0.230  0.236  95.2

 AIPW12  0.713  0.217  0.144  0.218  81.0  −0.760  0.279  0.270  0.287  94.9 150

 NNMI12(0.8,0.2)  0.700  0.213  0.205  0.213  94.5  −0.705  0.239  0.230  0.239  95.3

 NNMI12(0.2,0.8)  0.708  0.199  0.196  0.200  95.8  −0.708  0.238  0.230  0.238  94.8

 AIPW21  0.690  0.230  0.206  0.230  92.3  −0.706  0.240  0.247  0.240  96.3 0

 NNMI21(0.8,0.2)  0.700  0.232  0.216  0.232  94.1  −0.701  0.240  0.231  0.240  94.6

 NNMI21(0.2,0.8)  0.688  0.234  0.221  0.234  94.4  −0.687  0.236  0.229  0.236  95.1

Note: Censoring rate: 0.35; Missing rate: 0.60.

a
Average of 1000 point estimates.

b
Empirical standard deviation.

c
Average estimated standard error.

d
Root mean square error: square root of bias2 + SD2.
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e
Coverage rate of 1000 95% confidence intervals.

f
Number of disconvergences for AIPW.
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