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Abstract

An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing
alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and
in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on stand-
ardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is
primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can
be both the source and the manifestation of practices leading to research waste. For example, an article may describe a
poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article,
we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research
enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in
which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to re-
porting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing
methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work.
With the exponential increase in biomedical research output and the ability of text mining approaches to perform auto-
matic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices,
providing significant benefits for the biomedical research enterprise.

Key words: biomedical research waste; biomedical text mining; natural language processing; research rigor; research integ-
rity; reproducibility

Introduction

Lack of reproducibility and rigor in published research, a phe-
nomenon sometimes referred to as the ‘reproducibility crisis’, is
a growing concern in science. In a recent Nature survey, 90% of
the responding scientists agreed that there was a crisis in sci-
ence [1]. It has become routine in recent years for scientific jour-
nals as well as for news media to publish articles discussing
various aspects of this crisis as well as proposals and initiatives
to address them. The reproducibility problem is perhaps most
acutely felt in biomedical research, where the stakes are high
because of the size of research investment and impact on public
health. In 2010, the global spending on research in life sciences
(including biomedical) was US$240 billion [2]. The problems in
reproducibility and rigor of published research mean that a

portion of this expenditure is wasted. Chalmers and Glasziou [3]
estimate that avoidable waste accounts for �85% of the re-
search investment.

A variety of factors, occurring at various stages of research
and attributable to different stakeholders, can lead to reproduci-
bility issues and, ultimately, waste. For example, at the concep-
tion, the scientist, unaware of the published literature, may
propose to address a research question that can already be an-
swered with existing evidence, or may fail to select the appro-
priate experimental design and methods [3, 4]. As the research
is being conducted, the investigator, overwhelmed with admin-
istrative tasks, may not be able to provide adequate training/
supervision to laboratory staff [5], who do not validate their ex-
periments sufficiently. Only a subset of data that yields
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statistical significant results may be reported, while negative re-
sults may be discarded completely (p-hacking, selective report-
ing or publication bias) [6–8]. The authors may neglect to
identify the model organisms, antibodies and reagents neces-
sary for other researchers to replicate the experiments [9].
Journal editors, valuing novelty over reproducibility, may be re-
luctant to publish negative results or replication studies [4].
A peer reviewer may miss methodological problems with the
manuscript. An institutional review board (IRB) may fail to fol-
low up on biased underreporting of the research that they ap-
prove [10]. Funding agencies may put too much emphasis on
number of publications, citation counts and research published
in journals with high impact factors for rewarding research
grants [4, 11]. The so-called ‘publish or perish’ culture at aca-
demic institutions can create pressure to maximize research
quantity with diminishing quality [4].

While research rigor and reproducibility in biomedical re-
search is not a recent problem, discussions of the ‘reproducibil-
ity crisis’ are largely because of several recent high-profile
studies. In one of the pioneering studies, Ioannidis [12] demon-
strated how reliance on hypothesis testing in biomedical re-
search frequently results in false-positive results, which he
attributed to a variety of factors, such as effect size, flexibility in
study design and financial interest and prejudice. More re-
cently, Begley and Ellis [13] were unable to reproduce the find-
ings reported in 47 of 53 landmark hematology and oncology
studies. Studies with similar findings were conducted in other
fields, as well [14–16]. Lack of reproducibility and rigor can
mostly be attributed to questionable research practices (honest
errors, methodological problems). At the extreme end of the re-
producibility spectrum, fraudulent science and retractions con-
stitute a small but growing percentage of the published
literature. The percentage of retracted articles in PubMed has
increased about 10-fold since 1975 and 67.4% are attributable to
scientific misconduct: fraud, duplicate publication and plagiar-
ism [17]. Owing to their pervasiveness, however, questionable
research practices can be much more detrimental to science
[18]. Biomedical research outcomes, estimated by life expect-
ancy and novel therapeutics, have remained constant despite
rising investment and scientific knowledge in the past five dec-
ades, partly attributed to non-reproducibility [11]. Such evi-
dence establishes the lack of reproducibility and rigor as a
major problem that can potentially undermine trust in biomed-
ical research enterprise. All stakeholders involved in the bio-
medical research enterprise have a responsibility to ensure the
accuracy, verifiability and honesty of research conduct and re-
porting to reduce waste and increase value.

Toward increased rigor and reproducibility, initiatives focus-
ing on various aspects of reproducible science have been
formed and they have been publishing standards, guidelines
and principles. These include International Committee of
Medical Journal Editors (ICMJE) trial registration requirement
[19] and recommendations for the conduct and publication of
scholarly work in medical journals [20], National Institutes of
Health (NIH) efforts in enhancing research reproducibility and
transparency [4] and data discovery [21], in addition to reporting
guidelines (e.g. Consolidated Standards of Reporting Trials
(CONSORT) statement [22] and Transparency and Openness
Promotion (TOP) guidelines [23]), data-sharing principles [24],
conferences (e.g. World Conference on Research Integrity), jour-
nals (e.g. Research Integrity and Peer Review) and centers (e.g.
Center for Open Science, METRIC) dedicated to these topics.

We have used several terms (reproducibility, replication, rig-
or and integrity) somewhat interchangeably to describe related

phenomena that differ in some fundamental aspects. The se-
mantics of these terms are still somewhat muddled, leading to
confusion and potentially hampering efforts to fix the problems
[25]. To better focus the remainder of this article, we use the def-
initions below, provided in Bollen et al. [26].

• Reproducibility: The ability to duplicate the results of a prior

study using the same materials and procedures as were used by

the original investigator.
• Replicability: The ability to duplicate the results of a prior study

if the same procedures are followed but new data are collected.
• Generalizability: Whether the results of a study apply in other

contexts or populations that differ from the original one (also

referred to as translatability).

Results that are reproducible, replicable and generalizable
are referred to as being robust.

The notions of rigor and integrity are also invoked to discuss
related phenomena. The definitions below are taken from NIH’s
Grants and Funding resources:

• Rigor: Strict application of the scientific method to ensure robust

and unbiased experimental design, methodology, analysis, inter-

pretation and reporting of results (https://grants.nih.gov/reprodu

cibility/index.htm).
• Integrity: The use of honest and verifiable methods in proposing,

performing and evaluating research, reporting results with at-

tention to adherence to rules, regulations, guidelines and follow-

ing commonly accepted professional codes and norms (https://

grants.nih.gov/grants/research_integrity/whatis.htm).

While reproducibility is often used as an umbrella term to
cover all these related issues, in the remainder of this article,
we use it in the limited sense given above. Instead, we focus on
the notions of research rigor and integrity because (i) these no-
tions emphasize reporting over duplication of prior experi-
ments, and (ii) we are primarily interested in whether/how
mining of textual research artifacts can contribute to open,
transparent and rigorous biomedical science.

It is safe to assume that most biomedical scientists are well-
intentioned and are doing their best to conduct rigorous re-
search and report it accurately. Some of the reproducibility/rigor
issues are natural consequences of difficulty and inherent un-
certainty of empirical research. However, failures that cannot
be attributed to these characteristics also occur, somewhat fre-
quently, and our goal should be to minimize them. We envision
that automatic text mining approaches play a dual role toward
this goal by providing support for (i) scrutinizing reports of al-
ready conducted research (corrective role), and (ii) managing
published literature to improve the quality of proposed/ongoing
research (preventive role).

Mining of textual biomedical research artifacts is in the pur-
view of biomedical natural language processing (referred to as
bioNLP, henceforth), a field at the intersection of natural lan-
guage processing (NLP) and biomedical informatics. In this art-
icle, we assume basic knowledge of bioNLP; for introductions
and recent surveys, see [27–29]. In the next section, we turn to
our original question: Can bioNLP provide tools that can help
stakeholders in enhancing rigor and integrity of biomedical
research?

BioNLP for research rigor and integrity

Text mining is largely concerned with unstructured text, the
primary means of communication for biomedical research.
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Unstructured biomedical text comes in various forms of textual
artifacts, including:

• Proposals (grant applications and protocols), authored by scien-

tists and assessed by funding agencies, reviewers and IRBs
• Manuscript submissions, authored by scientists; evaluated by jour-

nal editors, program chairs and peer reviewers; and edited by

journal staff
• Publications, authored by scientists, read and assessed by other

scientists, systematic reviewers, database curators, funding

agencies, IRBs, academic institutions and policymakers

Clark et al. [30] conceptualize the ecosystem of biomedical
communication as a cycle of nine activities, with inputs and
outputs (the output of the last activity feeding back into the
first):

1. Authoring
2. Reviewing for Publication
3. Editing and Publishing
4. Database and Knowledge Base Curation
5. Searching for Information
6. Reading
7. Discussion
8. Evaluating and Integrating Information
9. Experiment Design and Execution

Textual artifacts are primary inputs and outputs of some of
these activities. For example, inputs for authoring include other
relevant publications in the research space, as well as experi-
mental data and observations, and the output is a manuscript
for submission. By providing the ability to automatically process
such artifacts at a large scale and extract relevant information
for subsequent activities, bioNLP methods have the potential to
assist scientists with the entire life cycle of biomedical commu-
nication. Though not explicit in Clark et al.’s conceptualization,
the same capabilities can also benefit other stakeholders (jour-
nal editors, reviewers, funding agencies, etc.), who need to
evaluate such artifacts based on their scientific merit.

What kinds of text mining tools can be envisioned? What
kinds of benefits can they provide? We briefly outline several
categories of tools and their potential benefits below.

1. Plagiarism/fraud detection: Although plagiarism and outright
fraud are relatively rare (though seemingly growing [17]) in
scientific literature, tools that can detect plagiarism/fraud
can be helpful to journal editors in catching research mis-
conduct before publishing an article and avoiding later re-
tractions, which may reflect badly on the journal.

2. Adherence to reporting guidelines: Tools that can assess a
manuscript against the relevant reporting guidelines [e.g.
the CONSORT statement [22] for randomized clinical trials
(RCTs)] and flag the issues would be useful for journal edi-
tors, who can then require the authors to fix the problems
for publication.

3. Managing information overload: Text mining tools can help in
managing information overload by summarizing and aggre-
gating salient knowledge (e.g. hypotheses, claims and sup-
porting evidence) in textual artifacts, a capability that can
benefit all stakeholders. Efficient knowledge management
can help research rigor and reduce research waste by ensur-
ing that, for example, scientists are aware of all relevant
studies before embarking on a research project [31] or that
funding agencies are not awarding funds to redundant or
unjustified proposals [32, 33].

4. Accurate citation and enhanced bibliometrics: Tools that can ver-
ify whether the authors cite relevant literature (or omit) ac-
curately would be beneficial in reducing citation distortion,
which has been shown to lead to unfounded authority [34].
Advanced citation analysis tools that can recognize the
function of a citation and its significance for the publication
can help funding agencies and academic institutions move
beyond simple citation counts and make more informed de-
cisions about the impact of a particular study.

Among these categories, the first two can be viewed as hav-
ing corrective roles, while information overload management is
mainly preventive, and citation-related tools can play both roles
in ensuring rigor and integrity.

Although text mining has been used to address a variety of
tasks that can be subsumed by the categories outlined above,
there is little research on using text mining for broadly address-
ing research integrity and rigor issues in biomedical science.
One nascent effort is a collaboration between the academic pub-
lisher Elsevier and Humboldt University (http://headt.eu), which
aims to use text/data mining for early detection of integrity
issues, focusing mainly on plagiarism/fraud, image manipula-
tion and data fabrication, although no published results were
available at the time of this writing.

In the remainder of this section, we review the existing NLP/
bioNLP research on the four categories of tasks that we outlined
above.

Plagiarism/fraud detection

Plagiarism is ‘the appropriation of another person’s ideas, proc-
esses, results, or words without giving appropriate credit’ [35]. A
serious problem in academia, especially with regard to student
writing, plagiarism also occurs in medical publications [35].
Plagiarism comes in several forms: at one end of the spectrum
is copy–paste plagiarism, which is relatively easy to detect, and
on the other end is paraphrased or translated plagiarism, which
can be challenging. Plagiarism detection is a well-studied infor-
mation retrieval task, and dedicated tools have been developed
[e.g. TurnItIn (http://www.turnitin.com) and Plagramme (http://
www.plagramme.com)]. CrossRef Similarity Check (http://www.
crossref.org/crosscheck), a TurnItIn-based tool used by pub-
lishers, specifically targets plagiarism in scholarly communica-
tion. It generates an overall similarity score between a
manuscript and the articles in a large database of publications
and flags the manuscript if its similarity score is over a
publisher-determined threshold.

Generally, two plagiarism detection tasks are distinguished:
extrinsic and intrinsic plagiarism detection. In extrinsic plagiar-
ism detection, a document is compared with other candidate
documents in a reference collection. Approaches to this task
differ with respect to how documents are represented: docu-
ment fingerprints based on substring hashing [36] or vectors
[37]. Vector representations can be based on characters, words,
word sequences (n-grams) or stopwords [38]. A high number of
candidate documents can pose challenges in extrinsic plagiar-
ism detection [37]; therefore, efficient document representa-
tions and candidate document selection can be critical. In
intrinsic plagiarism detection, the goal is to recognize shifting
writing styles within a document to spot plagiarism [39].
Methods for this task rely on stylometric features, such as word
class usage and average word frequency, which indicate the
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author’s vocabulary size and style complexity. Plagiarism detec-
tion has been the topic of PAN shared task challenges (http://
pan.webis.de), the last edition of which took place in 2016 [40].
Performance for extrinsic plagiarism detection in these compe-
titions has reached an F1 score of 0.88 [41], while the state-of-
the-art performance for intrinsic plagiarism detection is much
lower at an F1 score of 0.22 [42]. Plagiarism in the PAN corpora
was simulated, whereas Nawab et al. [43] used a corpus of
PubMed abstracts that were deemed to be suspiciously similar
to other abstracts and used a query expansion approach based
on Unified Medical Language System (UMLS) Metathesaurus [44]
to detect plagiarism. Plagiarism detection tools are most benefi-
cial to journal editors and peer reviewers, though scientists can
also benefit from using such tools to prevent inadvertent pla-
giarism or self-plagiarism.

Plagiarism accounts for a relatively small fraction of retrac-
tions in biomedical research articles (9.8%), while the fraud ac-
counts for 43.4% [17]. Such cases often involve data fabrication
or falsification [45], types of misconduct that would typically be
difficult to flag with text analysis alone. Focusing on text only,
Markowitz and Hancock [46] investigated whether scientists
write differently when reporting fraudulent research. They
compared the linguistic style of publications retracted for
fraudulent data with that of unretracted articles and articles re-
tracted for reasons other than fraud. They calculated a linguistic
obfuscation score based on stylistic and psycholinguistic char-
acteristics of a document, including ease of reading, rate of jar-
gon, causal and abstract words. They found that retracted
articles were written with significantly higher levels of linguistic
obfuscation and that obfuscation was positively correlated with
the number of references. However, their score-based method
had a high false-positive rate, and they suggested that NLP tech-
niques could achieve higher classification performance. A task
similar to fraud detection, considered in open-domain NLP, is
deception detection, generally cast as a binary classification
task (deceptive versus true) [47]. Supervised machine learning
techniques [support vector machines (SVMs), Naive Bayes]
using n-gram and psycholinguistic features have been applied
to this task [47, 48], the latter achieving F1 score of 0.90 [48].
Interestingly, inter-annotator agreement (Fleiss’ j¼ 0.11) and
human judgements (0.60 F1) were found to be lower than ma-
chine performance. The classification approach used for decep-
tion detection is likely to be beneficial in detecting fraudulent
articles. Similarly to plagiarism detection, fraud detection tools
would be most useful to journal editors.

We note that, in general, decisions regarding fraud or pla-
giarism should ultimately only be made by humans, as such ac-
cusations can be damaging to a scientist’s career. However, text
mining approaches can, to some extent, flag suspicious manu-
scripts, which can then be given extra scrutiny.

Adherence to reporting standards and guidelines

Reporting guidelines have been proposed for transparent and
accurate reporting of biomedical research toward improving
rigor and reproducibility. For various types of biomedical stud-
ies, reporting guidelines have been developed under the aus-
pices of the EQUATOR Network [49]. These include CONSORT
for RCTs [22] and ARRIVE for preclinical animal studies [50],
among others. The CONSORT Statement consists of a 25-item
checklist and a flow diagram. The CONSORT checklist for
‘Methods’ sections is provided in section S1 of the
Supplementary Material as an example.

Although a large number of journals have adopted or sup-
ported such guidelines, adherence to them remains inadequate
[51]. As a solution, structured reporting of key methods and
findings has been proposed [52]. Until such proposals gain cur-
rency, however, most methodological information is likely to re-
main buried in narrative text or, in the worst case, be
completely absent from the publication. Text mining tools can
help journal editors enforce adherence to reporting guidelines
by locating key statements corresponding to specific guideline
items or giving alerts in their absence. For example, per
CONSORT, the method used to generate the random allocation
sequence as well as statistical details critical for reproducibility
can be identified. Recognition of description of limitations and
sources of possible bias can be beneficial for broader rigor and
generalizability. Additionally, medical journals require or en-
courage inclusion of certain types of meta-information, such as
funding, conflicts of interest, trial registration and data access
statements. Identifying such meta-statements and locating
statements corresponding to guideline items can both be cate-
gorized as information extraction tasks, and similar techniques
(text/sentence classification, sequence labeling) can be applied
to them. The difficulty of extracting these items varies widely:
locating trial registration information seems relatively easy, as
the trial registration numbers have a standard format, whereas
extracting statements that indicate that interpretation is ‘con-
sistent with results, balancing benefits and harms, and con-
sidering other relevant evidence’ (a CONSORT checklist item)
seems challenging, as some subjectivity may be involved and a
deeper text understanding may be needed. Commercial soft-
ware has been developed to address adherence issues to some
extent [e.g. Penelope Research (http://www.peneloperesearch.
com/) and StatReviewer (http://www.statreviewer.com/)]; how-
ever, they currently have limited capabilities, and information
about the underlying technologies is sparse. Tools that can ad-
dress the guideline adherence would be useful not only for jour-
nals and reviewers but also to authors of systematic reviews,
who aim to identify well-designed, rigorous studies, and to clin-
icians looking for the best available clinical evidence.

We are not aware of any published bioNLP research that
aims to determine whether a manuscript fully complies with
the relevant set of reporting guidelines. However, some re-
search attempts to identify one or more guideline items as well
as other meta-information, often for the purpose of automating
systematic review process [53]. We discuss such research below;
see O’Mara-Eves et al. [54] for a general discussion of using text
mining for systematic reviews.

In the simplest case, some statistical details, such as P-val-
ues and confidence intervals, can be identified with simple
regular expressions [55]. Some meta-information, such as fund-
ing, conflict of interest or trial registration statements, often ap-
pear in dedicated sections and are expressed using a limited
vocabulary; hence, simple keyword-based techniques could be
sufficient. For example, Kafkas et al. [56] mined data accession
numbers in full-text articles using regular expressions.

Other items require more sophisticated techniques, often
involving machine learning. For example, Kiritchenko et al. [57]
extracted 21 key elements from full-text RCT articles (e.g. eligi-
bility criteria, sample size, primary outcomes and registration
number), some of which are included in CONSORT. Their
system, trained on an annotated corpus of 132 articles, used a
two-stage pipeline: first, given a particular element, a classifier
predicted whether a sentence is likely to contain information
about that element. Second, regular expressions were used to
extract the exact mention of the element. Some meta-
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information (DOI, author name and publication date) was sim-
ply extracted from PubMed records. For each remaining elem-
ent, an SVM model with n-gram features was trained for
sentence classification. A post hoc evaluation on a test corpus
of 50 articles yielded a precision of 0.66 for these elements (0.94
when partial matches were considered correct).

PICO frame elements (Problem, Population, Intervention,
Comparison and Outcome) are recommended for formulating
clinical queries in evidence-based medicine [58] and are widely
used in the systematic review process to assess methodological
rigor of a study. They also often appear in reporting guideline
checklists (e.g. participants in CONSORT versus population in
PICO). Some research focused on PICO or its variants. Demner-
Fushman and Lin [59] identified PICO elements in PubMed
abstracts for clinical question answering. Outcomes were ex-
tracted as full sentences and other elements as short noun
phrases. The results from an ensemble of classifiers (rule-based,
n-gram-based, position-based and semantic group-based),
trained on an annotated corpus of 275 abstracts, were combined
to recognize outcomes. Other elements were extracted using
rules based on the output of MetaMap [60], a system that maps
free text to UMLS Metathesaurus concepts [44]. Recently,
Wallace et al. [61], noting that PICO elements may not appear in
abstracts, attempted to extract PICO sentences from full-text
RCT articles. They generated sentence-level annotations auto-
matically from free-text summaries of PICO elements in the
Cochrane Database of Systematic Reviews (CDSR), using a novel
technique called supervised distant supervision. A small num-
ber of sentences in the original articles that were most similar
to CDSR summary sentences were identified and a manually
annotated subset was leveraged to align unlabeled instances
with the structured data in CDSR. Separate models were learned
for each PICO element with bag-of-words and positional fea-
tures as well as features encoding the fraction of numerical
tokens, whether the sentence contains a drug name, among
others. Their technique outperformed models that used direct
supervision or distant supervision only. A PICO variant, called
PIBOSO (B: Background, S: Study design, O: Other), was also
studied [62]. A corpus of 1000 PubMed abstracts was annotated
with these elements (PIBOSO-NICTA corpus), and two classifiers
were trained on this corpus: one identified PIBOSO sentences
and the other assigned PIBOSO labels to these sentences. A con-
ditional random field (CRF), a sequence labeling model, was
trained using bag-of-words, n-gram, part of speech, section
heading, position and sequence features as well as domain in-
formation from MetaMap. With the availability of the PIBOSO-
NICTA corpus, several studies have explored similar machine
learning-based approaches [63, 64] and state-of-the-art results,
without using any external knowledge, were reported by
Hassanzadeh et al. [64] (0.91 and 0.87 F1 scores on structured and
unstructured abstracts, respectively).

Marshall et al. [65] developed a tool called RobotReviewer to
identify risk of bias (RoB) statements in clinical trials, which are
included in CONSORT reporting guidelines. They used seven
risk categories specified in the Cochrane RoB tool (e.g. random
sequence generation, allocation concealment, blinding of par-
ticipants and personnel and selective outcome reporting) and
labeled articles as high or low risk with respect to a particular
category. Similar to their approach for extracting PICO state-
ments, they semiautomatically generated positive instances for
training by leveraging CDSR, where systematic reviewers copy/
paste a fragment from the article text to support their RoB
judgements. An SVM classifier based on multitask learning
mapped articles to RoB assessments and simultaneously

extracted supporting sentences with an accuracy of 0.71 (com-
pared with 0.78 human accuracy).

Availability of data and experimental protocols is important
for replication of a study [66]. Extracting data deposition state-
ments (i.e. where data used in the study can be retrieved from)
from publications is, from a methodological perspective, a task
similar to extracting PICO elements. Névéol et al. [67] focused on
extracting deposition statements of biological data from
full-text articles. They semiautomatically constructed a gold
standard corpus. Their approach consisted of two machine
learning models: one recognized data deposition components
(data, action, general location and specific location) using a CRF
model. The main model, a binary classifier, predicted whether a
sentence contains a data deposition statement. This classifier,
trained with Naive Bayes and SVM algorithms, used token, part
of speech and positional features as well as whether the
sentence included components identified by the CRF model. An
article was considered positive for data deposition if the top-
scored sentence was classified as positive. Their system yielded
an F1 score of 0.81.

Considering research rigor more broadly, Kilicoglu et al. [68]
developed machine learning models to recognize methodologic-
ally rigorous, clinically relevant publications to serve evidence-
based medicine. Several binary classifiers (Naive Bayes, SVM
and boosting) as well as ensemble methods (stacking) were
trained on a large set of PubMed abstracts previously annotated
to develop PubMed Clinical Queries filter [69]. The base features
used included token, PubMed metadata and semantic features,
as extracted by MetaMap and SemRep [70], a biomedical relation
extraction tool. Best results (F1 score of 0.67) were achieved with
a stacking classifier that used base models trained with various
feature–classifier combinations (e.g. SVM with token features
only).

Managing information overload

With the considerable size and the rapid growth of the biomed-
ical literature, management of information overload becomes a
critical part of research planning, conduct and assessment. By
effectively managing literature, scientists and other stake-
holders can make better decisions with respect to, for example,
designing experiments, evaluating evidence and assessing re-
search proposals, improving research quality and value. Thus,
effective information management can serve a preventive role
in supporting rigorous research. Unlike the tasks discussed so
far, which did not require much deep natural language under-
standing, managing information overload is a broad problem
that requires deeper semantic understanding because we need
to be able to represent and extract meaning of a wide variety of
biomedical text in a unified and scalable manner. In the NLP
community, there are various proposals but little consensus re-
garding how to best represent meaning; therefore, the discus-
sion in this section is somewhat more speculative than that in
the previous sections.

A strategy for efficient management of the biomedical litera-
ture should support extraction of the hypotheses and the key
arguments made in a research article (referred to as knowledge
claims [71], henceforth) as well as their contextualization (e.g.
identifying the evidence provided to support these claims, the
level of certainty with which the claims are expressed and
whether they are new knowledge). It should also allow aggre-
gating such knowledge over the entire biomedical literature. A
deeper text understanding is required for such capabilities, and
we argue that the key to them is normalization of claims and
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the supporting evidence into computable semantic representa-
tions that can account for lexical variability and ambiguity.
Such representations make the knowledge expressed in natural
language amenable to automated inference and reasoning [72].
Furthermore, they can form the building blocks for advanced in-
formation seeking and knowledge management tools, such as
semantic search engines, which can help us navigate the rele-
vant literature more efficiently. For example, formal representa-
tions of knowledge claims can underpin tools that enable
searching, verifying and tracking claims at a large scale, and
summarizing research on a given biomedical topic, thus reduc-
ing the time spent locating/retrieving information and increas-
ing the time spent interpreting it. Such tools can also address
siloization of research [73, 74], putting research questions in a
larger biomedical context and potentially uncovering previously
unknown links from areas that the researcher does not typically
interact with. Literature-scale knowledge extraction and aggre-
gation on a continuous basis can also facilitate ongoing litera-
ture surveillance, with tools that alert the user when a new
knowledge claim related to a topic of interest is made, when a
claim of interest to the user is discredited or contradicted,
increasing research efficiency (a service similar to Crossref’s
CrossMark, which indicates updates on a given publication, can
be envisioned). Advanced knowledge management tools would
be beneficial to all parties involved in biomedical research: (i) to
researchers in keeping abreast of the literature, generating
novel hypotheses and authoring papers; (ii) to funding agencies,
IRBs and policymakers in better understanding the state of the
art in specific research areas, creating research agendas/poli-
cies, verifying claims and evidence presented in proposals and
assessing whether the proposed research is justified; (iii) to
journal editors, peer reviewers, systematic reviewers, and data-
base curators in locating, verifying and tracking claims and
judging evidence presented in manuscripts and publications.

What do we mean by normalization of knowledge claims
and evidence? With normalization, we refer to recognition of
biomedical entities, their properties and the relationships be-
tween them expressed in text and mapping them to entries in a
relevant ontology or knowledge base. As the basis of such for-
malization, we distinguish three levels of semantic information
to be extracted: conceptual, relational and contextual. Roughly,
the conceptual level is concerned with biomedical entities (e.g.
diseases and drugs), relational level with biomedical relation-
ships (e.g. gene–disease associations) and the contextual level
with how these relationships are contextualized and related for
argumentation. A knowledge claim, in the simplest form, can be
viewed as a relation. We illustrate these levels on a PubMed ab-
stract in Section S2 of the Supplementary Material.

Conceptual level is in the purview of the named entity recog-
nition and normalization (NER/NEN) task, while relation extrac-
tion focuses on the relational level. These tasks are well studied
in bioNLP. We provide a brief overview in Sections S3 and S4, re-
spectively, of the Supplementary Material; see recent surveys
[29, 75] for more comprehensive discussion. In the remainder of
this subsection, we first briefly discuss tools that address infor-
mation overload using concepts and relations extracted from
the literature and then turn to research focusing on the context-
ual level.

Literature-scale relation extraction
Literature-scale relation extraction has been proposed as a
method for managing information overload [76]. SemMedDB
[77] is a database of semantic relations extracted with SemRep
[70] from the entire PubMed. In its latest release (as of 31

December 2016), it contains about 89 million relations extracted
from >26 million abstracts. It has been used for a variety of
tasks, such as clinical decision support [78], uncovering poten-
tial drug interactions in clinical data [79], supporting gene regu-
latory network construction [80] and medical question
answering [81]. It also forms the back end for the Semantic
MEDLINE application [76], which integrates semantic relations
with automatic abstractive summarization [82], and visualiza-
tion, to enable the user navigate biomedical literature through
concepts and their relations. Semantic MEDLINE, coupled
with a literature-based discovery extension called ‘discovery
browsing’, was used to propose a mechanistic link between age-
related hormonal changes and sleep quality [83] and to eluci-
date the paradox that obesity is beneficial in critical care despite
contributing to disease generally (‘the obesity paradox’) [84].
Another database, EVEX [85], is based on the Turku Event
Extraction System (TEES) [86] and includes relations extracted
from abstracts in PubMed and full-text articles in the PubMed
Central Open Access subset(PMC-OA). It consists of �40 million
biomolecular events (e.g. gene expression and binding).
A CytoScape plugin, called CyEVEX, is made available for inte-
gration of literature analysis with network analysis. EVEX has
been exploited for gene regulatory network construction [87].
Other databases, such as PharmGKB [88] and DisGeNET [89], in-
tegrate relationships extracted with text mining with those
from curated resources.

Contextualizing biomedical relations
Contextualizing relations (or claims) focuses on how they are
presented and how they behave in the larger discourse. Two
distinct approaches can be distinguished.

The first approach, which can be considered ‘bottom-up’,
focuses on classifying scientific statements or relations along
one or more meta-dimensions aiming to capture their context-
ual properties, for example whether they are expressed as
speculation. One early task adopting this approach was distin-
guishing speculative statements from facts (hedge classifica-
tion). For this task, weakly supervised learning techniques [90]
as well rule-based methods using lexical and syntactic tem-
plates [91, 92] have been explored, yielding similar performance
(0.85 F1 score). Interesting from a research integrity/transpar-
ency perspective, the system developed in [91] was used to com-
pare the language used in reporting industry-sponsored
research and non-industry-reported research, which found that
the former was on average less speculative [93].

Semantically more fine-grained, speculation/negation detec-
tion task has focused on recognizing speculation and negation
cues in text (e.g. ‘suggest’, ‘likely’ and ‘failure’) and their linguis-
tic scope, often formalized as a relation [94] or a text segment
[95]. Speculation/negation detection has been studied in the
context of BioNLP Shared Tasks on event extraction [96, 97] and
the CoNLL’10 Shared Task on Hedge Detection [98]. Supervised
machine learning methods [86, 99] as well as rule-based meth-
ods with lexico-syntactic patterns [100] have been applied to
this task. The interaction of speculation and negation has been
studied under the notion of factuality, and factuality values
(Fact, Probable, Possible, Doubtful and Counterfact) of biological
events were computed using a rule-based, syntactic compos-
ition approach [101].

Focusing on a more comprehensive characterization of sci-
entific statements, Wilbur et al. [102] categorized sentence seg-
ments along five dimensions: focus (whether the segment
describes a finding, a method or general knowledge), polarity
(positive/negative), certainty (the degree of speculativeness
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expressed toward the segment on a scale of 0–3), evidence (four
levels, from no stated evidence to explicit experimental evi-
dence in text) and direction (whether segment describes an in-
crease or decrease in the finding). A similar categorization
(‘meta-knowledge’) was proposed by Thompson et al. [103], who
applied it to events, rather than arbitrary text segments. They
also proposed two hyper-dimensions that are inferred from
their five categories: one indicates whether the event in ques-
tion is New Knowledge and the other whether it is a Hypothesis.
Studies that focused on predicting these meta-dimensions have
been trained on the annotated corpora and used supervised ma-
chine learning techniques [104, 105]. The Claim Framework
[106] proposed a categorization of scientific claims according to
the specificity of evidence, somewhat similar to focus dimen-
sion in the schema of Wilbur et al. [102]. Five categories were
distinguished (explicit claim, implicit claim, observation, correl-
ation and comparison). A small corpus of full-text articles was
annotated with these categories, and an approach based on
lexico-syntactic patterns was used to recognize explicit claims.

The second approach (‘top-down’) focuses on classifying
larger units (sentences or a sequence of sentences) according to
the function they serve in the larger argumentative structure.
Proposed by Teufel et al. [107, 108] for scientific literature on
computational linguistics and chemistry, argumentative zoning
assigns sentences to domain-independent zone categories
based on the rhetorical moves of global argumentation and the
connections between the current work and the cited research.
The proposed categories include, for example, Aim (statement
of specific research goal or hypothesis), Nov_Adv (novelty/ad-
vantage of the approach), Own_Mthd (description of methods
used), among others. Mizuta et al. [109] adapted this classifica-
tion to biology articles and presented an annotated corpus. Guo
et al. [110] adopted a simplified version of argumentative zoning
with seven classes (e.g. Background, Method, Result and Future
Work). They used weakly supervised SVM and CRF models to
classify sentences in abstracts discussing cancer risk assess-
ment, which yielded an accuracy of 0.81. The CoreSC schema
[111] is an extension of the argumentative zoning approach, in
which sentences are classified along two layers according to
their role in scientific investigation. The first layers consist of 11
categories (e.g. Background, Motivation, Experiment, Model,
Result and Conclusion), and the second layer indicates whether
the information is new or old. A corpus of chemistry articles
annotated with these layers was presented. SVM and CRF classi-
fiers that recognize the first layer categories were developed
[112], achieving best results with Experiment, Background and
Model classes (0.76, 0.62 and 0.53 F1 scores, respectively). N-
gram, syntactic dependency and document structure features
(section headings) were found to be predictive. Such top-down
classifications are similar to but more fine-grained than IMRaD
rhetorical categories (Introduction, Methods, Results and
Discussion) that underlie the structure of most scientific art-
icles. As the sentences may not conform to the characteristics
of the section that they appear in, some research considered
classifying sentences into IMRaD categories. For example,
Agarwal and Yu [113] compared several rule-based and super-
vised learning methods to classify sentences from full-text bio-
medical articles into these categories. The best results reported
(0.92 accuracy and F1 score) were obtained with a Naive Bayes
classifier with n-gram, tense and citation features, and feature
selection. Other similar categorizations have also been pro-
posed [114]. Note that the methods applied in these approaches
are largely similar to those discussed earlier for identification of
specific statements, such as PICO or data deposition

statements. Finally, a comprehensive, multilevel model of sci-
entific argumentation, called Knowledge Claim Discourse Model
(KCDM), has been proposed by Teufel [115]. Five levels varying
in their degree of abstraction have been distinguished. At the
most abstract level, rhetorical goals are formalized into four cat-
egories, often not explicit in text (‘Knowledge claim is signifi-
cant’, ‘Knowledge claim is novel’, ‘Authors are knowledgeable’
and ‘Research is methodologically sound’). Next level, rhetorical
moves, addresses the properties of the research space (e.g. ‘No
solution to new problem exists’) and the new knowledge claim
(e.g. ‘New solution solves problem’). The third level, knowledge
claim attribution, is concerned with whether a knowledge claim
is attributed to the author or others. At the fourth level are
hinge moves, which categorize the connections between the
new knowledge claim and other claims (e.g. ‘New claim con-
trasts with existing claim’). The bottom and the most concrete
layer, linearization and presentation, deals with how these
rhetorical elements are realized within the structure of the art-
icle. Teufel reported the results of several annotation studies
focusing on argumentative zoning and knowledge claim attri-
bution (j values of 0.71–0.78), and her argumentative zone de-
tection system, based on supervised learning with verb
features, word lists, positional information and attribution fea-
tures, achieved a j value 0.48, with respect to the annotated
corpus.

Similarly, taking a top-down approach but focusing on the
relations between individual discourse segments (similar to
KCDM hinge moves) are models of discourse coherence. Such
relations include elaboration, comparison, contrast and prece-
dence, and are often indicated with discourse connectives (e.g.
‘furthermore’, ‘in contrast’). Linguistic theories and treebanks
have been proposed to address these relations, including
Rhetorical Structure Theory (RST) [116] and the Penn Discourse
TreeBank (PDTB) [117], each assuming a somewhat different
discourse structure and relation inventory and differing in their
level of formalization. In the biomedical domain, discourse rela-
tions remain understudied, with the notable exception of the
Biomedical Discourse Relation Bank corpus [118], in which a
subset of PDTB relation types was used to annotate abstracts in
the GENIA corpus. Detection of discourse connectives was
explored on this corpus, and an F1 score of 0.76 was achieved
with a supervised learning approach and domain adaptation
techniques [119].

Some research considered combining bottom-up and
top-down approaches for a fuller understanding of scientific
discourse or contextual meaning. For example, a three-way
characterization, based on meta-knowledge dimensions [103],
CoreSC [111] and discourse segment classification [114], was at-
tempted, and these components were shown to be complemen-
tary [120]. The Embedding Framework [121] is a unified,
domain-independent semantic model for contextual meaning,
consolidating the meta-dimensions and discourse coherence
relations. A fine-grained categorization of contextual predicates
was presented, with four top-level categories (Modal,
Valence_Shifter, Relational and Propositional), where the Modal
and Valence_Shifter categories overlap with meta-dimensions,
and the Relational category overlaps with discourse relations. A
dictionary of terms, classified according to this fine-grained cat-
egorization, was constructed and a rule-based interpretation
methodology based on the dictionary and syntactic dependency
composition was proposed. The framework is designed to com-
plement existing relation extraction systems. While no specific
corpus annotation was performed, the methodology has been
applied to relevant tasks, such as speculation/negation
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detection [100], factuality assessment [101] and attribution de-
tection [121], yielding good performance.

Although not a text mining approach, an effort that deserves
discussion here is micropublications [30], a semantic model of
scientific claims, evidence and arguments. Built on top of
Semantic Web technologies, micropublications are intended for
use in the research life cycle, where scientists create, publish,
expand and comment on micropublications for scientific com-
munication. They have been proposed as a potential solution to
improve research reproducibility and robustness. At a min-
imum, a micropublication is conceived as a claim with its
attribution, and in its full form, as a claim with a complete
directed-acyclic support graph, consisting of relevant evidence,
interpretations and discussion that supports/refutes the claim,
either within the publication or in a network of publications dis-
cussing the claim. It has been designed to be compatible with
claim-based models formalizing relationships (e.g. nanopubli-
cations [122]), as well as with claims in natural language text.
The model can accommodate artifacts such as figures, tables,
images and data sets, which text mining approaches generally
do not consider. While it has been used for manual annotation
[123], to our knowledge, the micropublications model has not
been used as a target for text mining. An example of micropubli-
cation is presented in Section S5 of the Supplementary Material.

Accurate citation and enhanced bibliometrics

Citations are important for several reasons in ensuring research
integrity/rigor. First, the performance of a scientist is often
measured by the number of citations they receive and the num-
ber of articles they publish in high impact factor journals.
Count-based measures, such as the h-index [124], are often crit-
icized because they treat all citations as equal and do not distin-
guish between the various ways and reasons a paper can be
cited. For example, a paper can be appraised in a positive light
or criticized; it can be cited as the basis of the current study or
more peripherally. Such differences should be accounted for
enhanced bibliometric measures. More sophisticated measures
have been proposed in response to such criticism [125]. Second,
from an integrity perspective, it is important to ensure that all
references in a manuscript (or any other scientific textual arti-
fact) are accurately cited. Two kinds of reference accuracy prob-
lems are distinguished [126]: citation accuracy refers to the
accuracy of details, such as authors’ names, date of publication
and volume number, whereas quotation accuracy refers to
whether the statements from the cited papers are accurately re-
flected in the citing paper. Citation accuracy studies were found
to report a median error rate of 39% and quotation accuracy
studies a median error rate of 20% [126]. Greenberg [34] high-
lighted some types of citation distortions (i.e. quotation accur-
acy problems) that lead to unfounded authority. For example,
citation transmutation refers to ‘the conversion of hypothesis
into fact through act of citation alone’, and dead-end citation to
‘citation to papers that do not contain content addressing the
claim’. Another rigor issue is the continued citation of retracted
papers, which may lead to spreading of misinformation. A study
of retracted paper citations found that 94% of the citing papers
did not acknowledge the retraction [127]. Automated citation
analysis tools and accuracy checkers would be beneficial for
journal editors and staff in their workflows, as well as for scien-
tists in authoring manuscripts and academic institutions and
funding agencies in considering quality of impact rather than
quantity and improving decision-making.

Most text mining research on citations has focused on the
computational linguistics literature, an area in which a corpus
of full-text articles is available (ACL Anthology Corpus [128]).
Citation analysis has been proposed for enhancing bibliometrics
as well as for extractive summarization [129]. Several aspects of
citations have been studied. Research on citation context detec-
tion aims to identify the precise span of the discussion of the
reference paper in the citing paper. For example, to detect the
surrounding sentences that discuss a reference paper,
Qazvinian and Radev [130] proposed a method based on Markov
Random Fields using sentence similarity and lexical features
from sentences. Abu-Jbara and Radev [131] focused on reference
scopes that are shorter than the full sentence. They explored
several methods for this task: word classification with SVM and
logistic regression, CRF-based sequence labeling and segment
classification, which uses rules based on CRF results, achieving
best performance with segment classification (F1 score of 0.87).
Other studies explored citation significance. Athar [132] pre-
sented a text classification approach to determine whether a
citation is significant for the citing paper and achieved 0.55 F1

score with a Naive Bayes classifier that used as features, num-
ber of sentences with acronyms, with formal citation to the
paper and to the author’s name, as well as average similarity of
the sentence with the title. Similar text classification tech-
niques were used to identify key references [133] and meaning-
ful citations [134]; the number of times a paper is cited was
identified as the most predictive feature. Citation sentiment
(whether the authors cite a paper positively, negatively or neu-
trally) has also been proposed to enhance bibliometrics. Athar
[135] annotated the ACL Anthology Corpus for citation senti-
ment and used an SVM classifier with n-gram and dependency
features extracted from the citation sentence for sentiment
classification, achieving a macro-F1 score of 0.76. In the biomed-
ical domain, Xu et al. [136] annotated the discussion sections of
285 RCT articles with citation sentiment. Using an SVM classi-
fier with n-gram and various lexicon-based features (e.g. lexi-
cons of positive/negative sentiment, contrast expressions), they
reached a macro-F1 score of 0.72. A more fine-grained citation
classification concerns citation function, for which many classi-
fications have been proposed. For example, Teufel et al. [137]
presented a scheme, which contained 12 categories [e.g. Weak
(weakness of the cited approach), PBas (cited work as the start-
ing point) and CoCo (unfavorable comparison/contrast)] and
measured inter-annotator agreement (j¼ 0.72). Later, Teufel
et al. [138] used a memory-based learning algorithm to recognize
these categories. They used features based on cue phrases in
the citation sentence, position of the citation and self-citation,
which yielded a j of 0.57. In the biomedical domain, Agarwal
et al. [139] presented a corpus of 43 biomedical articles anno-
tated with eight citation roles (e.g. Background/Perfunctory,
Contemporary, Contrast/Conflict, Evaluation, Modality and
Similarity/Consistency), achieving moderate inter-annotator
agreement (j¼ 0.63), though it seems difficult to think of some
of their categories (Contemporary and Modality) as citation
roles in a traditional sense. Using n-gram features with SVM
and Naive Bayes classifiers, they obtained a macro-F1 score
of 0.75.

The first type of reference accuracy, referred to as citation
accuracy above, is studied under the rubric of citation matching.
We do not discuss this task here, as NLP has little relevance to
it; see [140] for a comparison of several citation matching algo-
rithms. Some tasks, such as author name disambiguation [141],
focus on specific elements of citations, rather than on full cit-
ation matching. Ensuring quotation accuracy, on the other
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hand, can be viewed as a text mining task, in which the goal is
to identify the segments of the reference paper that are dis-
cussed in the citing paper. Inability to find such a segment
would indicate a dead-end citation, while finding inconsisten-
cies between how a claim is presented in the reference paper
versus the citing paper with respect to its factuality might indi-
cate a citation transmutation [34]. However, identifying refer-
ence paper segments precisely can be challenging, as the citing
paper usually does not simply quote the reference paper verba-
tim, but rather paraphrases its contents, and commonly, refers
to its contents in an abstract manner. In the Text Analysis
Conference 2014 Biomedical Summarization shared task (http://
www.nist.gov/tac/2014/BiomedSumm), one subtask involved
finding the spans of text in reference papers that most accur-
ately reflect the citation sentence and identifying what facet of
the reference paper it belongs to (e.g. Hypothesis, Method,
Results and Implication). The task focused on a corpus of 20
biology articles, each with 10 corresponding reference articles.
The inter-annotator agreement was found to be low. The results
of this shared task were not available at the time of this writing;
however, one of the reported systems [142] relied on calculating
text similarity between the citation sentence and the sentences
in the reference paper using tf.idf, as well as various methods to
expand the citation context and the reference paper context for
similarity calculation. The best results (F1 score of 0.32) were ob-
tained when using 50 sentences surrounding the citation sen-
tence and all sentences from the articles that cite the reference
paper for context. The same task has also been adapted to the
computational linguistics literature [143], even though the re-
sults have been poorer, with the top-ranking system obtaining
0.1 F1 score [144].

Challenges and directions

We examined four areas of concern for biomedical research in-
tegrity and rigor and discussed existing text mining research
that has the potential to address them. We discuss below sev-
eral general challenges facing bioNLP research focusing on
these areas and highlight some promising avenues for future
research.

The first challenge is concerned with availability of artifacts
that can be used to train text mining methods. While most text
mining research has focused on PubMed abstracts because of
their availability, most biomedical knowledge relevant to the
tasks discussed, including study details, knowledge claims and
citations, can only be located in full text. Blake [106] found that
only 8% of the explicit claims were expressed in abstracts.
Furthermore, biomedical abstracts differ from full text in terms
of structure and content [145]. The PMC-OA subset is amenable
to automated approaches without much additional preprocess-
ing effort; however, it contains only about a million full-text art-
icles (4% of all PubMed abstracts). Owing to availability and
access difficulties, researchers often use nonstandard PDF-to-
text conversion tools to extract full text from PDF files [65, 146].
Considering that the progress in bioNLP is partly attributed to
public availability of biomedical abstracts, a similar mode of ac-
cess can further stimulate research in mining of full-text art-
icles. We are not aware of research focusing on other textual
artifacts discussed, though abstracts of NIH grant applications
and the resulting publications are available via NIH RePORT
(https://report.nih.gov/), and some journals (e.g. British Medical
Journal) publish prepublication manuscripts and reviewer re-
ports for transparency.

Collecting bibliographic data at a large scale also remains
challenging. Two sources of scholarly citation considered most
authoritative, Web of Science and Scopus, are neither complete
nor fully accurate [147] and require high subscription fees.
Others, like Google Scholar, have license restrictions. Open
Citations Corpus (OCC) has been proposed as an open-access re-
pository of citation data to improve citation access [148]. It relies
on the SPAR ontologies [149], which define characteristics of the
publishing domain. Citation information in PMC-OA has been
made available in OCC. Although this is a small subset of the
biomedical literature, the movement toward open-access cit-
ation data is encouraging for research.

Even when the text sources are plentiful, restrictions may
apply to text mining of their contents. Publishers often adopt a
license-based approach, allowing researchers from subscribing
institutions to register for an API key to text-mine for research
purposes. Negotiating a separate license with each publisher is
not only impractical for both researchers and publishers but also
ineffective, as some tasks (e.g. plagiarism detection, managing in-
formation overload and citation analysis) presuppose text mining
at the literature scale with no publisher restrictions. The Crossref
Metadata Application Program Interface (API) initiative [150] aims
to solve this problem by providing direct links to full text on the
publisher’s site and a common mechanism for recording license
information in Crossref metadata. Several publishers (e.g.
HighWire Press, Elsevier and Wiley) as well as professional soci-
eties (e.g. American Psychological Association) have been
involved in this initiative.

The next set of challenges are concerned with the text min-
ing approaches themselves. Most approaches depend on anno-
tated corpora and sizable corpora based on full-text articles or
other text sources we discussed are lacking. The largest full-text
corpus, CRAFT [151], contains 67 articles, and the annotation
focuses mostly on low-level semantic information, such as
named entities and concepts. Some tasks we discussed require
higher-level annotation, such as annotation of argumentation,
discourse structure, citation function and quotation, and are
much more challenging, as they are less well defined and some
subjectivity is involved in annotating them. Collaborative,
cross-institution efforts would be beneficial for consolidating
existing research in these areas and proposing more compre-
hensive characterizations. Ontology development research
should also be taken into account, as some existing ontologies
focus on scholarly discourse (e.g. SWAN [152]), and annotation
efforts would benefit from the insights of such research.
Another promising avenue is crowdsourcing of annotation,
where the ‘crowd’ (a mix of lay people, enthusiasts and experts),
recruited through an open call, provides their services for a
given task. In the biomedical domain, crowdsourcing has been
successfully applied to relatively low-level tasks such as named
entity annotation, while it has been considered less suitable for
complex, knowledge-rich tasks [153]. However, the design of
crowdsourcing experiments plays a significant role in their suc-
cess, and creative crowdsourcing interfaces could make collec-
tion of complex data (e.g. argumentation graphs) more feasible.
It is also worth noting that frameworks like nanopublications
[122] and micropublications [30] advocate the use of semantic
models of scientific statements and argumentation, respect-
ively, in the workflows of scientists as a means of knowledge
generation and exchange. If such models are adopted more
widely (not only among scientists but also publishers and other
stakeholders), the knowledge generated would also be invalu-
able as gold standard data. The Resource Identification
Initiative [154] promotes such a model for research resources
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(e.g. reagents and materials) and can be informative in this
regard.

Representativeness and balance of a corpus is important for
the generalizability of tools that are trained on it. Though cor-
pus linguistics literature addresses the construction of balanced
and representative corpora [155], in practice, most biomedical
text corpora focus on a restricted domain of interest. For ex-
ample, CRAFT [151] contains biology and genetics articles, while
GENIA [156] contains abstracts about biological reactions involv-
ing transcription factors in human blood cells. Lippincott et al.
[157] showed that subdomains in biomedical literature vary
along many linguistic dimensions, concluding that a text min-
ing system performing well on one subdomain is not guaran-
teed to perform well on another. Construction of wide-coverage,
representative biomedical full-text article corpora, while clearly
challenging, would be of immense value to text mining research
in general. Also, note that a subfield of machine learning, do-
main adaptation, specifically focuses on model generalizability.
Various methods (some requiring data from the new domain
and some not) have been proposed [158], and such methods
have been applied to biomedical text mining tasks [159].
Independently, some systems provided machine learning mod-
els that can be retrained on new annotated corpora [86, 160],
while others attempted to generalize by appealing to linguistic
principles [70, 100].

Important information in biomedical articles may only ap-
pear in tables, graphs, figures or even supplementary files. There
is relatively little research in incorporating data from such arti-
facts into text mining approaches, even though some semantic
models, such as micropublications [30], support them. Figure re-
trieval has been considered, mainly focusing on using text from
figure captions [161], text within figures [162] and text from para-
graphs discussing the figures as well as NER [163]. Research on
information extraction from tables is rare [164–166], though this
may change with recent availability of corpora [167]. Jimeno-
Yepes and Verspoor [146] showed that most literature-curated
mutation and genetic variant information existed only as sup-
plementary material and used open-source PDF conversion tools
to extract text from supplementary files for text mining.

The accuracy of text mining approaches varies widely de-
pending on the task. In some classification tasks (e.g. identify-
ing PICO categories), state-of-the-art performance is over 0.9
accuracy, whereas in recognition of citation quotation, the
state-of-the-art performance is just over 0.3. Although text min-
ing tools have shown benefits in curation and annotation [168,
169], it is critical to educate the users about the role of such tools
in their workflows and their value/limitations, and not alienate
them by setting their expectations impossibly high. It is also
worth pointing out that human agreement on some tasks is not
high; therefore, it may be unrealistic to expect that automated
tools do well (e.g. Fleiss’ j of 0.11 for deceptive text annotation
[48]). Depending on the task, a user may prefer not the setting
that yields the highest F1 score, generally considered the pri-
mary performance metric, but rather high recall or high preci-
sion. Providing the ability to tune a system for high recall or
precision is likely to be advantageous for its adoption. Most ma-
chine learning systems are essentially black boxes, and the abil-
ity of systems to provide human-interpretable explanations for
their predictions may also affect their adoption. Curation cycles,
in which experts or the crowd manually ‘correct’ text mining re-
sults, providing feedback that is automatically incorporated
into machine learning models, can also be effective in incre-
mentally improving performance of such models. The majority
of NLP publications focus on basic research rather than

engineering, and generally report little with respect to certain
characteristics of the tools developed, such as their computa-
tional complexity or usability [170], which can be critical for
practical use. Finally, it is worth noting that reproducibility of
results generated by NLP tools, the focus of some recent re-
search [170–172], is likely to be increasingly important in their
adoption.

Conclusion

Toward enhancing rigor and integrity of biomedical research,
we proposed text mining as complementary to efforts focusing
on standardization and guideline development. We identified
four main areas (plagiarism/fraud detection, compliance with
reporting guidelines, management of information overload and
accurate citation), where text mining techniques can play pre-
ventive and corrective roles, and we surveyed the state of the
art for these tasks. We believe that the tools that perform the
following tasks can have the biggest and most immediate im-
pact toward addressing some of the problems that lead to re-
search waste:

1. Checking for adherence to all elements of the relevant re-
porting guideline:

• Given a manuscript, such a tool can ensure that all methodo-

logical details needed for replication are provided and limita-

tions are clearly specified.

2. Generating document-level and literature-level argumenta-
tion graphs:

• With a document-level graph of a manuscript, we can check

whether the conclusions are consistent with the results and

limitations of the study.
• A literature-level graph for a proposed research question can

aid in determining whether it can already be answered with

existing evidence.
• For an unfamiliar research topic, a literature-level graph can

help us quickly identify the main knowledge claims, their

provenance and track their evolution.

3. Constructing citation quotation networks:

• Given a manuscript, such a tool can ensure that existing re-

search is accurately cited.
• We can more accurately assess the contribution of a scientist

to their field, based on the impact of their citations, rather

than the citation count.

For some tasks, current state-of-the-art text mining tech-
niques can be considered mature (e.g. extrinsic plagiarism de-
tection, extracting PICO sentences), while for other tasks,
substantial research progress is needed for practical tools (e.g.
construction of argumentation graphs, identifying citation
quotations). We argued that the main advantage of text mining
comes in its ability to facilitate performing tasks at a large scale.
By shortening the time it takes to perform tasks needed to en-
sure rigor and integrity, text mining technologies can promote
better research practices, ultimately reducing waste and
increasing value.

Key Points

• Lack of reproducibility and rigor in published research
is a growing concern in science, and all stakeholders
(scientists, journals, peer reviewers, funding agencies,
etc.) have a responsibility to ensure the accuracy, ver-
ifiability and honesty of research conduct and
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reporting to reduce research waste and increase value.
• By providing the ability to automatically process text-

ual artifacts of biomedical communication (proposals,
manuscripts and publications) at a large scale and ex-
tract relevant information, biomedical text mining
methods can assist all stakeholders in their research
activities and complement efforts focusing on stand-
ards and guidelines.

• Biomedical text mining methods can support auto-
mated tools in four key areas: (a) plagiarism/fraud
detection, (b) adherence to reporting guidelines, (c)
managing information overload and (d) accurate cit-
ation/enhanced bibliometrics, providing preventive
and corrective functions.

• Specific tasks that can have the biggest and most im-
mediate impact include (a) checking for adherence to
relevant reporting guidelines, (b) generating docu-
ment-level and literature-level argumentation graphs
and (c) constructing citation quotation networks.

• Challenges in using biomedical text mining methods
in these areas include (a) potential publisher restric-
tions on text mining, (b) availability, representative-
ness and balance of text corpora and bibliographic
data to use for training, (c) lack of consensus in how
to best annotate relevant linguistic phenomena, (d)
need to incorporate information from non-textual arti-
facts, such as tables, figures and graphs and (e) accur-
acy, complexity and black-box nature of most text
mining techniques.

Supplementary Data

Supplementary data are available online at http://bib.ox-
fordjournals.org/.

Acknowledgements

The author thanks Jodi Schneider, Gerben ter Riet, Dina
Demner-Fushman, Catherine Blake, Thomas C. Rindflesch,
Olivier Bodenreider and Caroline Zeiss for their comments
on earlier drafts of this article.

Funding

The intramural research program at the US National Library
of Medicine, National Institutes of Health.

References
1. Baker M. 1,500 scientists lift the lid on reproducibility. Nature

2016a;533:452–4.
2. Røttingen J-A, Regmi S, Eide M, et al. Mapping of available

health research and development data: what’s there, what’s
missing, and what role is there for a global observatory?
Lancet 2013;382(9900):1286–307.

3. Chalmers I, Glasziou P. Avoidable waste in the production
and reporting of research evidence. Lancet 2009;374(9683):
86–9.

4. Collins FS, Tabak LA. Policy: NIH plans to enhance reprodu-
cibility. Nature 2014;505(7485):612–3.

5. Barham BL, Foltz JD, Prager DL. Making time for science. Res
Policy 2014;43(1):21–31.

6. Head ML, Holman L, Lanfear R, et al. The extent and conse-
quences of p-hacking in science. PLoS Biol 2015;13(3):
e1002106.

7. Dwan K, Altman DG, Clarke M, et al. Evidence for the select-
ive reporting of analyses and discrepancies in clinical trials:
a systematic review of cohort studies of clinical trials. PLoS
Med 2014;11(6):e1001666.

8. Chan A, Hr�objartsson A, Haahr M, et al. Empirical evidence
for selective reporting of outcomes in randomized trials:
comparison of protocols to published articles. JAMA
2004;291(20):2457–65.

9. Vasilevsky NA, Brush MH, Paddock H, et al. On the reproduci-
bility of science: unique identification of research resources
in the biomedical literature. PeerJ 2013;1:e148.

10. Chalmers I. Lessons for research ethics committees. Lancet
2002;359(9301):174.

11. Bowen A, Casadevall A. Increasing disparities between re-
source inputs and outcomes, as measured by certain health
deliverables, in biomedical research. Proc Nat Acad Sci USA
2015;112(36):11335–40.

12. Ioannidis JPA. Why most published research findings are
false. PLoS Med 2005;2(8):e124.

13. Begley CG, Ellis LM. Raise standards for preclinical cancer re-
search. Nature 2012;483(29):531–3.

14. Kyzas PA, Denaxa-Kyza D, Ioannidis JPA. Almost all articles
on cancer prognostic markers report statistically significant
results. Eur J Cancer 2007;43(17):2559–79.

15. Prinz F, Schlange T, Asadullah K. Believe it or not: how much
can we rely on published data on potential drug targets? Nat
Rev Drug Discov 2011;10(9):712.

16. Open Science Collaboration. Estimating the reproducibility
of psychological science. Science 2015;349(6251):aac4716.

17. Fang FC, Steen RG, Casadevall A. Misconduct accounts for
the majority of retracted scientific publications. Proc Natl
Acad Sci USA 2012;109(42):17028–33.

18. Bouter LM, Tijdink J, Axelsen N, et al. Ranking major and
minor research misbehaviors: results from a survey among
participants of four World Conferences on Research
Integrity. Res Integr Peer Rev 2016;1(1):17.

19. De Angelis C, Drazen J, Frizelle F, et al. Clinical trial registra-
tion: a statement from the International Committee of
Medical Journal Editors. N Engl J Med 2004;351(12):1250–1.

20. International Committee of Medical Journal Editors.
Recommendations for the Conduct, Reporting, Editing, and
Publication of Scholarly Work in Medical Journals. 2016.
http://www.icmje.org/icmje-recommendations.pdf.

21. Ohno-Machado L, Alter G, Fore I, et al. bioCADDIE white
paper - Data Discovery Index. Technical report, Figshare,
2015. http://dx.doi.org/10.6084/m9.figshare.1362572.

22. Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement:
updated guidelines for reporting parallel group randomised
trials. BMJ 2010;340:c332.

23. Nosek BA, Alter G, Banks GC, et al. Promoting an open re-
search culture. Science 2015;348(6242):1422–5.

24. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR
guiding principles for scientific data management and stew-
ardship. Sci Data 2016;3:160018.

25. Baker M. Muddled meanings hamper efforts to fix reproduci-
bility crisis. Nature News 2016.

26. Bollen K, Cacioppo JT, Kaplan RM, et al. Social, behavioral, and
economic sciences perspectives on robust and reliable sci-
ence. Technical Report, National Science Foundation, 2015.

27. Ananiadou S, McNaught J, Text mining for biology and biomedi-
cine. Boston, MA: Artech House, 2006.

1410 | Kilicoglu

Deleted Text: ,
Deleted Text: ,
Deleted Text: :
Deleted Text: ,
Deleted Text: :
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
http://www.icmje.org/icmje-recommendations.pdf
http://dx.doi.org/10.6084/m9.figshare.1362572


28. Cohen KB, Demner-Fushman D, Biomedical Natural Language
Processing. Amsterdam: John Benjamins, 2014.

29. Gonzalez G, Tahsin T, Goodale BC, et al. Recent advances
and emerging applications in text and data mining for bio-
medical discovery. Brief Bioinform 2016;17(1):33–42.

30. Clark T, Ciccarese P, Goble C. Micropublications: a semantic
model for claims, evidence, arguments and annotations in
biomedical communications. J Biomed Semant 2014;5(1):28.

31. Lund H, Brunnhuber K, Juhl C, et al. Towards evidence based
research. BMJ 2016;355:i5440.

32. Robinson K, Goodman S. A systematic examination of the
citation of prior research in reports of randomized, con-
trolled trials. Ann Intern Med 2011;154(1):50–5.
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