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ABSTRACT: The controlled immobilization of biomolecules
onto surfaces is relevant in biosensing and cell biological research.
Spatial control is achieved by surface-tethering molecules in
micro- or nanoscale patterns. Yet, there is an increasing demand
for temporal control over how long biomolecular cargo stays
immobilized until released into the medium. Here, we present a
DNA hybridization-based approach to reversibly anchor bio-
molecular cargo onto micropatterned surfaces. Cargo is linked to
a DNA oligonucleotide that hybridizes to a sequence-comple-
mentary, surface-tethered strand. The cargo is released from the
substrate by the addition of an oligonucleotide that disrupts the
duplex interaction via toehold-mediated strand displacement. The unbound tether strand can be reloaded. The generic strategy
is implemented with small-molecule or protein cargo, varying DNA sequences, and multiple surface patterning routes. The
approach may be used as a tool in biological research to switch membrane proteins from a locally fixed to a free state, or in
biosensing to shed biomolecular receptors to regenerate the sensor surface.

■ INTRODUCTION

Anchoring bioactive molecules onto surface micro- or
nanopatterns is important in sensing as well as for biophysical
and cell biological research.1−13 Spatially immobilized
bioactive small-molecules or proteins can miniaturize biosens-
ing or biophysical assays, such as to increase in microarray
format the throughput of investigation, and minimize sample
consumption. In biology, microclusters of biomolecular
receptors can mimic cell−cell contact by binding cognate
cellular membrane proteins and thereby probe how the
proteins’ distribution in cells and function is influenced by
their defined localization.1,2

Reversible anchoring of biomolecules onto surfaces is of
increasing interest. In cell biological research, controllable
release of receptors can switch membrane proteins from a fixed
to an unbound state and thereby elucidate cell adhesion,14 cell
migration,15 signaling,16−18 protein−protein interactions,19 or
lateral diffusion of membrane proteins.1,20 Outside cell biology,
the controllable shedding of protein-coated surfaces may be
used to regenerate biomaterial activity.
Generating arrays for controllable release can utilize classical

patterning routes in which biochemically adhesive surface-
patches are top-down fabricated and then linked to
biomolecular cargo.21−24 However, controllable release re-
quires cleavable linkers that respond to an external trigger by
severing the bond between cargo and surface. Specialized
photolytic linkers have been developed.25 Yet, avoiding intense

light can be beneficial in cell biology to minimize cytotoxicity.
Of similar advantage would be a chemically simple route with
readily available components.
Here we use deoxyribose nucleic acid (DNA) association

and dissociation as a means to spatiotemporally control the
reversible attachment of biomolecules onto surfaces. DNA-
directed immobilization of molecular cargo was pioneered by
the Niemeyer group26 and further developed for use in
biosensing and biomedical diagnostics, and for fundamental
studies in biology and medicine.27−29 Our approach for
controlled immobilization and release relies on competitive
hybridization/dehybridization30 as shown in Figure 1A.
Anchor strand A-DNA (Figure 1A, black) is bound to the
substrate surface.
Cargo strand C-DNA (Figure 1A, red) hybridizes to A-DNA

thereby forming a short duplex with a single-stranded overhang
(Figure 1A, capturing). The terminus of C-DNA carries
molecular cargo (Figure 1, yellow circle) which is tethered via
the duplex to the anchoring site. However, the cargo can be
released from the surface by the addition of release strand R-
DNA (blue)(Figure 1A). R-DNA is complementary to the
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entire length of C-DNA, thereby leading via toehold-mediated
strand displacement30−32 to a long nontethered duplex (Figure
1A, release). The liberated anchor strand can be reloaded with
C-DNA (Figure 1A, rebinding). The approach is related to the
previous use of strand displacement for release of DNA-bound
cargo from DNA-assembled supramolecular protein conju-
gates33 and the release of DNA-bound cells from solid
substrates by means of restriction endonucleases.34

We implement our approach of triggered release of
molecular cargo with a micropatterned substrate, relevant for
many applications including cell biology. Our approach is
demonstrated with patterns produced by photolithography and
by microcontact printing. Photolithography has the advantage
of being automatable, whereas microcontact printing is cheaper
and more flexible in its applications.35 We expect that the
combination of DNA-mediated controllable immobilization on
micropatterns will enable new research in cell biology such as
on the formation of the immunological synapse.36

■ RESULTS AND DISCUSSION
Generation of Micropatterned Surfaces. The substrate

surfaces for our DNA-based release strategy featured a
homogeneous poly(ethylene glycol) (PEG) film grafted to a
glass slide (Figure 1B). The dense layer of end-tethered PEG
chains fulfilled two functions. It avoided the nonspecific
adhesion of DNA and protein. In addition, part of the layer’s
polymer chains carried the biotin tag to form a grid-like
micropattern. The biotin bioaffinity pattern served to bind
streptavidin (Figure 1B) and thereby anchor biomolecular
cargo onto the surface.
The biochemically patterned substrate surfaces were

generated using a method shown in Figure S1 by (i) grafting
PEG diamine (MW 600 D) onto epoxy-functionalized glass
surfaces. The quality of the PEG layer was confirmed with
atomic force microscopy (Figure S2). (ii) The free amine end
of the PEG chains was then modified with biotin using
activated ester chemistry. The pattern of biotinylated vs
nonbiotinylated areas was attained by photolithography.
Therefore, the biotin−PEG film was (iii) embedded within a
layer of positive photoresist. The resist was (iv) illuminated
with UV light and a grid-mask featuring round holes of 3 μm

diameter separated by a distance of 3 μm. (v) Illuminated
photoresist was removed using photolithographic developer
solvent, followed by plasma-etching to oxidatively breakdown
the now no-longer photoresist-embedded biotin-PEG within
the round features. Incubation with others organic solvents
stripped off the nonilluminated photoresist to yield a grid-
patterned biotin-PEG surface. The generation of micropatterns
of round holes within the biotin-PEG layer was demonstrated
by AFM analysis (Figure S2). (vi) Exposed glass surface within
the round holes was backfilled by grafting with nonbiotinylated
methoxy-PEG-silane thereby yielding the micropattern featur-
ing the round features of nonbiotinylated PEG surrounded by
biotin-PEG (Figure 1B).
The functionality of the biotin-micropatterned PEG surface

was demonstrated by adding fluorophore-labeled streptavidin
protein. It was expected that the protein would bind via
specific biomolecular recognition to the biotin-grid pattern but
not to the protein-repelling PEG discs without biotin. Indeed,
fluorescence microscopy visualized the expected grid-like
pattern of bound Cy5-tagged streptavidin (Figure S3). The
contrast between biotin and nonbiotin, as judged by the
fluorescence signals, was 0.98 ± 0.02. The contrast was
calculated by using the formula: contrast = (Fmax − Fmin)/(Fmax
− BG) whereby Fmax and Fmin are fluorescence counts in the
bright, Cy5-streptavidin-coated biotin-PEG areas and in the
dim, nonbiotin-PEG areas of the pattern, respectively. BG
refers to background which is the glass surface that had not
been exposed to Cy5-streptavidin.

Reversible Anchoring of Small-Molecule Cargo. After
validating the functionality of the biotin-patterns, we applied
them for our reversible anchoring approach. Therefore, the
biotin-patterns were decorated with A-DNA. This was
achieved by first coating onto the biotin pattern unlabeled
streptavidin (Figure 1B) and then binding biotinylated A-DNA
(Figure 1A, capturing). The molecular interaction of biotin
and streptavidin is known to be of high affinity and very
reproducible. The successful decoration of the grid patterns
with A-DNA was demonstrated by hybridizing fluorophore
Cy3-labeled capture oligonucleotide C-DNA. The latter
oligonucleotide comprises the full complementary sequence
of A-DNA but carries a single-stranded 5′ extension.
Fluorescence microscopic analysis (Figure 2A) shows that
hybridization via a short duplex was successful leading to a
clear fluorescence grid-like pattern of C-DNA signal that
extends over hundreds of micrometers. The contrast between
bound and nonbound areas was 0.52 ± 0.04.
We next probed whether targeted release of cargo C-DNA

can be achieved with competitive hybridization/dehybridiza-
tion upon addition of R-DNA (Figure 1A, release). In model
experiments, DNA release was first demonstrated in solution
using read-out with agarose gel electrophoresis, rather than on
the glass surface (Figure S4). Releasing cargo-carrying C-DNA
by R-DNA was also successful on the surface as shown in
fluorescence microscopic analysis (Figure 2B). The low
fluorescence levels and the virtual absence of the grid pattern
indicate the almost complete removal of C-DNA, as compared
to the pattern before the addition of R-DNA. Quantitative
analysis of the fluorescence signal determined a 300-fold drop
of DNA coverage (Figure S5). This suggests that R-DNA
displaced anchoring A-DNA in the short DNA duplex thereby
forming a new long DNA duplex between R-DNA and C-DNA
(Figure 1A, release). Successful release and concomitant
liberation of anchor strand into a single-stranded form was

Figure 1. (A) Schematic overview of DNA-mediated binding, release,
and rebinding of molecular cargo to a surface. Steps: capturing of
biotin-tagged anchor strand A-DNA to surface-bound streptavidin
(gray) followed by hybridization of cargo-strand C-DNA, release of
cargo (yellow circle) by toehold-mediated strand displacement with
release strand R-DNA, rebinding of C-DNA to A-DNA. (B)
Schematic overview of the microstructured surface featuring a dense
poly(ethylene glycol) (PEG) film on a glass slide. The PEG film is
microstructured and features biotin−PEG patches that bind
streptavidin protein.

Langmuir Article

DOI: 10.1021/acs.langmuir.8b01942
Langmuir 2018, 34, 15021−15027

15022

http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b01942/suppl_file/la8b01942_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b01942/suppl_file/la8b01942_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b01942/suppl_file/la8b01942_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b01942/suppl_file/la8b01942_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b01942/suppl_file/la8b01942_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.langmuir.8b01942/suppl_file/la8b01942_si_001.pdf
http://dx.doi.org/10.1021/acs.langmuir.8b01942


also demonstrated by reloading the freed anchor A-DNA with
another charge of fluorophore-labeled C-DNA (Figure 1A,
rebinding). The microscopic image showed again the grid-
pattern (Figure 2C). However, the total amount of
fluorescence was about 30% lower than in the first round of
binding (Figure S5). Several controls confirmed the specificity
of the triggered release (Figure S6). Release conditions such as
incubation time with R-DNA were also optimized to achieve
complete release (Figure S6).
Reversible Anchoring of Protein Cargo. The DNA-

mediated release principle was next implemented for protein-
based molecular cargo (Figure 3). As a model protein,
streptavidin was used. The protein was bound via biotinylated
cargo-DNA to the surface (Figure 3). We used streptavidin as
cargo as well as for obtaining the A-DNA micropatterns given

the high affinity and highly reproducible nature of the biotin−
streptavidin interaction. Possible consequences of the double
use of streptavidin, such as nonspecific binding of cargo
streptavidin to any residual biotin-PEG was avoided by the
high-quality of the streptavidin micropatterns37(Figures S6 and
S9).
The protein−DNA conjugate was obtained by mixing

Atto550-labeled streptavidin to the biotinylated cargo-DNA
at a molar ratio of 1:4. Ratios ranging from 2:1 to 1:20 were
also prepared and analyzed via gel electrophoresis (Figure S7).
The protein−DNA conjugate was successfully hybridized onto
the anchor-DNA modified surface (Figure 3, capturing), as
shown by fluorescence microscopy analysis (Figure 4A for a
streptavidin: DNA ratio of 1:4; Figure S8 for a ratio of 1:10).

Microscopic analysis (Figure 4B, Figure S8) also confirmed
that the surface-tethered protein cargo could be released from
the surface by adding R-DNA (Figure 3, release). As implied
by the experimental results, release DNA led to the
competitive dehybridization of C-DNA from A-DNA, and
concomitant hybridization of cargo to release strand to form
the long duplex (Figure 3, release).
Single-stranded A-DNA could be reloaded with cargo by

adding fresh Atto550-streptavidin-tagged C-DNA (Figure 3,
rebinding), as indicated by the grid-like fluorescence pattern
(Figure 4C, Figure S8). The extent of loading was, however,
lower than for the first capturing (Figure S9). Quantitative
analysis of fluorescence brightness yielded 1450 ± 150 counts
compared to 1800 ± 170 counts for the first hybridization (for
a streptavidin/DNA ratio of 1:4). For a streptavidin/DNA

Figure 2. Fluorescence microscopy confirms the DNA-mediated
binding and release of small-molecule cargo anchored onto micro-
structured DNA-A surfaces. Schematic overview and fluorescence
microscopic images of microstructured surfaces (A) after incubation
with C-DNA labeled with small-molecule Cy3 fluorophore, (B) after
toehold-mediated strand displacement with release R-DNA, and (C)
after rehybridization of fluorescent labeled C-DNA. The line profiles
of fluorescent microscopic images along the white lines of the
microscopic images are shown to the right. Image size: 96 μm × 96
μm.

Figure 3. Schematic overview of DNA strand-mediated binding,
release, and rebinding of protein-based molecular cargo. Steps:
capturing of biotin-tagged anchor strand A-DNA to surface-bound
streptavidin (gray) followed by hybridization of conjugate C-DNA
and streptavidin; release of protein cargo by toehold-mediated strand
displacement with release strand R-DNA; rebinding of C-DNA onto
A-DNA.

Figure 4. Fluorescence microscopic analysis of DNA-mediated
binding, release, and rebinding of streptavidin−DNA conjugates at
microstructured A-DNA surfaces. Schematic overview and fluores-
cence microscopic images of microstructured surfaces (A) after
incubation with C-DNA-streptavidin conjugates labeled with Cy3,
(B) after toehold-mediated strand displacement with release R-DNA,
and (C) after rehybridization of C-DNA-streptavidin conjugates. The
molar ratio for C-DNA and streptavidin was 4:1. The line profiles of
fluorescent microscopic images along the white lines of the
microscopic images are shown to the right. Image size: 96 μm × 96
μm.
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ratio of 1:10, the corresponding counts were 903 ± 126 and
1080 ± 110, respectively.
Universality of the Anchoring Principle. To demon-

strate its universality, the principle of DNA-mediated
anchoring of molecular cargo was extended to a non-PEG
micropatterned surface. An additional aim was to probe
whether the orientation and sequence design of DNA strands
can be altered without affecting the release efficiency. The
redesigned DNA duplexes and DNA strands are schematically
shown in Figure 5. As a first difference, A′-DNA is longer than

C′-DNA; the opposite was the case in the previous design.
Furthermore, R′-DNA binds to the free distal 3′ terminus of
the A′-DNA. In the previous design, R-DNA binds to the 5′
which is close to streptavidin. Finally, R′-DNA hybridizes to
the A′-DNA to form the long duplex, thereby displacing C′-
DNA. A consequence of duplex formation between anchor and
release strand is that A′-DNA cannot be reloaded with C′-
DNA. We tested the new DNA release design with the
fluorophore-labeled cargo strand.
The micropatterned non-PEG substrate surface is shown in

Figure S10. It features streptavidin-coated patches that are
surrounded by a nonadsorptive layer of BSA protein. Both
proteins are directly linked to the epoxy-coated glass surface.
To micropattern the surface with streptavidin and BSA,
microcontact printing was used (Figure S10). A micro-
structured stamp composed of polydimethylsiloxane (PDMS)
was first “inked” with a solution of streptavidin. After removing
streptavidin that did not adhere to the PDMS surface, the
stamp was inverted and placed onto the glass slide.
Consequently, protein adherent to the elevations of the
stamp were transferred onto the glass surface. Residual areas
of the slide not coated with streptavidin were covered with
BSA by adsorption from solution.
The functionality of the micropatterned surfaces with the

new DNA duplex design was tested using fluorescence
microscopy read-out (Figure 6). The streptavidin surfaces
specifically bound biotinylated A′-DNA (Figure 5, capturing)
because subsequent hybridization of fluorophore-labeled C′-
DNA yielded micropatterns with the expected shape and
dimensions (Figure 6A). The contrast between bound and
nonbound areas was 0.94 ± 0.08.
Releasing cargo-carrying C′-DNA by R′-DNA was also

successful on the surface as shown in fluorescence microscopic
analysis (Figure 6B). After incubation with release-DNA the

contrast between bound and nonbound areas reduced to 0.23
± 0.03.

■ CONCLUSIONS
In this report, we have described a generic route to temporarily
immobilize small-molecule and protein cargo via DNA
hybridization onto micropatterned surfaces. Releasing cargo
can be tuned via the well-understood toehold-mediated strand
displacement to control the extent of release. Furthermore,
only readily available components such as DNA oligonucleo-
tides are used. The approach can therefore be easily adopted
by other researchers. In future experiments, the predictability
of DNA hybridization could help tune the duration of the
release step such as by shortening the DNA duplex. As a
further advantage, the sequence-specificity of DNA interaction
could be exploited to anchor different cargo to different surface
areas. Examples include antibodies or natural ligands directly
conjugated to the C-DNA but also DNA aptamers.
Furthermore, cargo-freed surfaces can be reloaded with
biomolecular cargo. The rebinding efficiency is, however,
lower and probably allows for the loading of cargo for no more
than 2−3 times even though the contrast in the micropatterns
is not impaired by the reloading. When applied to biological
experiments, DNA’s negatively charged nature may bias the
interaction with cells, but the effect could be minimized by
altering the salt concentration of the buffer. Similarly, adhesion
of cells to the patterns can be enhanced by supplementing
surface-passivating BSA with fibronectin.38 In conclusion, we
expect that DNA-mediated release of protein cargo will enable
exciting research in cell biology.

■ MATERIALS AND METHODS
All chemicals were obtained from Sigma-Aldrich Handels GmbH
(Vienna, Austria) unless noted otherwise. Epoxy-functionalized
NEXTERION glass coverslips (24 mm × 50 mm, 175 ± 20 μm
thickness) were from Schott, Technical Glass Solution GmbH (Jena,
Germany). Positive photoresist G2 S1818 and developer ma-D 331S
were from microresist technology GmbH (Berlin, Germany). MeO-
PEG-(CH2)3-Si(OMe)3 with a MW of 460−590 D was bought from
ABCR (No. SIM6492.7, Karlsruhe, Germany). Bovine serum albumin
(BSA) was obtained from SERVA Electrophoresis GmbH (Heidel-
berg, Germany). Streptavidin-Cy5 (434316) was purchased from Life
Technologies (Vienna, Austria), and Atto550-strepavidin (96404)
was obtained from Sigma-Aldrich. DNA oligonucleotides were

Figure 5. Schematic overview of DNA strand-mediated binding and
release of small-molecule cargo from microstructured A′-DNA
surfaces. Steps: Biotinylated A′-DNA is bound to surface-bound
streptavidin (gray) and hybridizes C′-DNA carrying small-mole-
cule cargo (yellow circle, fluorophore); release of cargo by toehold-
mediated strand displacement with release strand R′-DNA. The biotin
and the fluorophore tags are attached to the 5′ termini of the DNA
strands.

Figure 6. Fluorescence microscopy images of streptavidin micro-
patterned surfaces after incubation with (A) A′-DNA and Atto488-
labeled C′-DNA, and (B) after toehold-mediated strand displacement
with R′-DNA. Corresponding line profiles of fluorescence microscopy
images are shown on the right. Image size: 96 μm × 96 μm.
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manufactured by Integrated DNA Technologies (Leuven, Belgium).
GelRed Nucleic Acid Gel Stain (41003) was supplied by VWR
International and Agarose NEEO ultraquality (2267.2) was purchased
by Carl Roth GmbH (Karlsruhe, Germany).
Preparation of Micropatterned Surfaces Using Photo-

lithography. To prepare micropatterned streptavidin surfaces, a
previously published protocol was used.37 Briefly, PEG was grafted
onto epoxy-functionalized glass coverslips by incubation of Jeffamine
ED 600. Subsequently the residual epoxy groups were blocked with
ethanolamine followed by biotinylation of terminal amine groups on
the tethered PEG chains with biotin NHS-ester. Free amine and
hydroxyl groups were blocked by acetylation using acetic anhydride
and 4-(dimethylamino)pyridine dissolved in acetonitrile. Biotin-PEG
micropatterns were generated via photolithography using positive
photoresist G2 S1818 and an EVG 620 mask alignment system (EV
group, Austria). After plasma etching of the microstructured slides,
PEG (2-[methoxy(polyethyleneoxy)propyl] trimethoxysilane) was
regrafted in the developed areas where biotin-PEG had been removed.
Biotin-PEG micropatterns were incubated with streptavidin (100 μg/
mL in PBS buffer containing 0.05% Tween) for 1 h at room
temperature (rt), followed by washing in PBST and ddH2O, and
drying in an argon stream followed by storage at 4 °C until use.
Analysis of Micropatterned Surfaces Using Atomic Force

Microscopy. AFM measurements of micropatterned PEG substrates
were conducted with a commercial atomic force microscope (Agilent
Picoplus 5500, Agilent Technologies, Santa Clara, CA) equipped with
a 90 μm closed loop scanner. AFM topographical images of substrates
with the micropatterned biotin-PEG/PEG surface (not loaded with
streptavidin) were acquired in PBS buffer at rt using MSNL-10
cantilever in contact mode. The nominal spring constant of the
cantilever was 0.07 N/m. Images were analyzed using Gwyddion 2.45
(Czech Metrology Institute, Czech Republic).
Probing DNA-Mediated Cargo Release in Solution with

Streptavidin−DNA Conjugates. To probe DNA-mediated release
of cargo in solution, conjugates of oligonucleotides and streptavidin
were prepared. Cy5-labeled streptavidin (16 μM in TE buffer: 40 mM
Tris, 1 mM EDTA, pH 8) was incubated with biotinylated anchor
oligonucleotide A-DNA (1 μM, 10 μL, in TE buffer supplemented
with 30 mM NaCl). The sequence of A-DNA is 5′-ACA CGC ATA
CAC CCA T-TEG-biotin-3′ for which TEG is a tetra(ethylene glycol)
linker. To achieve hybridization, A-DNA-streptavidin conjugate (1
μM, 20 μL) was incubated with Cy3-labeled capture oligonucleotide
C-DNA (1 μM, 10 μL) with the sequence 5′-ATG GGT GTA TGC
GTG TTT AAA GAC CCT AAG CT-Cy3−3′ for 45 min at rt in the
dark to avoid bleaching of the fluorophore. The hybridization was
carried out in TE buffer supplemented with 30 mM NaCl. For DNA-
mediated release, the hybridized DNA−streptavidin conjugate was
incubated with release oligonucleotide R-DNA (10 μM, TE buffer; 5′-
AGC TTA GGG TCT TTA AAC ACG CAT ACA CCC AT-3′) for
90 min at rt. The sequences of the three oligonucleotides were from
ref 30. The results of the hybridization and dehybridization were
analyzed by electrophoresis using 1.5% agarose gels and fluorescence
scanning.
Release Experiments on Micropatterns Generated Using

Photolithography. For release experiments, substrates were covered
with round incubation chambers with a volume of 20 μL and covered
by on the top side with a transparent lid featuring two holes for
pipetting. The streptavidin micropatterned surfaces were incubated
for 30 min at rt with biotinylated anchor strand A-DNA (1 μM, in TE
buffer supplemented with 30 mM NaCl). The surfaces were then
washed with TE buffer (500 μL), and incubated with Cy3-tagged C-
DNA (1 μM) for 30 min at rt in the dark. After drying with air stream,
the surfaces were analyzed with fluorescence microscopy (Figure 2).
Furthermore, A-DNA coated micropatterns were incubated with a
conjugate of Atto550-labeled streptavidin and biotinylated C-DNA at
a molar ratio of 1:4 or 1:10 for streptavidin to DNA subjected to
agarose gel electrophoresis (Figure S6). The incubation duration was
30 min at rt. After washing and drying, C-DNA-streptavidin coated
surfaces were analyzed with fluorescence microscopy (Figure 4 and
Figure S7). For toehold-mediated DNA strand displacement, R-DNA

(10 μM) was added to Cy3-tagged C-DNA or C-DNA-streptavidin-
conjugates hybridized to tethered A-DNA about 2 h after binding
them onto the surface. The incubation was performed for 2 h at rt.
Subsequent DNA strands were rehybridized onto the same micro-
patterned surface.

Preparation of Micropatterned DNA Surfaces Using Micro-
contact Printing. Microstructured surfaces were made following an
adapted protocol.1 Briefly, polymer stamps with a total surface area of
0.25 cm2 bearing circular features with a diameter of 1 μm and a
spacing of 3 μm were incubated with 50 μg/mL streptavidin in PBS
for 15 min, rinsed with PBS and ddH2O, and dried with N2.
Immediately after drying, the stamp was placed onto an epoxy-coated
coverslip (Schott) and incubated for 30 min at rt. After removal of the
stamp, a 50 μL Secure-Seal hybridization chamber (Grace Biolabs,
Bend, OR) was placed onto the coverslip, and a 1% BSA solution was
added and incubated for 30 min to passivate those surface areas not
printed with streptavidin.

Release Experiments on DNA Patterns Generated with
Microcontact Printing. For toehold-mediated DNA strand displace-
ment, biotinylated anchor oligonucleotide A′-DNA (5′-biotin-TEG-
AGC TTA GGG TCT TTA AGT GGA CTA GCC TAA TG-3′),
fluorescently labeled cargo oligonucleotide C′-DNA (5′-atto488-TTT
TAC ATT AGG CTA GTC CAC-3′), and release strand R′-DNA
(5′-CAT TAG GCT AGT CCA CTT AAA GAC CCT AAG CT-3′)
were dissolved in TE buffer containing 30 mM NaCl. Streptavidin
patterns were incubated with biotinylated A′-DNA (1 μM) for 30 min
at rt. After washing with TE buffer (1 mL), the functionalized surfaces
were incubated with 1 mM fluorescently labeled oligonucleotide C′-
DNA for 30 min at rt followed by another washing step with TE
buffer (1 mL), and drying with air stream. After fluorescence
microscopic imaging, the surfaces were incubated for 75 min with
release strand R′-DNA (10 mM) to release fluorescently labeled
oligonucleotide C′-DNA. Patterns were washed again with TE buffer
(1 mL) before imaging. The release step was performed 2 h after
binding C′-DNA to the surface.

Fluorescence Microscopy. Fluorescence imaging was performed
using an Axiovert 200 microscope equipped with a mercury lamp 80
HBO100 (both Zeiss, Jena, Germany) and appropriate filter sets
(AHF Analysentechnik, Tübingen, Germany). Fluorescence emission
was collected via a 40× Neofluar objective (Zeiss) and detected using
a CCD camera (Photometrics, Tucson, USA). Image processing and
analysis were performed using ImageJ (NIH, Bethesda, USA).
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