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Abstract

Differential item functioning (DIF) makes test scores incomparable and substantially threatens
test validity. Although conventional approaches, such as the logistic regression (LR) and the
Mantel–Haenszel (MH) methods, have worked well, they are vulnerable to high percentages of
DIF items in a test and missing data. This study developed a simple but effective method to
detect DIF using the odds ratio (OR) of two groups’ responses to a studied item. The OR
method uses all available information from examinees’ responses, and it can eliminate the poten-
tial influence of bias in the total scores. Through a series of simulation studies in which the DIF
pattern, impact, sample size (equal/unequal), purification procedure (with/without), percentages
of DIF items, and proportions of missing data were manipulated, the performance of the OR
method was evaluated and compared with the LR and MH methods. The results showed that
the OR method without a purification procedure outperformed the LR and MH methods in
controlling false positive rates and yielding high true positive rates when tests had a high per-
centage of DIF items favoring the same group. In addition, only the OR method was feasible
when tests adopted the item matrix sampling design. The effectiveness of the OR method with
an empirical example was illustrated.
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The presence of differential item functioning (DIF) violates the assumption of measurement

invariance and makes test scores incomparable across different groups of participants. In DIF

assessments, participants from different groups (e.g., gender or ethnicity groups) are placed on

the same metric via a matching variable, and the performances of a focal group (e.g., minority)

and a reference group (e.g., majority) on the studied item are compared. The performance on

the studied item is conditional on participants’ ability levels, which serves as a foundation to

distinguish differences in the item functioning and ability level. When matched participants

1The University of Hong Kong, Pokfulam, Hong Kong
2City University of Hong Kong, Kowloon, Hong Kong
3The Education University of Hong Kong, New Territories, Hong Kong

Corresponding Author:

Hui-Fang Chen, Department of Applied Social Sciences, City University of Hong Kong, Tat Chee Ave., Kowloon, Hong

Kong.

Email: hfchen@cityu.edu.hk



from different groups demonstrate disparate probabilities of endorsing or accurately answering

the studied item, the studied item is deemed as having DIF. The present study addresses the

drawbacks of two standard methods that rely on a matching variable and proposes a new, robust

method to detect DIF items for practical use.

Several approaches have been developed to detect DIF items, and these methods can be clas-

sified as item response theory (IRT)–based and non-IRT-based approaches (Magis, Béland,

Tuerlinckx, & De Boeck, 2010). Approaches based on IRT, such as the likelihood ratio test

(Cohen, Kim, & Wollack, 1996), Lord’s chi-square test (Lord, 1980), and Raju’s (1988) signed

area method, are implemented to compare item parameters (or derived item characteristic

curves) among different groups. Once the parameter estimates of an item are significantly dif-

ferent between groups, this item is flagged as a DIF item. Although IRT-based approaches

function well in DIF detection, their applications are somewhat challenging for practitioners

who are not familiar with IRT models.

Non-IRT-based approaches to DIF assessment include the Mantel–Haenszel (MH; Holland

& Thayer, 1988), logistic regression (LR; Rogers & Swaminathan, 1993), delta (Angoff &

Ford, 1973), standardization (Dorans & Kulick, 1986), and Simultaneous Item Bias Test

(SIBTEST) methods (Shealy & Stout, 1993). These procedures require neither specific forms

of item response functions nor large sample sizes (Narayanon & Swaminathan, 1996) and

demonstrate computational simplicity. Among these approaches, the MH and LR methods func-

tion well when the percentage of DIF items in a test is not high and there is no impact (no mean

ability difference) between groups (French & Maller, 2007; Narayanon & Swaminathan, 1996).

Moreover, these two methods are readily available in most commercial (e.g., SPSS, STATA,

and SAS) or free statistical software (e.g., R).

In the MH method, examinees or participants are stratified by test scores, and item perfor-

mance is compared for two groups across all strata. Suppose there are two groups of participants

(e.g., boys and girls) and items are scored dichotomously (i.e., 0 and 1). A 2 3 2 contingency

table can be created for each test score stratum on the studied item i. In stratum k (k = 1, . . . , K),

Tik denotes the total number of examinees who answered item i. The number of examinees in

the reference group who answered item i correctly and incorrectly are denoted as tR1ik and tR0ik,

respectively, and tF1ik and nF0ik denote the numbers of examinees in the focal group who

answered item i correctly and incorrectly, respectively. Accordingly, the null hypothesis that

item i does not have DIF is tested by computing the following odds ratio (OR) across the strata

for item i:

ai =

P
k

tR1ik tF0ik=Tikð Þ
P

k

tF1ik tR0ik=Tikð Þ , ð1Þ

which indicates the general association between the grouping variable and the item response in

a series of contingency tables. To test the null hypothesis (e.g., ai = 1), the MH chi-square sta-

tistic is computed as follows:

x2
1 =

P
k

tR1ik � E tR1ikð Þ½ � � 0:5

� �2

P
k

Var tR1ikð Þ , ð2Þ

where
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E tR1ikð Þ= tR1ik + tR0ikð Þ3 tR1ik + tF1ikð Þ
Tik

, ð3Þ

Var tR1ikð Þ= tR1ik + tR0ikð Þ3 tR1ik + tF1ikð Þ3 tF1ik + tF0ikð Þ3 tR0ik + tF0ikð Þ
T 2

ik T2
ik � 1

� � : ð4Þ

When the null hypothesis of no DIF on the studied item holds, the MH chi-square statistic will

follow the chi-square distribution with one degree of freedom asymptotically. Consequently,

item i is flagged as having DIF if the chi-square statistic is statistically significant.

In practice, all items in a studied test should be assessed for DIF, as we do not know which

one is DIF-free. Holland and Thayer (1988) observed a special relationship between the MH

method and the Rasch model–based DIF detection method (Rasch, 1960), in that the hypothesis

of the MH method is equivalent to that of the Rasch model–based method when (a) the match-

ing score includes the studied item, (b) all items but the studied item are DIF-free, and (c) both

the reference and focal groups are random samples. In other words, when the Rasch model fits

the data and the three conditions are met, the MH method will be the best way to detect DIF

compared with other non-IRT-based approaches.

In the LR method, the test score X and the binary grouping variable G (e.g., G = 0 for the ref-

erence group and G = 1 for the focal group) are used to predict the log-odds of success over fail-

ure on the studied item i as follows:

log
Pi1

Pi0

� �
= b0 + b1X + b2G + b3XG, ð5Þ

where Pi1 and Pi0 are the probabilities of success and failure on item i, respectively; b1 corre-

sponds to the influence of observed test scores on the studied item; and b2 and b3 refer to the

group difference and the interaction between the observed test score and group membership,

respectively. The studied item is deemed as having uniform DIF if b26¼ 0 and b3 = 0, while it

has nonuniform DIF if b36¼ 0 (regardless of whether b2 = 0).

Both the MH and the LR methods are promising in detecting uniform DIF in dichotomous

items when tests do not contain too many DIF items (e.g., less than 15%) and DIF magni-

tudes are large (Narayanon & Swaminathan, 1996; Rogers & Swaminathan, 1993). The LR

method outperforms the MH method in detecting nonuniform DIF (Hidalgo & López-Pina,

2004) and/or small magnitude of DIF (Hidalgo & López-Pina, 2004). The power of the MH

and LR methods increases as the sample size or DIF magnitude increases (Narayanon &

Swaminathan, 1996).

A common feature of the MH and the LR methods is that different groups of examinees are

placed on the same metric based on the test score. Ideally, a matching variable should consist

of exclusively DIF-free items so that the matching is correct. Prior studies have shown that a

test score can serve as a matching variable to yield satisfactory DIF detection only if the test

score is a sufficient statistic for latent ability or is highly related to latent ability and the group

ability distribution across groups are identical or extremely similar (Magis & De Boeck, 2014).

In other words, the use of a matching variable is critical for DIF detection (Kopf, Zeileis, &

Strobl, 2015). If a contaminated matching variable (i.e., consisting of DIF items) is used, exam-

inees with the same ability levels will not be matched, and the subsequent DIF detection will

be biased (Clauser, Mazor, & Hambleton, 1993). It has been found that the MH or LR method

loses control of false positive rates (FPRs) in DIF detection when the matching variable (i.e.,

test score) consists of many DIF items (French & Maller, 2007).
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It is challenging to identify a set of DIF-free items to serve as a clean matching variable.

Various scale purification procedures have been proposed (Holland & Thayer, 1988; Kopf et

al., 2015; Wang & Su, 2004); however, if the percentage of DIF items in a test is not low (e.g.,

more than 20%) and the DIF magnitude is large, scale purification procedures often fail, and

the resulting FPRs are severely inflated (French & Maller, 2007). Even if the percentage is low,

conducting scale purification procedures makes DIF assessment tedious, especially for practi-

tioners (Magis & De Boeck, 2012, 2014). It is desirable to develop DIF detection methods that

do not require specification of DIF-free items to serve as a matching variable and that can yield

well-controlled FPRs and high true positive rates (TPRs), even when a test consists of a high

percentage of DIF items (e.g., 30% or higher), which is the major goal of this study.

Recent developments in the outlier approach appear promising for addressing some limita-

tions in non-IRT-based DIF detection. In the outlier approach, each item has its own value on a

DIF statistic, and those items with extreme values on this statistic (termed outliers) are deemed

to have DIF (Magis & De Boeck, 2012, 2014). Given the assumption that a well-constructed

test should have fewer DIF items than DIF-free items, it seems reasonable to declare the out-

liers with DIF. For instance, Magis and De Boeck (2012) transformed the MH statistics across

items into standardized z scores and classified items with extreme z scores as outliers with DIF.

Because real tests usually have multiple DIF items, the sample median will be a better indicator

for representing the central tendency than the sample mean, with which the outliers are identi-

fied; this method is called the robust MH method (Magis and De Boeck, 2012). It has been

found that the robust MH method outperforms the conventional MH method when tests consist

of DIF items.

The robust MH method is not widely used by many practitioners because it is relatively

new, and the concept and computation of the MH statistic are complex. To facilitate robust DIF

detection methods, a statistic that is much easier to understand and compute than the MH statis-

tic is needed. In this study, the ORs of the reference and focal groups were proposed. Because,

in practice, uniform DIF is more of concern than nonuniform DIF, and the MH method is more

appropriate in detecting uniform DIF than nonuniform DIF, the authors focus on uniform DIF

in this study. The study proceeds as follows: an introduction to the OR method is provided;

three simulation studies are described, which were conducted to evaluate the performance of

the OR method under various conditions; an empirical example is given to demonstrate the fea-

sibility and advantages of the robust method; and conclusions and suggestions for future study

are provided.

The OR Method

Conventionally, item difficulty (easiness) is defined as the passing rate for a group of examinees

on an item. Let nR1i and nR0i be the number of examinees in the reference group who answer

item i correctly and incorrectly, respectively, and nF1i and nF0i be the number of examinees in

the focal group who answer item i correctly and incorrectly, respectively. The passing rate of

item i is nR1i=(nR0i + nR1i) for the reference group and nF1i=(nF0i + nF1i) for the focal group. The

passing rate can be also represented as the odds of success, nR1i=nR0i and nF1i=nF0i, for the ref-

erence group and the focal group, respectively. Let l̂i denote the logarithm of the OR of success

over failure on item i for the reference group and the focal group:

l̂i = log
nR1i=nR0i

nF1i=nF0i

� �
, ð6Þ
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which follows a normal distribution asymptotically (Agresti, 2002), with a mean of l and stan-

dard deviation of

s l̂i

� �
= n�1

R1i + n�1
R0i + n�1

F1i + n�1
F0i

� �1=2
: ð7Þ

When data follow the Rasch model and there is no DIF in the test, l represents the mean ability

difference between the reference and focal groups (often referred to as impact). A positive l

indicates that the reference group has a higher mean than the focal group, and a negative l indi-

cates the reverse.

When tests are perfect (not containing any DIF item), every l̂i (i = 1, . . . , I) is an unbiased

estimator of l. The sample mean
�̂
l =

PI
i = 1 l̂i=I is more efficient than individual l̂i values in

estimating l because its sampling variance is smaller. When item i has DIF, the expected value

of l̂i will not be equal to l. In other words, if l̂i is far away from l, item i is deemed as having

DIF. Because l is unknown in reality, the sample mean
�̂
l was used instead. If l̂i6za=23s(l̂i)

does not contain
�̂
l, item i will be deemed as having DIF. If the studied item is the only item that

might have DIF, this approach will be appropriate; however, tests are not always perfect, and

they usually contain multiple DIF items, such that the sample mean
�̂
l is no longer an unbiased

estimator of l. The sample median
~̂
l was used then to replace the sample mean

�̂
l to estimate l,

which is more resistant to multiple DIF items. Specifically, if l̂i6za=23s(l̂i) does not include

~̂
l, item i will be deemed as having DIF.

As an example, a dataset was generated with 100 examinees in each of the reference and

focal group, and they answered 10 dichotomous items. Items 1 to 7 were generated as non-DIF

items, and Items 8, 9, and 10 were DIF items, which favors the reference group by 1 logit.

There was no impact (i.e., mean ability difference) between the two groups. For Item 1,

Examinees 21 and 28 in the reference and focal groups had a correct answer, respectively.

According to Equations 6 and 7, the authors found that

l̂1 = log
nR11=nR01

nF11=nF01

� �
= log

21=79

28=72

� �
= � 0:380,

s l̂1

� �
= n�1

R11 + n�1
R01 + n�1

F11 + n�1
F01

� �1=2
= 21�1 + 79�1 + 28�1 + 72�1
� �1=2

= 0:331:

l̂161:963s l̂1

� �
= � 1:029, 0:269:

l̂i, s(l̂i), and l̂i6za=23s(l̂i) were computed for the other items, and the sample median
~̂
l (the

mean of l̂2 and l̂7) was 0.022. When a = .05, if an item’s 95% confidence interval does not

cover 0.022, the corresponding item was deemed as having DIF. Finally, Items 8, 9, and 10 are

successfully flagged as DIF (favoring the reference group; see Table 1 for details).

If the DIF detection is based on the sample mean, the accurate classification rate was

reduced. In this case, the sample mean was 0.363. Items 1, 3, 4, 8, and 10 had a 95% confi-

dence interval not covering 0.363; thus, they were deemed as having DIF, and the other items

were deemed as non-DIF. Only six out of 10 items were correctly classified, and the correct

classification rate was 60%. It is noticeable that using the median over the mean is not salient

under the balanced DIF conditions, in which some DIF items favor the reference group and the

other items favor the focal group; thus, the DIF effects are canceled out between groups. No

matter how test developers try to balance the effects of potential DIF items, it is unlikely that

the DIF effects will be canceled out completely between groups.
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The OR method is easy to understand and implement; there is no need to identify DIF-free

items. The performance of the OR method especially depends on two conditions. First, a long

test is required to justify the OR method. The longer the test, the smaller the sampling variation

in
~̂
l, making the OR method more reliable. Second, as a basic concept of outliers, the number

of DIF items should not exceed the number of DIF-free items; otherwise, the classification of

outliers becomes tricky.

The OR method has two distinct features that differentiate it from the conventional MH and

robust MH methods. The first is with regard to stratification. The OR method does not require

stratification, and the log OR is directly computed for all items (see Equation 6). In contrast,

both the conventional and robust MH methods assign examinees to strata based on examinees’

test scores, calculate an OR in each stratum, and generate a composite OR across strata (see

Equation 1). The second feature is the principle of identifying DIF items. In the conventional

MH method, an item is flagged as having DIF if its OR significantly deviates from 1 (or equiva-

lently, the MH chi-square statistic is statistically significant). In the OR method, an item whose

log OR is an outlier is deemed as having DIF. Therefore, although both methods use ORs to

detect DIF, they differ in nature.

The OR method has several advantages. First, it is easy and simple for practitioners. The

computation task in the OR method is minimized, and it can easily be implemented with a por-

table calculator. What is more, interpreting its result is intuitive and does not require any

advanced statistical knowledge or techniques. Second, unlike conventional DIF assessment

approaches, the OR method does not require matching variables; thus, there is no need for the

identification of DIF-free items. The OR method uses the median of the log ORs of all items as

the reference point for DIF detection. In contrast, the MH and LR methods rely on test scores

to match examinees, which is biased when tests have multiple DIF items. Even if tests do not

contain any DIF items, test scores cannot match examinees well when the impact is large

(Narayanon & Swaminathan, 1996). Third, the OR method can accommodate missing data

much more easily than the conventional or robust MH method. When there are missing data,

the test score is usually no longer a valid matching variable, so the conventional or robust MH

method will be adversely affected (Robitzsch & Rupp, 2009). In contrast, the OR method does

not rely on test score and will be less affected by missingness. Fourth, scale purification proce-

dures can easily be incorporated into the OR method; all that is necessary is the precomputation

Table 1. An Example of the OR Method Where Items 8, 9, and 10 of the 10 Items Favor the Reference
Group.

Items

Reference group Focal group OR statistics

Success Fail Success Fail l̂i s(l̂i) l̂i6za=23s(l̂i)

1 21 79 28 72 20.380 0.331 21.029, 0.269
2 28 72 28 72 0.000 0.315 20.617, 0.617
3 74 26 80 20 20.340 0.338 21.002, 0.322
4 52 48 63 37 20.452 0.288 21.016, 0.112
5 18 82 13 87 0.385 0.395 20.389, 1.159
6 33 67 35 65 20.089 0.299 20.675, 0.497
7 35 65 34 66 0.044 0.298 20.540, 0.628
8 42 58 12 88 1.670 0.368 0.948, 2.392
9 71 29 52 48 0.851 0.298 0.232, 1.399
10 58 42 16 84 1.981 0.340 1.315, 2.647

Note. a = .05. OR = odds ratio.
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of the sample median based on presumably DIF-free items. Take a test with 20 items as an

example. Suppose Items 1 to 5 are classified as having DIF by the OR method; a new sample

median
~̂
l can be computed then based on Items 6 to 20. Again, for each item, the authors

checked whether l̂i6za=23s(l̂i) contains the new
~̂
l. If not, the corresponding item is deemed

as having DIF. Suppose that, this time, Items 1 to 4 are classified as having DIF; a new
~̂
l based

was computed on Items 5 to 20, and for each item the authors checked whether l̂i6za=23s(l̂i)

contains the new
~̂
l. Again, suppose that the same set of items (Items 1 to 4) is classified as hav-

ing DIF. In this case, the scale purification stops; otherwise, a new
~̂
l will be computed, and the

DIF detection continues until either the same set of items is classified as having DIF in two suc-

cessive iterations or the maximum number of iterations is reached. These arguments are veri-

fied by the simulations below.

Simulation Study 1

Design

Study 1 concerned the performance of the OR method for complete data. A total of 1,000 exam-

inees answered 20 dichotomous items. Five factors were manipulated as follows: (a) equal and

unequal sample sizes of the reference and focal groups: 500/500 and 800/200; (b) percentages

of DIF items: 0%, 10%, 20%, 30%, and 40%; (c) DIF patterns: balanced and unbalanced; (d)

impact: 0 and 1; and (e) purification procedure: with or without. Item responses were generated

from the Rasch model. Item difficulties were generated from a uniform distribution between

21.5 and 1.5. The abilities of the reference group were generated from N(0, 1). When impact =

0, the abilities of the focal group were also generated from N(0, 1); when impact = 1, they were

generated from N(21, 1). The differences in the item difficulty for DIF items were set at a con-

stant of 0.5 logits. Under the unbalanced DIF conditions, all DIF items were set to favor the ref-

erence group; under the balanced DIF conditions, half of the DIF items favored the reference

group and the other half favored the focal group. It has been shown that the MH and LR meth-

ods perform well under balanced DIF conditions because the DIF effects are canceled out

between groups, as if there are no DIF items in the test. In contrast, they perform poorly under

unbalanced DIF conditions because the test score is seriously contaminated (Wang & Su, 2004).

Because the OR method does not rely on test scores to match examinees, it was anticipated that

the OR method would not suffer much from unbalanced DIF patterns.

As in other DIF studies, the nominal level was set at .05. For completeness, scale purification

procedures were also implemented on the three methods. Unlike the scale purification proce-

dures for the MH and LR methods, which involve intensive computation and are often imple-

mented in specific computer programs, the scale purification procedure for the OR method

involves only recalculation of the sample median and can be easily implemented using portable

calculators.

A total of 100 replications were carried out under each condition. The performance of the

OR method was evaluated and compared with the performances of the MH and LR methods in

terms of the FPR, in which a DIF-free item was misclassified as having DIF, and the TPR, in

which a DIF item was correctly classified as having DIF. The MH and LR methods were imple-

mented via the difMH and difLogistic functions in the difR package (Magis et al., 2010), and

the OR method was implemented in R version 3.2.5 (R Core Team, 2016) and is available upon

request.
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Results

Due to space constraints, the FPR and TPR for individual items were not shown; rather, the

averaged FPR across DIF-free items and averaged the TPR across DIF items were computed.

Table 2 shows the averaged FPRs and TPRs under all conditions when impact = 0. As expected,

all methods yielded well-controlled FPRs under the no-DIF and balanced DIF conditions,

although the OR and MH methods were slightly conservative. Under the unbalanced DIF condi-

tions, the MH and LR methods yielded inflated FPRs when tests had 20% or more DIF items;

fortunately, the scale purification procedures could bring the inflation back to normal if the DIF

items represented no more than 30%. The scale purification did not work in the MH and the LR

approaches when a test included 40% or more DIF items. In contrast, the OR method yielded

slightly inflated FPRs only when tests had 40% or more DIF items, and the inflation was back

to normal when the scale purification procedure was incorporated.

When the FPRs for all methods were well controlled, as under the no-DIF and balanced DIF

conditions, in general, the TPRs were slightly higher in the LR method than in the MH and OR

methods. Under the unbalanced DIF conditions, the FPRs were inflated and the TPRs were

deflated for the MH and LR methods, while the TPRs were lower than those for the OR method.

In other words, once the FPRs were inflated, the TPRs were reduced, and the MH and LR meth-

ods suffered a greater loss in TPRs than the OR method did. In addition, the TPRs were higher

in equal sample sizes than in unequal sample sizes given the fixed total sample size.

Table 3 summarizes the averaged FPRs and TPRs when impact = 1. The findings were com-

parable with those in Table 2 when impact = 0, except that the inflation of FPRs and deflation

of TPRs in the MH and LR methods under the unbalanced DIF conditions became worse when

impact = 1 than when impact = 0.

Simulation Study 2

Design

Study 2 mimicked a horizontal equating design and aimed to demonstrate the advantages of the

OR method over the MH and LR methods in accommodating missing data by design. There

were 30 items in two 20-item booklets. The first booklet contained Items 1 to 20, and the sec-

ond booklet contained Items 1 to 10 and 21 to 30. Thus, Items 1 to 10 were common between

the two booklets. There were 600 examinees each in the reference and focal groups. In each

group, half of the examinees received the first booklet, and the other half received the second

booklet. Each examinee answered only 20 out of 30 items, so the missing rate was 33% by

design. The data generation procedures and the three manipulated factors, including percentage

of DIF items, impact, and purification procedure, were the same as those in Study 1. For exam-

ple, in the condition of 10% DIF items, Items 10, 20, and 30 had DIF, so that each booklet

included two DIF items and 18 DIF-free items. The DIF magnitude was set at 0.5 logits, and all

DIF items favored the reference group. An examinee’s test score on his or her booklet (ranging

from 0-20) was used as the matching variable in the MH and LR methods. A total of 100 repli-

cations were carried out under each condition. FPRs and TPRs were the outcome variables.

Results

Table 4 summarizes the averaged FPRs and TPRs. As in Simulation Study 1, the OR method

yielded acceptable FPRs and satisfactory TPRs when tests had 30% or fewer DIF items, but it

had lower TPRs in assessing the unique items than the common items because the number of

Jin et al. 621
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examinees answering the unique items was only half the number of examinees answering the

common items. The LR method yielded significantly inflated FPRs for both the common and

unique items, but the purification procedure reduced the inflation. The MH method yielded

FPRs close to zero under all conditions, which might be because the difMH function did not

handle missing data properly. Thus, using the MH method was not recommended when data

are missing by design. In sum, the OR method is quite robust to missing data in yielding well-

controlled FPRs and high TPRs.

The test score of the common items (ranging from 0-10) was also used as the matching vari-

able in the LR method, which resulted in slightly better control of FPRs than using the booklet

test score as the matching variable. Nevertheless, this matching method may not always be

applicable, as common items across booklets are not always available in practice. For instance,

large-scale assessments often adopt a matrix sampling design of booklets, so that examinees

answer a subset of items and there is no common item across all examinees (please see

‘‘Simulation Study 3’’ section for details).

Simulation Study 3

In large-scale tests, such as the Program for International Student Assessment (PISA) and

Trends in International Mathematics and Science Study (TIMSS), the matrix sampling design is

often adopted to assemble multiple booklets. Simulation Study 3 mimicked such a design and

evaluated how the three methods would perform. A total of 30 items were grouped into three

item blocks as follows: Items 1 to 8 in Block 1, Items 9 to 18 in Block 2, and Items 19 to 30 in

Block 3. The first booklet was composed of Blocks 1 and 2, the second booklet was composed

of Blocks 2 and 3, and the third booklet was composed of Blocks 1 and 3. This matrix sampling

had two features: (a) there was no item common to all three booklets, and (b) the numbers of

items were different for different booklets. Both the reference group and the focal group had

600 examinees, in which one third of the examinees took each of the three booklets. The proce-

dure for data generation and the three manipulated factors, including percentage of DIF items,

impact, and purification procedure, were identical to those in Simulation Study 2. Each item

block contained zero to four DIF items. The DIF magnitude was set at 0.5 logits, and all DIF

items favored the reference group. Because no items common to all three booklets were avail-

able, an examinee’s test score on his or her booklet was used as the matching variable in the

MH and LR methods. A total of 100 replications were carried out under each condition. FPRs

and TPRs were the outcome variables.

Results

Table 5 summarizes the averaged FPRs and TPRs for all conditions in Simulation Study 3. As

in the findings for Simulation Study 2, the OR method yielded acceptable FPRs and satisfactory

TPRs when tests had 30% DIF items or less, and the scale purification procedure was helpful in

reducing FPRs when tests had 40% or more DIF items. The LR method yielded inflated FPRs

when tests had 20% or more DIF items, and the scale purification procedure could not bring

FPRs back to the 5% nominal level when impact = 1. Compared with the OR and LR methods,

the MH method performed extremely poor, which may have been due to the problem in han-

dling missing data in the difMH function. Overall, the findings were in alignment with those of

Simulation Study 2, showing that the OR method was efficient in detecting DIF when data were

missing by design.
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An Empirical Example of PISA 2015

The PISA is a large-scale assessment of students’ performance in science (the major domain in

2015), reading, and mathematics (the two minor domains). Items in the three domains are

assembled into several blocks, and each booklet is composed of four item blocks. This study

used data from a sample of 14,530 Australian students (50.7% boys and 49.3% girls) taking the

computer-based assessment (CBA) from PISA 2015. In the CBA design, a student is assigned to

one of 66 booklets. The data matrix is rather sparse, as on average, 2,000 scores were observed

for each item.

Only responses to the dichotomous items were analyzed. There were 46, 50, and 121 dichot-

omous items in the reading, mathematics, and science tests, respectively. For boys, the average

rates of accuracy were 57.3%, 51.5%, and 56.2% for the three subjects, respectively; for girls,

they were 60.9%, 49.7%, and 54.7%, respectively. At face value, the results suggest that boys

outperformed girls in mathematics and science, while girls outperformed boys in reading.

The MH, LR, and OR methods with scale purification procedures were utilized to investigate

gender DIF in the three subjects. Boys and girls were treated as the focal and reference groups,

respectively, in the DIF analysis. Note that the number of items varied among the booklets. For

example, in the reading test, the number of items in the 66 booklets was between 0 and 20. This

implied that using the test score as the matching variable in the MH or LR method would be

problematic.

Table 5. Averaged FPR and TPR (%) in Study 3.

FPR TPR

OR LR MH OR LR MH

Impact = 0
0% 3.70 4.77 0.00 — — —

(3.90) (4.97) (0.00) — — —
10% 4.48 6.93 0.11 77.67 82.67 21.67

(4.67) (5.48) (0.04) (80.00) (85.00) (23.67)
20% 4.54 8.25 0.13 71.83 74.67 15.50

(4.17) (5.04) (0.08) (77.17) (84.83) (16.83)
30% 6.71 13.10 0.19 67.00 63.11 8.44

(4.90) (5.14) (0.19) (77.22) (79.78) (9.56)
40% 12.59 21.83 0.61 46.67 47.25 4.67

(9.94) (8.88) (0.50) (59.33) (67.58) (4.92)
Impact = 1

0% 3.93 6.13 3.10 — — —
(3.93) (8.93) (2.60) — — —

10% 4.07 4.89 4.96 70.33 79.67 28.67
(4.11) (7.11) (3.74) (72.00) (83.00) (33.00)

20% 5.04 7.71 3.67 70.83 71.50 18.83
(4.46) (8.38) (2.33) (75.67) (82.50) (21.50)

30% 7.19 9.43 1.90 57.78 49.11 10.44
(6.38) (8.09) (1.52) (66.33) (74.22) (13.00)

40% 12.00 10.78 15.44 45.67 55.00 27.25
(9.94) (49.67) (9.00) (54.25) (84.92) (28.08)

Note. The values in parentheses were obtained with the purification procedure. Inflated FPRs (� 7.5%) are marked in

bold. FPR = false positive rate; TPR = true positive rate; OR = odds ratio; LR = logistic regression; MH = Mantel–

Haenszel.
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The MH method yielded different results from those found using the LR and OR approaches.

The MH, LR, and OR methods identified zero, 13, and 13 DIF items, respectively, in the read-

ing test; zero, 16, and 15 DIF items, respectively, in the mathematics test; and zero, 52, and 59

DIF items, respectively, in the science test. In accordance with the findings in Simulation

Studies 2 and 3, the MH method performed extremely poorly when there were missing data.

Comparing the results from the LR and OR methods, coincidently, both methods detected gen-

der DIF in five, seven, and 45 items in the reading, mathematics, and science tests, respectively.

Below, the results of the OR method were focused.

Because of the large sample size, a trivial DIF could be statistically significant. Le’s

(2009) criteria were adopted in this analysis, in which an item is ultimately flagged as hav-

ing substantial DIF when two conditions are jointly satisfied: (a) l̂i is significant at the .05

nominal level, and (b) the DIF size (i.e., l̂i � ~̂
l

��� ���) is larger than 0.25 logits. There were nine,

Figure 1. Log odds ratios and 95% confidence intervals for three tests in the PISA 2015.
Note. Circles and squares refer to non-DIF and DIF items, respectively; solid and dotted lines are the medians and

means across non-DIF items, respectively. PISA = Program for International Student Assessment; DIF = differential

item functioning.
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10, and 36 items exhibiting substantial gender DIF in the reading, mathematics, and science

tests, respectively. The results of DIF detection with scale purification are presented in

Figure 1. Extreme l̂ values were bilaterally distributed in all tests, and the means and med-

ians of l̂ for non-DIF items approximately overlapped. Specifically, seven, two, and 19

items in the reading, mathematics, and science tests favored boys, whereas two, eight, and

17 items favored girls, respectively.

Discussion and Conclusion

The MH and LR methods use test scores to match examinees from different groups for DIF

detection. However, test scores cannot represent examinees’ ability levels properly when tests

have DIF items or the impact is large. Solutions to this predicament include scale purification

procedures and identification of a set of DIF-free items to serve as a matching variable (Kopf

et al., 2015). Scale purification and identification of DIF-free items, however, may be rather

inconvenient and challenging for practitioners. In this study, a simple solution that does not rely

on a matching variable was provided. In the newly proposed OR method, the log OR of two

groups of examinees on their responses to each item is computed, and an item is deemed as

having DIF when its log OR is an outlier against the sample median. If a practitioner knows

how to compute the log OR (Equation 6), its standard error (Equation 7), and the sample med-

ian, the OR method can be easily implemented. The scale purification is also straightforward.

All we need to do is recalculate the sample median from those items identified as DIF-free in

the previous step.

The findings from a series of simulation studies show that the OR method yielded satisfactory

FPRs and high TPRs when tests had 30% or fewer DIF items, and the scale purification proce-

dure could reduce the inflated FPRs when tests had 40% or more DIF items. In contrast, the MH

and LR methods were vulnerable to high percentages of DIF items and missingness. Thus, the

OR method is recommended because of its high effectiveness and feasibility in DIF detection.

A distinct advantage of the OR method is its robustness to missing data. Missing responses

weaken the relationship between an examinee’s test score and latent ability level, such that stan-

dard DIF detection methods become thorny (Robitzsch & Rupp, 2009). Bank (2015) reviewed

nine studies that examined DIF detection in missing data and recommended the use of deletion

(including analysis-wise and listwise) and imputation. Although deleting cases with missing

responses is simple, it may lead to a substantial loss of samples and, consequently, a lower

power of DIF assessment (Finch, 2011). In addition, deletion is not always feasible when miss-

ing data are formulated by design, such as in booklets in large-scale assessments (e.g., the

PISA). Although imputation, an advanced approach for treating missing data, may be more

effective than deletion (Finch, 2011; Robitzsch & Rupp, 2009), selecting an imputation algo-

rithm to add unsubstantial information into observed data is somewhat arbitrary and may fabri-

cate the result of DIF assessment. Seemingly, deletion inevitably sacrifices some information,

while imputation exaggerates the limited information.

Unlike deletion and imputation, the OR method utilizes information by employing observed

data and considering the incompleteness of item responses to identify DIF items. As in Equation 7,

a small number of valid responses would result in a large error variance of l̂i. Conditional on the

value of the log ORs, the more the missing data, the larger the error variance. This feature ensures

that the OR method is not vulnerable to missing data, as the error variance for statistical testing will

not be overestimated due to deletion or underestimated due to imputation.

The robust OR method is rather robust to missing data, and it might be applicable in detect-

ing DIF in computerized adaptive testing (CAT). Because many responses are missing at
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random in CAT, existing DIF detection methods require a tedious procedure to obtain the abil-

ity estimate (or expected score over the entire item pool) as a matching variable to detect DIF

in new items (Lei, Chen, & Yu, 2006). The robust OR method can be an alternative in such

cases, but its performance needs further investigation.

Although the OR method was developed to detect DIF between two groups, it can be used

to detect DIF in more than two groups. For example, once the reference group is identified,

each focal group can be compared with the reference group individually (Finch, 2016). Like

the MH method, the OR approach is effective in detecting uniform DIF when the data follow

the Rasch model. It was suspected that the OR method will not perform well when data follow

the two- or three-parameter logistic model or the DIF is nonuniform, which should be verified

in future research. In recent years, polytomous items have been widely used in educational and

psychological tests. It is important for future study to extend the OR method to detect DIF in

polytomous items.
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