Skip to main content
. 2018 Oct 25;29(12):1984–1995. doi: 10.1177/0956797618804501

Table 3.

Changes in Fit of Bivariate Latent-Change-Score Models With the Addition of Coupling Parameters

Model Parameters χ2 df CFI BIC w(BIC) RMSEA Δχ2 Δdf p
Without covariates
No coupling 33 186 119 .990 34,194 .251 0.023
Fluid intelligence → Δdepressive symptoms 34 178 118 .991 34,192 .681 0.022 −8 1 .003
Depressive symptoms → Δfluid intelligence 34 185 118 .990 34,200 .012 0.023 −1 1 .282
Full coupling 35 176 117 .992 34,197 .056 0.021 −10 2 .005

With covariates
No coupling 77 415 347 .987 21,775 .066 0.019
Fluid intelligence → Δdepressive symptoms 78 404 346 .989 21,770 .802 0.018 −11 1 .001
Depressive symptoms → Δfluid intelligence 78 411 346 .988 21,777 .024 0.019 −4 1 .040
Full coupling 79 401 345 .989 21,774 .108 0.018 −14 2 .001

Note: Parameter = estimated model parameter; χ2 = deviance (−2 × log-likelihood); CFI = comparative fit index; BIC = Bayesian information criterion; w(BIC) = Schwarz weight (i.e., relative probability of model preference); RMSEA = root-mean-square error of approximation; Δχ2 = change in model misfit with addition of coupling (or couplings) compared with no-coupling model (lower values = better fit); p = p value for likelihood-ratio test of change in model fit. The RMSEA 95% confidence interval was within ±.007 for all models.