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INTRODUCTION

Improving feed efficiency in dairy and beef cat-
tle is an important objective to reduce production 
costs (Beever and Doyle, 2007; Tizioto et al., 2015). 
Furthermore, efficient cattle produce less methane and 
manure, which reduces the environmental footprint of 
cattle production (Hegarty et al., 2007). Residual feed 
intake (RFI) is 1 measurement of feed efficiency and 
is the difference between actual and predicted feed 
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ABSTRACT: Improving feed efficiency in cattle 
is important because it increases profitability by 
reducing costs, and it also shrinks the environmental 
footprint of cattle production by decreasing manure 
and greenhouse gas emissions. Residual feed intake 
(RFI) is 1 measurement of feed efficiency and is the 
difference between actual and predicted feed intake. 
Residual feed intake is a complex trait with moder-
ate heritability, but the genes and biological processes 
associated with its variation still need to be found. We 
explored the variation in expression of genes using 
RNA sequencing to find genes whose expression was 
associated with RFI and then investigated the path-
ways that are enriched for these genes. In this study, 
we used samples from growing Angus bulls (muscle 
and liver tissues) and lactating Holstein cows (liver 
tissue and white blood cells) divergently selected for 
low and high RFI. Within each breed-tissue combina-
tion, the correlation between the expression of genes 
and RFI phenotypes, as well as GEBV, was calculated 
to determine the genes whose expression was corre-

lated with RFI. There were 16,039 genes expressed in 
more than 25% of samples in 1 or more tissues. The 
expression of 6,143 genes was significantly associated 
with RFI phenotypes, and expression of 2,343 genes 
was significantly associated with GEBV for RFI (P < 
0.05) in at least 1 tissue. The genes whose expression 
was correlated with RFI phenotype (or GEBV) within 
each breed-tissue combination were enriched for 158 
(78) biological processes (Fisher Exact Statistics for 
gene-enrichment analysis, EASE score < 0.1) and asso-
ciated with 13 (13) Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (P < 0.05 and fold enrich-
ment > 2). These biological processes were related to 
regulation of transcription, translation, energy genera-
tion, cell cycling, apoptosis, and proteolysis. However, 
the direction of the correlation between RFI and gene 
expression in some cases reversed between tissues. For 
instance, low levels of proteolysis in muscle were asso-
ciated with high efficiency in growing bulls, but high 
levels of proteolysis in white blood cells were associat-
ed with efficiency of milk production in lactating cows.
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intake (Koch et al., 1963; Berry and Crowley, 2013). 
However, the expense of measuring RFI limits its use 
in breeding programs (Pryce et al., 2015). Given the 
complexity of the trait, it has proven difficult to find 
the causal genes by genome-wide association (GWA) 
studies (Bolormaa et al., 2013). Nevertheless, GEBV 
of RFI have already been calculated using reference 
populations of dairy and beef cattle with low to moder-
ate accuracy (Khansefid et al., 2014; Pryce et al., 2015). 
To find the genes influencing RFI, the association be-
tween variation in gene expression and RFI can be 
studied as an alternative method to GWAS because the 
expression of genes may influence traits (Albert and 
Kruglyak, 2015). However, the correlation between 
gene expression and RFI may be different in different 
tissues and between growing and lactating cattle.

The aim of this study was to find the genes, biolog-
ical processes, and pathways that are associated with 
RFI variation in growing and lactating cattle using 
RNA sequencing (RNA-Seq). Residual feed intake in 
beef cows is correlated with RFI in growing heifers 
(Jeyaruban et al., 2009; Khansefid et al., 2014), so we 
expected some of the same biological processes to be 
involved. However, a second aim was to compare the 
correlation between gene expression in lactating cows 
and growing cattle. Therefore, we analyzed gene ex-
pression data from beef and dairy cattle separately and 
then compared the results.

MATERIAL AND METHODS

Animals and RFI Records
The beef cattle used in our study were Angus bulls 

from lines of cattle divergently selected for low and high 
RFI on the basis of their individual RFI values at the 
Agricultural Research Centre in Trangie, NSW, Australia 
(Arthur et al., 2001). Since the second generation of diver-
gent selection, the animals in the low-RFI line consumed 
significantly (P < 0.05) less feed than those selected for 
high RFI (Arthur and Herd, 2008). Liver samples were 
taken from 37 bulls (including 11 paternal half-sibling 
groups) from a single cohort after approximately 3 gen-
erations of selection. Semitendinosus muscle samples 
were taken from 43 bulls from a different cohort that had 
been selected for RFI for approximately 4 generations 
(consisting of 8 paternal half-sibling groups).

The 19 Holstein cows used in this study were 
selected using their phenotypes as growing heifers 
from a feed efficiency trial at the Agriculture Victoria 
Rutherglen Research Station (n = 843, average RFI = 
0, and SD = 0.19; Williams et al., 2011). The extreme 
animals for RFI (top and bottom 10% using phenotype 
data) were used in this study. These calves were then 

evaluated in first lactation to determine if they were 
still divergent for RFI in lactation (Macdonald et al., 
2014). Blood and liver samples were taken from the 
19 lactating Holsteins (including 3 paternal half-sibling 
groups) at 38 d in milk (±10 d). The RFI of the lactating 
cows was calculated (Macdonald et al., 2014), and the 
RFI phenotypes for Holstein cattle in this study refer 
to cows in lactation. In this study, we used the GEBV 
for RFI in lactating Holstein and GEBV for RFI during 
growth in Angus cattle reported by Pryce et al. (2015) 
and Khansefid et al. (2014), respectively. The GEBV 
of the Holsteins come from a multitrait model in which 
the 2 traits were RFI as heifers and RFI as cows, but it 
is the GEBV for RFI as cows that is used here. A sum-
mary of animal RFI records is shown in Table 1.

Sampling and RNA-Seq Data

Liver and Muscle Samples from Angus Bulls. 
Liver tissue from Angus animals was sampled according 
to the procedure described by Chen et al. (2011) under 
University of New England Animal Ethics Committee 
application number AEC 06/123. (We used a subset of 
the animals used by Chen et al., 2011.) Semitendinosus 
muscle samples were taken from growing bulls (about 
9 mo of age) by biopsy and then transferred into 2 mL 
RNAlater solution (Ambion, Applied Biosystems, 
Austin, TX) under Orange Animal Ethics Committee ap-
plication number ORA09/015. Total RNA was extracted 
from liver and muscle tissue by TRI Reagent (Ambion) 
and Qiagen RNeasy MinElute kit (Qiagen, Hilden, 
Germany) using a modified protocol. In brief, approxi-
mately 30 mg of liver tissue (100 mg of muscle tissue) 
were finely minced and then mixed with 500 μL TRIzol 
Reagent (Life Technologies, Carlsbad, CA) and immedi-
ately homogenized for approximately 45 to 50 s and then 
incubated at room temperature for 5 min. The resulting 
lysate was mixed with 100 μL 1-bromo-3-chloropropane 
(BCP) incubated at room temperature for 10 min, fol-
lowed by centrifugation at 10,000 × g at 4°C for 15 min. 
The top aqueous layer was transferred to a new microfuge 
tube and mixed with an equal volume of 75% ethanol. 
The resulting lysate was then loaded onto the Qiagen 
RNeasy MinElute column, and RNA was purified as per 
protocol with on-column DNA digestion. The extracted 
RNA quality was assessed using an Agilent Bioanalyzer 
2100 (Agilent Technologies, Santa Clara, CA); only 
those with RNA integrity number (RIN) greater than 7 
were used. Ten micrograms of the extracted RNA from 
the sampled tissues were enriched with a Dynabeads 
mRNA Purification Kit (Invitrogen, Carlsbad, CA). The 
mRNA molecules were randomly fragmented by heating 
in the presence of Mg2+. First-strand cDNA synthesis 
was performed using random primers and SuperScriptII 
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reverse transcriptase (Invitrogen) following the manu-
facturer’s recommendation. The second-strand cDNA 
was synthesized with DNA Polymerase I and RNase 
H (Invitrogen), and ends were polished by addition of 
T4 DNA Polymerase and Klenow DNA Polymerase. 
Twenty-four unique bar-coded adapters were developed, 
adenylated with Klenow Fragment (3′→5′ exo), and 
ligated to the ends of the double-stranded cDNA frag-
ments by using T4 DNA ligase (New England Biolabs 
Ltd., Ipswich, MA). The libraries were enriched by 
PCR with Phusion High-Fidelity DNA Polymeras (New 
England Biolabs Ltd.), purified with Agencourt AMPure 
XP (Beckman Coulter, Brea, CA), and selected for a tar-
get size of 200 bp. The bar-coded libraries were pooled 
and run on a single lane of a HiSeq 2000 (Illumina Inc., 
San Diego, CA) in a 101-cycle paired-end run.

Liver and Blood Samples from Holstein Cows. 
Blood sampling and liver tissue biopsy from Holstein 
cows, RNA extraction, and sequencing were described 
by Chamberlain et al. (2015; Department of Economic 
Development, Jobs, Transport and Resources, Animal 
Ethics application number 2011-23). In brief, 10 mL 
of whole blood were collected by venipuncture of the 
coccygeal vein using a BD Vacutainer (BD Vacutainer 
Systems, Franklin Lakes, NJ). The white blood cells 
were separated by centrifugation at 2,000 g for 15 
min at 4°C, then stored in 1.2  mL RNAlater RNA 
Stabilization Solution (Ambion, Applied Biosystems). 
Two to three grams of liver tissue were collected by 
biopsy and then were frozen in liquid nitrogen. The 
RNA was extracted from white blood cells using a 
RiboPure Blood Kit (Ambion, Applied Biosystems) 
and from liver samples using a RiboPure Kit (Ambion, 
Applied Biosystems) according to the manufacturer’s 
instructions. All samples had RIN greater than 8.0. 
Sequencing libraries were prepared using the TruSeq 
RNA Sample Preparation Kit v2 Set A (Illumina Inc.) 
and selected for a size of 200 bp. All libraries were 
uniquely bar-coded, pooled, and sequenced on a HiSeq 
2000 (Illumina Inc.) in a 105-cycle paired-end run.

Reference Genome

The bovine genome assembly UMD3.1 was cus-
tomized for each animal to improve the mapability 
of the reads by reducing the mismatches in aligning 
RNA-Seq reads to the reference genome (Chamberlain 
et al., 2015). The Holsteins were genotyped with an 
Illumina HD Bovine SNP chip (Pryce et al., 2012). 
The 37 Angus bulls with liver samples were geno-
typed (Bolormaa et al., 2014) with the low-density 
50K genotypes (Illumina BovineSNP50K chip), and 
then HD genotypes were imputed using BEAGLE 
(Browning and Browning, 2009). The 43 Angus bulls 
with muscle samples had whole genome sequence data 
(WGS) with average 6.7-fold coverage (Daetwyler et 
al., 2014). FImpute was used to impute WGS from HD 
genotypes and phase all WGS genotypes (Sargolzaei 
et al., 2014). Parental haplotypes for each animal were 
then used to make a maternal and a paternal reference 
genome as described by Chamberlain et al. (2015).

Quality Control and Alignment of Reads

The quality of raw RNA-Seq reads was checked us-
ing FastQC (Andrews, 2010). Reads were trimmed of 
adaptor sequence and bases with Phred+33 score < 15, 
where 3 consecutive bases had a Phred+33 score less 
than 15; the rest of the sequence was removed. Reads 
with average Phred+33 score < 20 or read length < 50 
after trimming were removed, and only the paired reads 
were used in alignment (Ross et al., 2012). Reads were 
aligned to maternal and paternal customized reference 
genomes for each animal using TopHat2 (Kim et al., 
2013) using Ensembl GFF (General Feature Format) 
release 75 for bovine genome assembly UMD3.1 and 
allowing 2 mismatches per read. The mismatches can 
be due to different nucleotides in the reference genome 
and the RNA-Seq read (real mismatches) or sequencing 
errors in RNA-Seq data. So the number of “real mis-
matches” can be reduced using the actual genome for 
each animal as the reference genome. The mean and SD 
for the distribution of inner distances between mate pairs 
in each animal were estimated using Burrows-Wheeler 
Aligner (BWA) software (Li and Durbin, 2009).

Gene Expression Measurement

The expression abundance of each gene was es-
timated by counting the number of reads mapped to 
each gene in the reference using HTSeq (Anders et 
al., 2015). The RNA-Seq libraries were not prepared 
with a strand-specific protocol, so we used the HTSeq 
option of stranded=no. As 2 reference genomes (ma-
ternal and paternal) were used for aligning reads in 
each animal, 2 counts for each gene were generated, 

Table 1. Residual feed intake (RFI) phenotypes and 
GEBV mean and SD in each group

Breed
  (No.)

 
Tissue

Phenotype GEBV
Mean SD Mean SD

Angus (43) Muscle 0.22 1.03 0.16 0.58
High-RFI line (22) 0.44 1.15 0.39 0.60
Low-RFI line (21) −0.01 0.85 -0.08 0.45
Angus (37) Liver 0.06 0.98 0.22 0.64
High-RFI line (23) 0.47 0.88 0.59 0.42
Low-RFI line (14) −0.61 0.76 −0.39 0.44
Holstein (19) Liver and blood 0.05 1.27 −0.01 0.20
High-RFI (9) 0.09 1.09 0.16 0.11
Low-RFI (10) 0.02 1.47 −0.17 0.12
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which were expected to be similar. Where the reads 
mapped to 1 reference genome slightly better, we used 
the higher counts as a measure for expression of the 
gene. Gene read counts for the animals in each group 
were first normalized with a weighted trimmed mean 
using edgeR (Robinson and Oshlack, 2010). Then, the 
normalized counts were log transformed to make nor-
mal distributions for gene read counts.

Gene Expression Associated with RFI

To find the differentially expressed genes related to 
feed efficiency, we tested the association between the 
normalized gene read counts and RFI variation. The re-
gression of each gene count on RFI phenotypic records 
and GEBV were calculated separately in each RNA-
Seq data set using ASReml (Gilmour et al., 2009) to 
find genes significantly associated with RFI phenotypes 
(GSAphenotype) and GEBV (GSAGEBV), respectively 
(P < 0.05). The sign of the regression coefficient can be 
used to determine whether a genes was upregulated (+) 
or downregulated (−) in animals with higher RFI. The 
false discovery rate (FDR) in each RNA-Seq data set 
was calculated as (Bolormaa et al., 2013)

( )

1
FDR ,

1
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T

A P
T

 − 
 =

  − 
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where P is the P-value of the test (i.e., 0.05), A is the 
number of GSAphenotype or GSAGEB at P, and T is the 
total number of genes tested.

Differentially Expressed Gene Annotation

The genes whose expression was significant-
ly correlated with RFI phenotype or GEBV (i.e., 
GSAphenotype and GSAGEBV) in each of the 4 RNA-
Seq analyses were used to investigate the biological 
themes associated with RFI variation. The lists of 
differentially expressed genes in each data set were 
analyzed with DAVID online software (Huang et al., 
2009) separately to test if any functional annotation 
or biological pathways were overrepresented among 
the genes. The gene ontology (GO) at the biological 
process level and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways of GSAphenotype and 
GSAGEBV were investigated to find biological mecha-
nisms (P < 0.05 and fold enrichment > 2) and pathways 
(Fisher Exact Statistics for gene-enrichment analysis, 
EASE scores < 0.1) associated with RFI. In each tissue, 
the genes expressed in that tissue were used as back-
ground in biological process and KEGG pathway anal-

yses. As the blood had more than 3,000 differentially 
expressed genes, the 3,000 most significant genes as-
sociated with RFI phenotypes were used because of a 
limitation for the number of genes in DAVID.

RESULTS

Animals and RFI Records
The correlation between RFI records and GEBV 

(rPhenotypes,GEBV) was high in Angus bulls (0.83 ± 
0.09 for bulls with muscle samples and 0.86 ± 0.09 
for bulls with liver samples) but low in Holstein cows 
(0.27 ± 0.23), which was not significantly different 
from zero (P = 0.26). The low rPhenotypes,GEBV in 
dairy cattle was probably due to the limited number 
of cows used to calculate GEBV for RFI in lactating 
cows and the fact that in calculation of GEBV, data 
from the animals as heifers were used by Pryce et al. 
(2015). The high rPhenotypes,GEBV in beef cattle was 
because the beef animals were from divergent RFI 
lines, the RFI phenotype was used in the calculation of 
GEBV, and a comparatively large number of animals 
(n = 820) were used to calculate GEBV for RFI.

RNA-Seq Data

On average, about 75% of the raw RNA-Seq reads 
for the Angus muscle and liver libraries passed Quality 
control (QC) filters (paired reads). For the Holstein 
blood and liver libraries, on average, about 80% of the 
reads passed QC filters (paired reads). The details of 
RNA-Seq data in addition to RFI phenotype and GEBV 
for each individual are provided in Supplementary File 1. 
A brief summary of the alignment of reads and their con-
cordant pair rate is shown in Table 2. The concordant 
pair alignment rate indicates the percentage of reads that 
both forward and reverse sequence map to the reference 
genome correctly with proper distance. The approximate 
distance or inferred external insert size in each RNA-Seq 
data set was estimated by BWA (Li and Durbin, 2009); 
on average, it was roughly 175 (±50) in liver and blood 
samples of Holstein cows and 185 (±60) in liver and 200 
(±60) in muscle samples of Angus bulls.

Analysis of Gene Expression

Eight separate analyses were performed for each 
of 4 sets of tissue samples (Angus liver, Angus muscle, 
Holstein liver, and Holstein blood) for 2 measures of RFI 
(phenotype and GEBV). The number of genes expressed 
in more than 25% of animals in each group and also the 
number of genes associated with RFI phenotypes and 
GEBV (P < 0.05) are shown in Table 3, and details of 
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individual genes are available in Supplementary File 2. 
Among the 16,039 genes expressed in at least 1 tissue, 
6,143 GSAphenotype and 2,343 GSAGEBV were found 
(P < 0.05). However, in most data sets the FDR was 
high. Therefore, we focused on genes whose expres-
sion was correlated with RFI in more than 1 data set. 
The expression of 1,850 genes was significantly associ-
ated with RFI in more than 1 RNA-Seq data set. The 
overlap between GSAphenotype and GSAGEBV within 
tissue samples in Angus bulls was much higher (475 
for muscle and 460 for liver samples) than in Holstein 
cows (23 for liver and 6 for blood samples), which is 
mainly due to higher correlation between RFI pheno-
types and GEBV in Angus bulls and probably higher 
accuracy of GEBV for RFI in growing animals. The 
overlap between GSAphenotype and GSAGEBV in differ-
ent tissues is shown in Fig. 1 A and 1B, respectively. 
Comparing the GSA (phenotypes or GEBV) in different 
tissues showed the direction of the correlation between 
gene expression and RFI records was not necessarily 
the same across different tissues. Table 4 shows the 
number of genes whose expression was correlated with 
RFI in more than 1 analysis, and these genes are listed 
in Supplementary File 3. For instance, the expression of 
363 genes was correlated with RFI phenotype in both 
Holstein blood and Angus muscle, but for 259 (363-
104) genes the direction of the correlation reversed.

Enriched Biological Processes and KEGG Pathways

In 8 analyses performed separately for each tissue-
breed combination, in total, the GSAphenotype were 
enriched for 158 biological processes (EASE score < 
0.1) and overrepresented with 13 KEGG pathways 
(P  < 0.05 and fold enrichment > 2). The GSAGEBV 
were enriched in 78 biological processes and overrep-
resented in 13 KEGG pathways.

There were 39 biological processes that were en-
riched in more than 1 of the 8 analyses and 29 that 
were enriched repeatedly in different RNA-Seq data 
sets (Table 5). The list of the genes associated with 
all biological processes is available in Supplementary 

File 4. There were also 3 KEGG pathways that were 
overrepresented in more than 1 analysis. All of the 
overrepresented KEGG pathways are shown in Table 6.

The descriptions of biological processes and 
KEGG pathways sometimes use different words for 
similar processes. For instance, the biological process 
“translation” overlaps with the KEGG pathway “ribo-
some.” Taken together, the biological processes and 
KEGG pathways implicate many different processes 
in RFI, which was not unexpected. The major pro-
cesses involved might be summarized as follows: cell 
signaling regulating transcription; translation; energy 
metabolism, including oxidation-reduction; cell cycle; 
division and apoptosis; and catabolism, especially pro-
teolysis. The details of the enriched KEGG pathways 
in each tissue are available in Supplementary File 5.

DISCUSSION

Variation in RFI is influenced by many biological 
factors (Moore et al., 2009). Among the biological mech-
anisms associated with RFI are feeding pattern, digest-
ibility, activity, protein turnover and tissue metabolism, 
stress, thermoregulation, heat increment, and body com-
position (Richardson and Herd, 2004; Herd and Arthur, 
2009). Therefore, finding genes with polymorphisms af-
fecting RFI is difficult and made more so by the cost of 
RFI measurement, which limits the sample size.

Complex traits, such as RFI, can be associated with 
variation in gene expression between individuals (Albert 
and Kruglyak, 2015). The number of mRNA copies of 
a gene, indicating the expression of the gene in each in-
dividual for a specific tissue, can be measured by RNA-
Seq (Morin et al., 2008). Hence, an alternative method 
for finding genes associated with RFI might be to study 
the expression level of the genes in efficient and ineffi-
cient animals. However, a correlation between the level 
of expression of a gene and RFI does not mean that poly-
morphisms in that gene influence RFI. The expression of 
a gene may be correlated with RFI but not a cause of 
variation in RFI. Despite this reservation, finding genes 
whose expression is correlated with RFI should help us 

Table 2. The mean (and SD) of raw, quality control (QC) passed paired sequences and concordant of paired 
alignment rate of RNA sequencing reads in each data set
Breed Tissue Raw reads Reads passing QC (Paired) Paired aligned Concordance
Angus Muscle 17,906,533

(4,372,921)
6,366,128

(1,866,319)
5,796,348

(1,710,722)
90%
(2%)

Angus Liver 13,616,027
(7,751,116)

5,437,947
(3,065,337)

4,478,339
(2,739,338)

77
(8%)

Holstein Liver 34,964,230
(7,205,821)

14,764,421
(3,385,481)

13,701,770
(3,052,165)

92%
(1%)

Holstein Blood 40,042,855
(6,307,797)

16,246,344
(2,841,461)

14,710,129
(2,543,539)

89
(1%)
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to understand the physiological pathways controlling 
RFI and, ultimately, to find genes and polymorphisms 
that cause variation in RFI (Chen et al., 2012).

In our study, in individual data sets, the power to 
find genes whose expression is correlated with RFI is 
low (as shown by the high FDR), partly because of the 
small number of animals per data set and limited depth 
of RNA-Seq. However, by considering pathways and 
genes that were significant in more than 1 data set some 
consistent patterns emerged. For each of the 4 sets of 
tissue samples, we considered the correlation between 
expression and both RFI phenotype and GEBV. Since 
the phenotypes of these animals were used in calculat-
ing the GEBV, they are not independent measures. In 
the Angus bull data set, the phenotype and GEBV are 
highly correlated (r = 0.88), but in the Holstein cow data 
set they are not (r = 0.21). This difference is because we 
had a smaller data set for dairy cattle and the RFI phe-
notype in the Holstein cows was recorded during lacta-
tion (when the tissue samples were taken) but the GEBV 
was for lactating cows but calculated with a multitrait 
model using their RFI records during growth (as heif-
ers) and lactation (Pryce et al., 2015). Consequently, 
the phenotypes were more highly correlated with gene 
expression than the GEBV were because the pheno-
types were measured at the same time as the tissue 
samples were taken for gene expression measurements. 
Even among the Angus cattle, there were more genes 
whose expression was correlated with phenotype than 
with GEBV. This result may indicate that the correla-
tions with phenotype could be environmental correla-
tions not genetic. Even if the correlations are genetic, it 
does not necessarily mean that the expression of a gene 
causes differences in RFI. For instance, the coordinated 
up- and downregulation of genes for ribosomal proteins 
may not cause differences in RFI but may be the result 
of signaling mechanisms within the cell that are con-
trolling multiple pathways, leading to changes in RFI 
and to expression of ribosomal genes.

Table 3. Total number of genes expressed in each data set in more than 25% of animals and the number of genes 
significantly associated with residual feed intake (RFI) phenotypes (GSAphenotype) and GEBV (GSAGEBV; P < 
0.05) that were downregulated (–) or up-regulated (+) in animals with higher RFI
 
 
Breed

 
 

Tissue

No. of  
genes  

expressed

GSAphenotype GSAGEBV
All

(FDR1)
 
–

 
+

All
(FDR1)

 
–

 
+

Angus Muscle 12,278 922
(0.65)

468 454 791
(0.76)

381 410

Angus Liver 12,233 768
(0.79)

295 473 1028
(0.57)

438 590

Holstein Liver 14,374 473
(1.55)

233 240 526
(1.39)

285 241

Holstein Blood 14,176 4817
(0.10)

2561 2256 137
(5.39)

43 94

1False discovery rate.

Figure 1. The overlap between genes significantly associated (P < 
0.05) with (A) residual feed intake phenotypes and (B) GEBV in different 
tissues sampled from growing Angus bulls (muscle and liver tissues) and 
lactating Holstein cows (liver tissue and white blood cells).
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When we consider individual genes, the number 
whose expression is significantly correlated with RFI in 
multiple data sets is small. However, within each data 
set there are GO terms and KEGG pathways that are en-
riched, and there are some biological processes that are 
enriched in multiple data sets. In the processes related to 
translation and protein catabolism or proteolysis there 
are many genes whose expression is correlated with RFI 
across more than 1 data set. The genes associated with 
translation include many genes for ribosomal proteins, 
and the genes associated with proteolysis include many 
ubiquitin ligases such as Itchy E3 Ubiquitin Protein 
Ligase Homolog ITCH. It is not surprising that mecha-
nisms that increase translation of mRNA into protein 
and that catabolize proteins are associated with RFI.

However, a closer look at the results reveals a sur-
prising finding: for genes, represented by the GO terms 
translation, energy generation, oxidation-reduction, and 
proteolysis, the direction of the correlation in Holsteins 
is often the opposite of that in Angus. The level of ex-
pression of individual genes within the biological path-
ways may be positively or negatively correlated with 
RFI. A negative correlation means that increased ex-
pression is associated with lower-RFI phenotypes or 
GEBV, which we interpret as greater phenotypic and 
genetic feed efficiency. For instance, the RFI phenotype 
was correlated negatively (P < 0.05) with expression of 
25 genes for ribosomal proteins, which are part of the 
biological process “translation,” in Angus muscle sam-
ples. This negative correlation suggests that increased 
translation of mRNA into protein in muscle is associ-
ated with more efficient growth. However, in Holstein 
blood samples, RFI was positively correlated with ex-
pression of 67 ribosomal protein genes. This positive 
correlation suggests that high efficiency in a milking 
cow is associated with reduced translation in white 
blood cells and perhaps other tissues, so that resources 
are spared for the mammary gland. This reversal in the 
direction of effects between Angus and Holstein is also 
seen in some other pathways, for example, proteolysis 
and oxidation-reduction.

The GEBV for RFI in Angus were negatively 
correlated with expression of 11 ATP synthase genes 
and for genes that are part of the biological process 
oxidation-reduction, such as NADH dehydrogenases. 
Most of these genes function in the mitochondria and 
suggest that high efficiency of growth is associated 
with high levels of energy generation in the liver and 
with protection against the oxygen stress associated 
with energy generation. Some of the same genes were 
highlighted in the KEGG pathway “Parkinson’s dis-
ease.” This pathway includes not only genes involved 
in mitochondrial function but also Phosphatase and 
Tensin Induced Putative Kinase 1 (PINK1), Parkinson 
Protein 2 (PARK2), Parkinson Protein 7 (PARK7), 
and Leucine-Rich Repeat Kinase 2 (LRRK2). Again, 
where the expression of these genes was significantly 
correlated with RFI phenotype in Holstein cows, the 
sign of the correlation was opposite to that in Angus.

The GEBV for RFI were positively correlated 
with expression of many genes from the biological 
process proteolysis in Angus muscle and liver tissue. 
For instance, this pathway includes genes for ubiqui-
tin-specific peptidases, ubiquitin ligases (e.g., ITCH), 
and peptidases, suggesting that high levels of prote-
olysis are associated with inefficient growth. However, 
in Holstein blood expression of ubiquitin-specific pro-
teases was negatively correlated with RFI phenotype. 
It is possible that proteolysis in organs other than the 
mammary gland provides substrates for milk synthe-
sis and hence improves efficiency of milk production.

A broader view of all genes associated with RFI 
variation in Table 4 supports this tendency for a rever-
sal of sign in the correlations with RFI between Angus 
and Holstein data sets. When comparing the 2 Angus 
data sets or the 2 Holstein data sets, the proportion of 
genes with an effect in the same direction is slightly 
above 50%, indicating that these results are not ran-
dom. However, when an Angus data set is compared 
to a Holstein data set, less than 50% of genes have 
correlations with RFI in the same direction.

Table 4. The number of genes whose expression was correlated with residual feed intake in more than 1 analysis1

 
Data set

 
RFI

Angus muscle Angus liver Holstein liver Holstein blood
Phenotype GEBV Phenotype GEBV Phenotype GEBV Phenotype GEBV

Angus muscle Phenotype — 475 58 78 30 27 363 5
GEBV 475 — 53 66 24 24 301 7

Angus liver Phenotype 35 29 — 460 35 22 254 3
GEBV 47 40 460 — 39 36 413 4

Holstein liver Phenotype 13 12 19 16 — 23 140 3
GEBV 15 12 11 12 23 — 137 6

Holstein blood Phenotype 104 81 85 54 120 110 — 6
GEBV 2 5 1 1 2 4 6 —

1On the upper triangle elements are the total number of genes, and on the lower triangle elements are those with effects in the same direction. 
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The pathways that were associated with varia-
tion in RFI in multiple data sets show some consis-
tency. In growing Angus bulls, there were significant 
pathways associated with low RFI that corresponded 
to high metabolic activity (transcription, translation, 
energy generation) but low catabolism in the tissue 
experiencing the most growth (i.e., muscle) and, to a 
lesser extent, in the liver, which supports that growth. 
However, in lactating cows, the high efficiency of milk 
production (i.e., low RFI) may be associated with low 
metabolic activity in the rest of the body. The results 
support the hypothesis, based on previous research, 
that high levels of proteolysis contribute to high main-

tenance requirements and hence high RFI (Richardson 
and Herd, 2004). The biological processes that are 
most consistently enriched in the genes correlated 
with RFI in more than 1 of our 4 data sets can be sum-
marized as signaling pathways controlling transcrip-
tion, translation, proteolysis, and oxidation-reduction. 
Other published studies in pigs and cattle correlating 
RFI with gene expression support this conclusion.

Chen et al. (2011) used liver samples from most 
of the same Angus bulls as reported here but measured 
gene expression using a microarray assay. They found 
161 genes differentially expressed between bulls select-
ed for high and low RFI. In our Angus liver samples the 

Table 5. The gene ontology (GO) terms of biological processes enriched in genes significantly associated with 
residual feed intake phenotypes (GSAphenotype) and GEBV (GSAGEBV) repeatedly in different analyses
GO term GO definition Analysis (No. of genes) Common genes1

GO:0006412 Translation Angus liver, GEBV (32); Angus muscle, GEBV (27); Angus 
muscle, phenotype (38); Holstein blood, phenotype (142)

58

GO:0019941 Modification-dependent protein catabolic process Angus liver, GEBV (24); Angus muscle, GEBV (19); Angus 
muscle, phenotype (22); Holstein blood, phenotype (81)

32

GO:0043632 Modification-dependent macromolecule catabolic 
process

Angus liver, GEBV (24); Angus muscle, GEBV (19); Angus 
muscle, phenotype (22); Holstein blood, phenotype (81)

32

GO:0006508 Proteolysis Angus liver, GEBV (42); Angus muscle, GEBV (41); Angus 
muscle, phenotype (38)

32

GO:0030163 Protein catabolic process Angus liver, GEBV (30); Angus muscle, GEBV (23); Holstein 
blood, phenotype (96)

25

GO:0044257 Cellular protein catabolic process Angus liver, GEBV (28); Angus muscle, GEBV (21);
Holstein blood, phenotype (88)

22

GO:0055114 Oxidation reduction Angus liver, GEBV (54); Angus liver, phenotype (36); Holstein 
liver, phenotype (20)

29

GO:0006325 Chromatin organization Angus muscle, phenotype (15); Holstein blood, phenotype (59) 8
GO:0006396 RNA processing Angus muscle, phenotype (26); Holstein blood, phenotype (113) 10
GO:0007049 Cell cycle Angus liver, phenotype (19); Holstein blood, phenotype (92) 7
GO:0007166 Cell surface receptor linked signal transduction Angus muscle, GEBV (29); Holstein blood, GEBV (7) 1
GO:0009057 Macromolecule catabolic process Angus liver, GEBV (35); Holstein blood, phenotype (115) 14
GO:0009063 Cellular AA catabolic process Angus muscle, GEBV (5); Holstein liver, phenotype (5) 2
GO:0016071 mRNA metabolic process Angus muscle, phenotype (16); Holstein blood, phenotype (71) 6
GO:0016568 Chromatin modification Angus muscle, phenotype (11); Holstein blood, phenotype (42) 7
GO:0032313 Regulation of Rab GTPase activity Angus liver, phenotype (6); Holstein blood, phenotype (16) 3
GO:0032318 Regulation of Ras GTPase activity Angus liver, phenotype (7); Holstein blood, phenotype (23) 4
GO:0032483 Regulation of Rab protein signal transduction Angus liver, phenotype (6); Holstein blood, phenotype (16) 3
GO:0034621 Cellular macromolecular complex subunit 

organization
Holstein blood, phenotype (60); Holstein liver, GEBV (10) 3

GO:0044265 Cellular macromolecule catabolic process Angus liver, GEBV (32); Angus muscle, phenotype (26) 4
GO:0045449 Regulation of transcription Angus muscle, phenotype (67); Holstein blood, phenotype (319) 29
GO:0045597 Positive regulation of cell differentiation Angus liver, phenotype (9); Angus muscle, phenotype (9) 1
GO:0046578 Regulation of Ras protein signal transduction Angus liver, phenotype (13); Holstein liver, GEBV (11) 1
GO:0050870 Positive regulation of T cell activation Angus muscle, phenotype (6); Holstein blood, phenotype (22) 3
GO:0051056 Regulation of small GTPase mediated signal 

transduction
Angus liver, phenotype (14); Holstein liver, GEBV (12) 1

GO:0051094 Positive regulation of developmental process Angus liver, phenotype (10); Angus muscle, phenotype (11) 1
GO:0051276 Chromosome organization Angus muscle, phenotype (19); Holstein blood, phenotype (76) 10
GO:0051603 Proteolysis involved in cellular protein catabolic 

process
Angus liver, GEBV (28); Holstein blood, phenotype (88) 12

GO:0070647 Protein modification by small protein conjuga-
tion or removal

Angus liver, GEBV (11); Holstein blood, phenotype (33) 6

1Number of genes that were significantly associated with residual feed intake in more than 1 data set.
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association between 111 of these 161 DE genes and RFI 
phenotypes and genotypes was calculated. We found 
that 29 of the 111 genes were significantly correlated 
with the RFI phenotype, of which 26 genes displayed 
the same direction of correlation as reported by Chen 
et al. (2011), and 31 genes were significantly correlated 
with GEBV, of which 26 correlations were in the same 
direction. Of these, there were 23 genes whose expres-
sion was associated with both RFI phenotypes and gen-
otypes. However, in the Angus muscle samples, where 
97 of the same 161 DE genes were tested, only 6 were 
significantly correlated with RFI phenotype, and 8 were 
correlated with GEBV. The expression of 5 genes was 
associated with both RFI phenotypes and GEBV. The 
failure to fully replicate the results of Chen et al. (2011) 
in Angus liver samples in our study is due to small dif-
ferences in the animals used but mainly to differences 
between microarray and RNA-Seq technologies. The 
low overlap between genes we found in our Angus mus-
cle RNA-Seq analyses and the reported genes by Chen 
et al. (2011) from liver could be due to the use of differ-
ent animals and the difference between muscle and liver.

Liu et al. (2016) reported 1,972 differentially ex-
pressed genes (adjusted P-values for multiple testing or 

q < 0.15) between the low- and high-RFI postweaning 
gilts using RNA-Seq of blood samples. Although the 
digestive systems of pigs and cattle are quite different, 
we investigated the association between gene expression 
and RFI in 1,536 DE genes identified by Liu et al. (2016). 
There were 587 GSAphenotype that we also found in 
Holstein blood, and 528 had an effect in the same direc-
tion as reported by Liu et al. (2016). Common pathways 
among these 587 genes include signaling controlling 
gene expression (e.g., Interleukin 2 Receptor, Gamma; 
IL2RG), translation (e.g., RPL38), and proteolysis (e.g., 
Ubiquitin Specific Peptidase 1; USP1). Many of the 
same pathways are also enriched in the genes shared by 
Liu et al. (2016) and our Angus liver and muscle and 
Holstein liver data sets (e.g., USP1). Among them are 
regulators of transcription that affect many genes (e.g., 
Ring Finger Protein 1; RING1, B Lymphoma Mo-MLV 
Insertion Region 1 Polycomb Ring Finger Oncogene; 
BMI1, and SERTA domain containing 1; SERTAD1).

Tizioto et al. (2015) found 112 genes whose expres-
sion in liver samples from Nellore steers (Bos indicus) 
was correlated with RFI. The highest overlap between 
their reported DE genes and our findings was in our liver 
samples from Angus bulls, which was 8 GSAGEBV and 

Table 6. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways overrepresented with genes signifi-
cantly associated with residual feed intake phenotypes (GSAphenotype) and GEBV (GSAGEBV)
GO term GO definition Data sets (No. of genes) Common genes1

bta03010 Ribosome Angus muscle, GEBV (16) 25
Angus muscle, phenotype (25)
Holstein blood, phenotype (75)

bta00280 Valine, leucine, and isoleucine degradation Angus muscle, GEBV (7) 7
Holstein liver, phenotype (12)

bta03050 Proteasome Angus liver, GEBV (10) 7
Holstein liver, GEBV (7)

bta00062 Fatty acid elongation in mitochondria Holstein liver, phenotype (3) —
bta00071 Fatty acid metabolism Holstein liver, phenotype (7) —
bta00100 Steroid biosynthesis Angus muscle, phenotype (6) —
bta00120 Primary bile acid biosynthesis Angus liver, GEBV (5) —
bta00190 Oxidative phosphorylation Angus liver, GEBV (21) —
bta00310 Lysine degradation Angus muscle, phenotype (7) —
bta00330 Arginine and proline metabolism Angus liver, phenotype (8) —
bta00650 Butanoate metabolism Holstein liver, phenotype (4) —
bta00830 Retinol metabolism Angus liver, phenotype (7) —
bta00980 Metabolism of xenobiotics by cytochrome P450 Angus liver, phenotype (8) —
bta00982 Drug metabolism Angus liver, phenotype (9) —
bta04060 Cytokine-cytokine receptor interaction Angus muscle, phenotype (12) —
bta04360 Axon guidance Holstein liver, GEBV (8) —
bta04520 Adherens junction Angus muscle, GEBV (9) —
bta04670 Leukocyte transendothelial migration Holstein liver, GEBV (10) —
bta04810 Regulation of actin cytoskeleton Holstein liver, GEBV (12) —
bta04914 Progesterone-mediated oocyte maturation Holstein liver, GEBV (7) —
bta05012 Parkinson’s disease Angus liver, GEBV (24) —
bta05016 Huntington’s disease Angus liver, GEBV (29) —

1Number of genes that were significantly associated residual feed intake in more than 1 data set.
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8 GSAphenotype. Tizioto et al. (2016) identified 73 differ-
entially expressed genes in longissimus thoracis muscle 
of Nellore steers genetically divergent for RFI. In this 
case, the highest overlap between their DE genes and 
our results was in our muscle samples from Angus bulls, 
which was 7 GSAGEBV and 6 GSAphenotype. There were 
also 2 common enriched biological processes, cell death 
and regulation of transcription, for GSAphenotype in 
Angus muscle and 4 enriched biological processes, tran-
scription, regulation of transcription–DNA-dependent, 
regulation of transcription, and regulation of RNA meta-
bolic process, for GSAphenotype in Holstein blood sam-
ples. Comparing the reported KEGG pathways, we also 
found metabolism of xenobiotics by cytochrome P450 
and butanoate metabolism pathways were enriched by 
DE genes in Angus and Holstein liver, respectively.

Salleh et al. (2017) reported 70 and 19 DE genes 
in Holstein and Jersey liver samples with low and high 
RFI. Although there was limited overlap between their 
and our DE genes, 3 out of 5 KEGG pathways report-
ed enriched by DE genes were also identified in our 
study. These pathways include leukocyte transendo-
thelial migration, which both studies found in Holstein 
liver samples, and retinol metabolism and metabolism 
of xenobiotics by cytochrome P450, which Salleh et 
al. (2017) found in Jersey liver and we identified in 
Angus liver samples. Kong et al. (2016) found 122 
DE genes by transcriptome analysis of rumen epithe-
lium of beef cattle with different RFI. The low overlap 
between their results and ours was expected because 
the tissues we studied were different. However, 3 out 
of 6 reported KEGG pathways were rediscovered in 
our studies in Angus liver (proteasome and oxidative 
phosphorylation) and Holstein liver (regulation of 
actin cytoskeleton). Weber et al. (2016) studied gene 
expression of 5 tissues (adipose, duodenum, liver, 
muscle, and pituitary gland) in progenies of 2 sires 
with low and high RFI. We found 199 of their 633 DE 
genes in our study. The highest overlap was observed 
between GSAphenotype in Holstein blood and their DE 
genes in different tissues and in pathways associated 
with fat deposition and metabolisms.

Thus, although there is little consistency in the 
genes whose expression is correlated with RFI, espe-
cially when expression is measured in different tis-
sues of cattle in different physiological states, there 
are some biological processes and pathways found by 
different studies. The list of DE genes found by Chen 
et al. (2011), Tizioto et al. (2015, 2016), Kong et al. 
(2016), Liu et al. (2016), Weber et al. (2016), and 
Salleh et al. (2017) that were also discovered in our 
study is available in Supplementary File 6.

The reversal between Angus and Holstein data sets 
of direction of the correlation between RFI and gene 

expression that we found is also supported by the other 
published studies. The genes found by Liu et al. (2016) 
in the blood of gilts have the same direction of effect 
as the same genes in our Holstein blood for 528 out of 
587 genes. However, less than 50% of the genes from 
Liu et al. (2016) that we also found in Angus liver and 
muscle are in the same direction (38 out 94 for muscle 
and 36 out of 76 for liver). Even more dramatic is that 
among the 45 genes correlated with RFI in both our 
Holstein blood and the rumen epithelium of Kong et 
al. (2016), 44 reverse direction. This finding suggests 
that the high efficiency of muscle growth (low RFI) is 
associated with high rates of transcription, translation, 
and general metabolism but low proteolysis in growing 
tissues (e.g., muscle) and tissues supporting this growth 
(e.g., liver and rumen). However, low rates of transcrip-
tion, translation, and general metabolism in other tissue 
(e.g., blood) may be correlated with efficiency of milk 
yield (our data) or growth in pigs (Liu et al., 2016).

The KEGG pathway results also indicated that some 
of the functions of the genes we found were consistent 
with previous reports. For example, Chen et al. (2011) 
found 7 pathways associated with RFI, and of these we 
found 2 pathways. The pathway related to drug metabo-
lism was exactly the same, and we found it in the same 
tissue, that is, Angus live tissue. For the other pathway, 
cellular growth and proliferation, we found some closely 
related pathways such as ribosome (Angus muscle and 
Holstein blood); proteasome (Angus and Holstein liver); 
valine, leucine, and isoleucine degradation (Angus mus-
cle and Holstein liver); arginine and proline metabolism 
(Angus liver); steroid biosynthesis (Angus muscle); and 
fatty acid and butanoate metabolism (Holstein liver). 
Also, in our gene ontology analysis we found pathways 
related to those reported by Chen et al. (2011) such as 
translation, proteolysis, protein and macromolecule cat-
abolic processes in muscle and liver, oxidation-reduc-
tion, hydrogen transport, oxidative phosphorylation and 
ATP metabolic processes in liver, cell proliferation and 
death, and regulation of dephosphorylation and homeo-
static processes (such as metal ion, cation and cellular 
chemicals) in the muscle of growing bulls and eico-
sanoid, unsaturated fatty acid, and lipoprotein metabolic 
processes in liver of lactating cows.

Conclusions

The genes whose expression were associated with 
RI, did not extensively overlap in different tissues, but 
the same biological processes and pathways were often 
involved. The biological processes influencing RFI in 
different tissues are diverse: We identified 39 biologi-
cal processes that were enriched in more than 1 tissue 
and 3 KEGG pathways influencing RFI in multiple 
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tissues. Many genes correlated with RFI in more than 
1 tissue and in published studies are involved in prote-
olysis, energy metabolism, regulation of transcription, 
translation, the cell cycle, and apoptosis. However, 
the direction of the correlation between RFI and gene 
expression often reverses between lactating cows and 
growing bulls and between tissues.
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