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INTRODUCTION

Single-step genomic BLUP (ssGBLUP) is the 
preferred method for genomic evaluations (Aguilar 
et al., 2010; Christensen and Lund, 2010) because 
it includes genomic and pedigree information si-
multaneously and, thus, tries to avoid bias in esti-
mation of breeding values. A central challenge in 

solving single-step mixed model equations (MME) 
is the inversion of a genomic relationship matrix G. 
First, the computational cost of matrix inversion 
increases cubically with the number of genotyped 
animals. Second, the number of floating point opera-
tions due to the G-1 matrix in the iterative solving 
of the MME increases quadratically with the number 
of genotyped animals. Typically, solving time of the 
MME becomes dominated by the G-1 matrix when 
the number of genotyped animals surpasses 30,000.

To ease these computational challenges Legarra 
and Ducrocq (2012) presented several equivalent 
single-step MME, some of which avoid inversion of 
G, or even making it. Some alternative formulations 
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ABSTRACT: An equivalent computational approach 
called ssGTBLUP was formulated for the original 
single-step GBLUP (ssGBLUP). In ssGTBLUP, the 
genomic relationship matrix has the form G = ZZʹ + 
C, where the (centered and scaled) Z marker matrix has 
size n x m (numbers of genotypes and markers), and 
the C matrix can be easily inverted. The inverse can be 
written as G-1 = C-1 − TʹT where T is an m by n matrix. 
When the preconditioned conjugate gradient (PCG) 
method is used to solve the mixed model equations, 
a matrix vector product G-1d needs to be computed. 
In ssGBLUP, this requires n2 multiplications, but in 
ssGTBLUP, the product TʹTd has 2nm multiplications 
and C-1d has cn multiplications with the constant c 
independent of n or m. In an approximate approach 
called ssGTBLUP(p), the eigendecomposition of 
ZʹC-1Z is used to reduce the number of rows in the 
T matrix. Here, p is the percentage of total variance 
explained by the accepted eigenvalues. The objective of 
this study was to compare the performance of ssGBLUP, 

ssGTBLUP, ssGTBLUP(p), and the APY (algorithm for 
proven and young) method. In APY, the core had 50,000 
(APY50K), 30,000 (APY30K), or 10,000 (APY10K) 
animals. The approaches were tested on the Irish beef 
carcass conformation genetic evaluation which has a 
heterogeneous multibreed population. The pedigree had 
13.3 million animals. There were m = 54,620 markers 
available from n = 163,277 genotyped animals. For 
genotyped animals, the correlations of breeding values 
between ssGBLUP and ssGTBLUP(p) for the 11 traits 
in the model ranged from 0.999–1.000 for p = 99, 
0.998–1.000 for p = 98, and 0.992–0.998 for p = 95 
but were 0.994–1.000 for APY50K, 0.969–0.997 for 
APY30K, and 0.899–0.967 for APY10K. Computing 
times per iteration were 4.43, 3.30, 2.69, 2.29, 1.55, 
1.76, 1.27, and 0.55 min for ssGBLUP, ssGTBLUP, 
ssGTBLUP(99), ssGTBLUP(98), ssGTBLUP(95), 
APY50K, APY30K, and APY10K, respectively. 
The ssGTBLUP(p) approach allowed a well-defined 
approximation to ssGBLUP and fast computations
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account for the genomic information through marker 
effects (e.g., Liu et al., 2014; Fernando et al., 2014, 
2016; Taskinen et al., 2017). Misztal et al. (2014) and 
Fragomeni et al. (2015) suggested using an approxi-
mate sparse inverse of the matrix called the algorithm 
for proven and young (APY) which allow computa-
tions for large genotyped populations (Masuda et al., 
2016; Strandén et al., 2017).

In iterative solving by the preconditioned conju-
gate gradient (PCG) method the original single-step 
MME has typically required the least number of it-
erations (Legarra and Ducrocq, 2012; Strandén and 
Mäntysaari, 2014). We propose an exact approach 
named ssGTBLUP that has the same convergence 
properties in PCG as the original MME, but is compu-
tationally less demanding. Solving time can be further 
reduced by an approximation using eigendecomposi-
tion with rank reduction. The approaches are tested on 
a multibreed beef cattle evaluation and compared with 
the original ssGBLUP with or without APY.

MATERIALS AND METHODS

MME for ssGBLUP
Consider a univariate ssGBLUP model:

y = Xb + Wa + e,

where incidence matrix X relates fixed effects b and 
incidence matrix W relates breeding values a to 
appropriate observations in vector y, and e is random 
residual vector. Assume that Var(e) = Rσ2

e, where R is 
a positive definite matrix, such as the identity matrix I, 
or a diagonal matrix with weights (VanRaden, 2008). 
In ssGBLUP, covariance structure for the breeding 
values is Var(a) = Hσ2

a, where σ2
a is the genetic 

variance and H has both pedigree (A) and genomic 
(G) relationship matrix information (Aguilar et al., 
2010; Christensen and Lund, 2010).

Animals can be assigned to 2 groups: group 1 
has non-genotyped animals; group 2 has genotyped 
animals. Then, the relationship matrix and its inverse 
can be expressed by submatrices using these 2 groups:
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Introducing ssGTBLUP

Solving MME like [1] by PCG iteration requires a 
coefficient matrix of the MME times a vector product. 
When an iteration on data approach is used, this product 
can be calculated easily for all the other parts (e.g., 
Strandén and Lidauer, 1999; Strandén et al., 2017), except 
G-1 which requires making and inverting the G matrix.

Consider a genomic relationship matrix of form

G ZZ0 =
' ,

where Z M P B= −( )( )c 0 5.  is an n × m matrix of centered 
and scaled marker genotypes, M is an n × m matrix of 
marker genotypes, P = 21n pʹ is an n × m matrix for 
centering, p is an m × 1 vector of allele frequencies, 
c is a scaling constant, and B is an m × m diagonal 
scaling matrix. Each genotype value in the M matrix 
is a count of the first allele. Thus, a homozygous 
genotype for the first allele has value 0, heterozygote 
has 1, and homozygous for the second allele has 2. 
Base population allele frequencies are typically used 
in the p vector (VanRaden, 2008). In VanRaden (2008) 
method 1, the scaling matrix B = I and the scaling 
constant c

k
=

1 , where k p p
i

m

i i= −
=
∑2 1
1

( ) .

Matrix G0 is singular when the allele frequencies 
are averages from the genotyped animals in matrix M, 
i.e., p M 1=

1
2n n'  (e.g., Strandén and Christensen, 2011), 

or always when n > m. To guarantee nonsingularity of 
the G matrix, a regularization matrix C can be added:

G G CC = +0 .

For example, C = εI, where ε is a small number. 
Or, C = wA22, where w is the proportion of polygenic 
variance not accounted by the markers, and the 
proportion of variance accounted by the markers (1-
w) can be included in the scaling constant c in G0.

Inverse of the GC matrix can be calculated using 
the matrix inversion lemma (Householder, 1964):

G C C Z ZC Z I ZCC
− − − − − −= − +( )1 1 1 1 1 1' ' .� [2]

This can be written

G C T TC C C
− −= −1 1 ' , [3]

where T L Z CC C= − −1 1' , and the lower triangle matrix 
LC is the Cholesky decomposition of ZC Z I' − +1 , i.e., 
L L ZC Z IC C

' = +−' 1 .
Consider 2 special cases of the C matrix. When 

C = εI, we have
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Lε is the Cholesky decomposition of 1
ε
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We call ssGBLUP using formulation [3] in the 
computations single-step GBLUP with a T factoring 
(ssGTBLUP). When the PCG method is used to 
solve ssGTBLUP having many genotyped animals, 
computationally the most demanding step is the 
product TCʹTCd2 where the TC is an m by n matrix. 
Computing this product in 2 steps from right to left 
requires 2mn multiplications. When the number of 
genotyped animals n is more than twice the number 
of markers m, the multiplication TCʹTCd2 has less 
multiplications than G-1d2 and, thus, may be faster.

In practice, calculation of the TʹTd2 product 
can be performed like in iteration on data, where the 
T matrix is read from disk and processed 1 line at a 
time (Strandén and Lidauer, 1999). Let ti be row i of T 
matrix. The product can be written
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where every row ti has n elements. Thus, for each line 
2 steps are performed: 1) product 2it d  which gives 
a scalar constant, and 2) the constant times a vector 
product is accumulated to the result.

Approximation through Eigendecomposition

Low rank approximation of the inverse GC of 
matrix in ssGTBLUP can be derived using the eigen
decomposition. Equation [2] can be written

( ) 11 1 1 1
C ' −− − − −= − + ′G C C Z VDV I Z C , [4]

where 1 '−′ =Z C Z VDV  is the eigendecomposition 
with the diagonal matrix D having the eigenvalues 
in decreasing order of size, and columns of the V 
matrix having corresponding orthogonal eigenvectors 
of 1−′Z C Z . Note that both D and V have size m. 
Equation [4] can be further rewritten

1 1
C E E
− −= −G C T T' , [5]

where ( )
1

12
E ' '− −= +T D I V Z C .

Mathematically, Eq. [3] and [5] give the same 
result. However, in [5] a rank reduction can be made to 
decrease the number of computations. Let Dr include 
the r highest eigenvalues in D, and Vr corresponding 
eigenvectors or columns in the V matrix. Thus, Dr is 
an r by r matrix, and Vr is an m by r matrix. Then, 
the approximate TE matrix can be calculated as 

( )
1

12 'r r r r
− −= +T D I V Z C' , which is an r by n matrix. 

Thus, the number of multiplications due to 2r rT T d'  is 
2rn instead of 2mn.

When = εC I , we have ( )
1
2

E
1 ' '−= +
ε

T D I V Z , 
where 1 '=′

ε
Z Z VDV  with D and V from the eigende

composition. Now, the rank r approximation of the ET  
matrix is

( )
1
2

1 'r r r
−= +

ε
T D I V Z' .

The rank r approximation can be similarly calculated 
for 22w=C A  as well.

Size of rank r can be based on the proportion of 
total variance explained by the accepted eigenvalues. 
Let di  be eigenvalue i in the diagonal of D where the 
eigenvalues have been ordered in decreasing order, 
i.e., 1d di i+≥ . Then, the proportion explained by r 

eigenvalues is ( )
1

r
ii

d
tr

=∑
D

, where ( )tr D  is the trace or D 

or sum of diagonal elements in D.

Data

Genomic evaluation approaches were tested 
using data from the routine beef carcass conformation 
genetic evaluation performed by the Irish Cattle 
Breeding Federation (ICBF). The ssGBLUP was based 
on the same multitrait animal model and variance 
components as the current official routine breeding 
value evaluation described in more detail in Evans 
et al. (2014) and McHugh et al. (2011). However, 
our model had no genetic groups and the single-
step evaluations included genomic information. The 
model had 9 correlated traits: WQ = farmer-assessed 
weanling quality score (scale of 1 to 5), CP = mart calf 
price (0 to 42 d) from calves sold in single lots through 
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auction houses, WP = weanling price (150–300 d) 
from weanlings sold in single lots through auction 
houses, PWP = post-weanling price (300–600 d) from 
weanlings sold in single lots through auction houses, 
MS = muscle composite score for animals linear scored 
by a trained technician, CC = carcass conformation 
score from abattoirs on a scale of 1 to 15, CCC = cull 
cow carcass conformation score from abattoirs on a 
scale of 1 to 15, MSF = progeny yield deviation for 
muscle score for foreign sires, CCF = progeny yield 
deviation for carcass conformation score for foreign 
sires. The data had 8.33 million animals with records 
(Table 1). Additional information pertaining to the 
traits in the model can be found in Pabiou et al. (2012) 
for WQ and MS; in McHugh et al. (2010) for CP, WP, 
and PWP; and in Pabiou et al. (2011, 2012) for CC.

Pedigree included 13.35 million animals of which 
163,277 were genotyped. Genomic data consisted of 
genotypes of animals from 41 breeds. Breed proportion 
over 96% for a breed was observed for 52,566 animals, 
and breed proportions of 50%–96% for 80,011 animals. 
The most common pure breeds, having more than 
1,000 animals with breed proportion over 96%, were 
Charolais (n = 16,382), Limousine (n = 16,512), Angus 
(n = 8,322), Hereford (n = 4,573), and Simmental (n = 
3,228). The animals had been genotyped using Illumina 
Bovine SNP50 Bead Chip (Illumina, San Diego, CA). 
All the data were provided by ICBF (Cork, Ireland). 
After the quality edits and imputation of missing 
markers there were 54,620 markers from 29 bovine 
autosomes available for the analysis.

Solving Single-Step Evaluations

Single-step genomic evaluations were performed 
by 4 different approaches. In the first approach, the 
Gε matrix was formed and inverted using LAPACK 
(Anderson et al., 1999) subroutines (dpotri after dpotrf) 
available in the MKL library (Intel, 2014). In the 
second approach, the Gε matrix was not formed fully, 
but instead its inverse was approximated using 1

APY
−G  

(Fragomeni et al., 2015). In the third approach, the Tε 
matrix was calculated for the ssGTBLUP approach, 
and neither Gε nor its inverse was explicitly formed. 
In the fourth approach, eigendecomposition was 
used to reduce the number of multiplications during 
the PCG. The eigendecomposition was computed 
using a LAPACK subroutine (dsyevr) available in the 
MKL library. The routine includes a highly optimized 
algorithm to compute eigenvalues and eigenvectors of a 
real symmetric matrix. We considered 3 reduced cases 
where the percentage of total variance explained by the 
accepted eigenvalues was 99%, 98%, or 95%. In addition 
to the single-step evaluations, the MME were solved 

without any genomic information to obtain ordinary 
animal model based breeding values (AMBLUP).

In every approach tested, the genomic relationship 
matrix was defined as ε ′= + εG ZZ I , where Z was 
VanRaden (2008) method 1 (centered and scaled) 
marker genotyped matrix and e was 10-3. The centering 
in the Z matrix used base population allele frequencies 
which were estimated using the method described in 
McPeek et al. (2004) and Strandén et al. (2017).

All models were solved using MiX99 software 
(Strandén and Lidauer, 1999) which uses PCG iteration 
in solving the MME. The main computational cost in the 
PCG method is a matrix times a vector product where 
within each iteration round a so-called direction vector is 
multiplied by the coefficient matrix. In solving the MME 
of ssGBLUP this multiplication includes computing 

( )( )11
22ε

−−= − =x G A d Cd . The product ( ) 1
22

−A d  was 
computed by the formula ( )( )122 21 11 12−

−A A A A d , 
where all terms of A-1 can be easily formed using pedigree 
information. However, there are alternatives (Strandén 
et al., 2017) for computing ( ) 111 −

A v , where 12=v A d . 
We relied on Cholesky decomposition as implemented 
in the CHOLMOD library (Davis and Hager, 2009; 
Chen et al., 2008). The details of implementation are 
explained in Strandén et al. (2017).

Critical for the computing load in the APY algorithm 
is the number of genotyped core animals. Moreover, the 
choice of representative core animals is critical for the 
correlation of GEBV by the original ssGBLUP and the 
APY approach to be high (Misztal et al., 2014). In a 
complex multibreed scenario, such as with the Irish beef 
cattle evaluations, both of these decisions can be difficult. 

Table 1. Trait, number of observations (N), average 
(Mean), standard deviation (Std), and heritability (h2) 
for the analyzed data
Trait1 N Mean Std h2

WQ 1,420,555 3.6 0.8 0.28
CP 117,290 153.3 77.3 0.51
WP 886,755 715.6 180.7 0.44
PWP 840,785 865.0 233.1 0.32
MS 225,997 42.4 7.5 0.41
CC 5,683,908 7.2 2.4 0.35
CCC 1,330,415 3.9 2.2 0.24
MSF 29,078 -1.2 8.5 0.07
CCF 20,428 -0.2 11.7 0.06

1WQ = farmer-assessed weanling quality score (scale of 1 to 5), CP = 
mart calf price (0 to 42 d) from calves sold in single lots through auction 
houses, WP = weanling price (150–300 d) from weanlings sold in single 
lots through auction houses, PWP = post-weanling price (300–600 d) 
from weanlings sold in single lots through auction houses, MS = muscle 
composite score for animals linear scored by a trained technician, CC = 
carcass conformation score from abattoirs on a scale of 1 to 15, CCC = cull 
cow carcass conformation score from abattoirs on a scale of 1 to 15, MSF = 
progeny yield deviation for muscle score for foreign sires, CCF = progeny 
yield deviation for carcass conformation score for foreign sires
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We tested 3 different core sizes: 10,000 (10K), 30,000 
(30K), and 50,000 (50K). Core animals were selected 
randomly and 3 replicates were made. This approach 
worked well for a Holstein dairy cattle population 
(Strandén et al., 2017). In all APY calculations, the 
term ( ) 1

22
−A d  was calculated implicitly using the 

CHOLMOD library as already described.

RESULTS AND DISCUSSION

The original ssGBLUP had the longest preprocessing 
time of 14.7 h, and all the other approaches used less 
than half of that time (Table 2). Making the necessary 
computations using the eigendecompostion approach 
took 7.2 h. Preprocessing time for the ssGTBLUP was 
only 4.0 h. Note that the matrix inversion needed in 
the ssGBLUP and ssGTBLUP approaches is only one 
step that affects the total preprocessing time. Although 
the eigendecomposition is more time consuming than 
inverting a matrix of same size, here eigendecomposition 
was needed for a much smaller matrix of size 54,620, 
i.e., number of markers, whereas the inversion in 
the original ssGBLUP was for the G matrix of size 
163,277, i.e., number of genotyped animals. The 
APY approaches require even less preprocessing time 
than the ssGTBLUP because APY works with small 
submatrices (Masuda et al., 2016; Strandén et al., 2017).

The preprocessing programs used parallel computing 
through the MKL library. Thus, the computations to 
make the G matrix, invert the G matrix, make the T 
matrix, and calculate the eigendecomposition used 
parallel computing. We restricted the number of 
available processors to 10 in all runs. There were clear 
advantages of using parallel computing (Table 2). The 

wall clock time shows amount of elapsed time while the 
CPU time has total time needed by all the processors. 
Consequently, the CPU times could be divided by 10 to 
give average CPU time per processor.

The size of the external file having either the G 
inverse or the T matrix approximates to the number of 
computations needed in the PCG iteration (Table 2). 
For the original ssGBLUP, this file consists of a dense 
lower triangle matrix having n(n+1)/2 elements, but n2 
multiplications are made. For the ssGTBLUP, the file is 
a rectangular n by m matrix but 2nm computations are 
made. According to the file sizes, the original ssGBLUP 
is expected to take the most time and APY10K the least. 
For the rank-reduced ssGTBLUP, the number of rows 
in the T matrix was reduced from 54,620 to 36,705 in 
ssGTBLUP(99), to 32,142 for ssGTBLUP(98), and 
to 24,602 for ssGTBLUP(95). In addition to being an 
indicator for the number of computations, the external 
file needs to be read in every iteration. Operating system 
may, however, buffer it to the RAM memory. In our case, 
the T matrix was relatively small, and it was possible to 
read the file only once and keep it in the memory. With 
the T matrix in memory, we were able to do the matrix 
times vector multiplications using a highly optimized 
BLAS (Basic Linear Algebra Subprograms; Dongarra 
et al., 1990) subroutine in the MKL library which 
reduced the computing time further. The CPU time for 
each iteration round was only 0.99 min per iteration 
(ssGTBLUP M in Table 2). Note that the rank-reduced 
ssGTBLUP runs were timed with iterating with disk 
data file and could be also run with the rank-reduced 
T matrix in memory. An added bonus on the use of the 
memory-stored T matrix is an easy implementation of 
parallel computing through the parallel MKL library as 

Table 2. Computing times and peak memory needed by the solver for the animal model BLUP (AM) and the 
original single-step genomic model (ssGBLUP), and APY based approaches with 50,000 (50K), 30,000 (30K), 
and 10,000 (10K) genotyped core animals1

Pw (h) P (h) Matrix (GB) I (h/1000 iterations) N (n) S (h)
AM 0.9 0.9 – 3 1,309 4
ssGBLUP 14.7 93.2 50 74 1,312 97
ssGTBLUP, D 4.0 21.9 34 55 1,316 72
ssGTBLUP, M 4.0 21.9 – 17 1,300 22
ssGTBLUP(99) 7.2 60.1 23 45 1,325 59
ssGTBLUP(98) 7.2 60.1 20 38 1,343 51
ssGTBLUP(95) 7.2 60.1 15 26 1,388 36
APY50K2 4.1 25.2 26 29 1,775 52
APY30K2 2.2 11.2 17 21 1,618 34
APY10K2 0.9 2.6 6 9 1,425 13

1Single-step genomic model using the T matrix approach (ssGTBLUP) accessed the T matrix from file (D) or from memory (M) every iteration round. 
Eigendecomposition with rank reduction in ssGTBLUP had 99%, 98%, and 95% proportion of variance explained, and read T matrix from the disk. Wall 
clock time in hours for the preprocessing (Pw), CPU times in hours for the preprocessing (P), and CPU time per 1,000 iterations in hours (I), size of external 
matrix read by the solver in gigabytes (Matrix), number of iterations (N), and total solver CPU time (S). In preprocessing, 10 processors were used when 
making the required matrices for ssGBLUP, ssGTBLUP, and APY calculations

2Average of 3 random core replicates.
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was done in the preprocessing step. However, for easier 
comparison between all approaches, we did not use 
parallel computing in the solver.

Computing times per 1,000 iterations were lower 
in ssGTBLUP than in the original ssGBLUP (Table 2). 
However, the ratio of 1.35 in computing times 
(ssGBLUP divided by ssGTBLUP) is not equal to the 
ratio in the number of computations due to the external 
file which is n2/(2nm) = 1.49. There are many reasons 
for this, the most important being natural variation 
in the computing time when usage of the computer 
varies due to other users. However, in general, the 
computing times follow roughly the expected ratio for 
the number of computations. Rank reduction by the 
eigendecomposition was able to decrease computing 
times, as was the APY approach. The decrease in the 
computing time depended on the level of approximation.

Based on the results, ssGTBLUP had similar 
convergence properties as the original ssGBLUP 
(Table 2). All APY based approaches required slightly 
more iterations than the ssGTBLUP approach or the 
original ssGBLUP which has been reported also in 
other studies (Masuda et al., 2016; Strandén et al., 
2017). In particular, the number of iterations increased 
in APY when more animals were used in the core, 
i.e., the closer the APY approach was to the original 
ssGBLUP. A slight increase in the number of iterations 
was observed for the ssGTBLUP approach when 
the rank was reduced using the eigendecomposition. 
Thus, the 2 approaches behaved differently when the 
level of approximation is changed. In general, the 
differences in the numbers of iterations between the 
approaches were small and may be affected by the 
used convergence criterion. Nevertheless, the total 
solving time by ssGTBLUP(98) and APY50K, and by 
ssGTBLUP(95) and APY30K were relatively closer 
than their per iteration computing times.

Essentially, the solutions from the original 
ssGBLUP and the ssGTBLUP approach were the same. 
Correlations of GEBV for the original ssGBLUP and 
ssGTBLUP were 1.000 for all the traits. When the 
eigendecomposition with rank reduction was used, the 
correlations for the genotyped animal GEBVs had a range 
of 0.999–1.000 for ssGTBLUP(99), 0.998–1.000 for 
ssGTBLUP(98), and 0.992–0.998 for ssGTBLUP(95), 
i.e., lower correlations with fewer included eigenvalues. 
Similarly, correlations of GEBV solutions by APY with 
the original ssGBLUP depended on the core size. A core 
size of 50K animals gave highly correlated solutions 
with the original ssGBLUP, having a range of 0.999–
1.000 across traits. Correlations decreased when the size 
of the core decreased, having a range of 0.952–0.996 
for APY30K and 0.899–0.964 for APY10K. According 
to these results, APY10K seemed to deviate too much 

from the original ssGBLUP, and even APY30K results 
could be borderline acceptable but APY50K seemed to 
be very similar to the original ssGBLUP.

Even though the correlations of the GEBV solutions 
between APY30K and the original ssGBLUP were 
high, there were large differences with some GEBV 
solutions, e.g., for the cull cow carcass conformation 
score (Fig. 1). The standard deviation of GEBV of the 
genotyped animals was 0.58 with using the original 
ssGBLUP and 0.57 with ssGBLUP-APY30K. The 
number of GEBV deviating more than 0.2 standard 
deviations was 4,734, corresponding to 2.9% of the 
genotyped animals, deviating more than 0.15 was 14,717 
or 9.0%, and more than 0.1 was 37,517 or 23.0%. These 
numbers are relatively high in comparison to those in a 
Holstein population where even in the case of animals 
deviating the least amount (i.e., > 0.10 SD) these were 
less than 3% with a core of 10,000 animals (Strandén 
et al., 2017). The correlation between APY10K and the 
original ssGBLUP in that study was 0.999, when here 
the highest correlation for APY30K was 0.996.

The data analyzed here provide a big challenge 
for implementation of the APY algorithm. The 
recommended number of animals in the core has been 
associated with the effective size of the population. 
This can be further addressed by examining the non-
zero eigenvalues in the G-matrix. In the analyses 
of Pocrnic et al. (2016a), the number of largest 
eigenvalues that explained 98% of the sum of all 
eigenvalues, was 14,026 and 11,500 for Holstein and 
Jersey, respectively. From our data, we estimated that 

Figure 2. Difference in GEBV of cull cow carcass conformation 
score (CCC) for genotyped animals between the original ssGBLUP and 
APY randomly chosen 30,000 animals in the core. X-axis has animal rank 
by the core selection number. Gray dots represent the core animals, and 
black dots the non-core animals.
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98% of the variation was covered by 32,142 of the 
largest eigenvalues (Fig. 2). Pocrnic et al. (2016b) 
summarized that the dimensionality of the genomic 
information (number of significant eigenvalues in the 
G matrix) is limited either by number of independent 
segregating genome segments (Me), number of SNP in 
the genotyping chip (m), or the number of genotyped 
individuals (n). Considering that the genotyped animals 
represented genetic material from 41 breeds and 
that the large differences in GEBV were seen using 
APY10K compared to the original ssGBLUP, it seems 
that the number of segregating genome segments was 
too large to be described by an arbitrarily chosen set 
of 10,000 core animals. Even APY30K showed uneven 
deviations from the original ssGBLUP that depended 
on the chosen set of core animals.

Figures 1 and 3 illustrate differences to the original 
ssGBLUP solutions for the genotyped animals for 
APY30K and ssGTBLUP(95), respectively. The 
correlation of GEBV for CCC between APY30K and 
the original ssGBLUP was 0.996, while the equivalent 
comparison for ssGTBLUP(95) was 0.998, i.e., about 
the same. The correlations, however, do not reveal that 
the GEBV by these 2 approaches behaved differently 
in comparison to predictions by the original ssGBLUP. 
Standard deviation of GEBV in the original ssGBLUP 
was 0.58 for this trait. It seems that APY30K had more 
negative deviations than ssGTBLUP(95). There were 
1,817 GEBV deviating more than 0.12 units above, i.e., 
more than 0.2 standard deviation units of GEBV higher 
values, by APY30K, but 301 such for ssGTBLUP(95). 

However, the numbers for deviating 0.12 units below 
were 2,917 and 281 for APY30K and ssGTBLUP(95), 
respectively. Thus, the total number of GEBV deviating 
more than 0.12 units was 4,734 for APY30K and 582 
for ssGTBLUP(95). So, ssGTBLUP(95) seemed to 
deviate from ssGBLUP quite evenly between a positive 
or negative direction, but APY30K seemed to give 
GEBV values deviating more toward the negative 
than the positive direction. For ssGTBLUP(99) and 
ssGTBLUP(98), there were no GEBV deviating more 
than 0.12 units from the original ssGBLUP solutions.

An option for APY is to increase the number of core 
animals. However, the rank of the genotype matrix Z 
is never more than the number of markers. The rank of 
Z matrix for the core animals is always less than the 
number of core animals and the number of markers. 
Thus, when the number of core animals is beyond the 
number of markers, the genotype matrix has redundant 
information. It may be possible to select a suitable core 
for a multibreed population that is close to the number 
of markers. However, the larger the core size the more 
iterations are needed to attain convergence (Table 2). 
This is due to numerical values in the 1

APY
−G  matrix 

becoming larger. In the 1
APY
−G  matrix, the submatrix 

of the noncore animals is diagonal, and the diagonal 
elements approach infinity the more animals are in the 
core (Strandén et al., 2017). For our data, the average 
diagonal of the 1

APY
−G  matrix was 4 for APY10K, 31 

for APY30K, and 430 for APY50K. Because the core 
size needs to be large in a heterogeneous population, 
selection of the APY core animals may require some 
more thought in a multibreed population than in a single-

Figure 2. Cumulative sum of eigenvalues proportional to total 
variation for the genomic relationship matrix of 163,277 animals in 
Irish Beef evaluations 2016. The lines in the X-axis mark the number of 
eigenvalues needed to describe 0.95, 0.98, 0.99, and 0.999 of the total sum 
of eigenvalues in the Y-axis.

Figure 3. Difference in GEBV of cull cow carcass conformation 
score (CCC) for genotyped animals between the original ssGBLUP and 
ssGTBLUP with the 95% variance explained. X-axis has animal rank by 
number of progeny.



Efficient single-step genomic evaluation 4735

breed population. However, the realized correlations 
suggest that the use of random core animals works 
reasonably well when the core size is large.

Selection of the core animals is an important step in 
APY. The random selection of the core animals has been 
shown to work well in single-breed populations (e.g., 
Masuda et al., 2016; Bradford et al., 2017; Strandén et 
al., 2017). We decided to follow this approach for the 
multibreed population because it selects core animals 
from the breeds proportionally to their amounts in the 
population. However, it may be that this led to insufficient 
presentation of the smaller breeds in the core group. 
Thus, the APY core selection approaches may need to 
be further investigated for multibreed populations. In 
contrast, the eigendecomposition approach presented 
for the ssGTBLUP gives a well-defined and automatic 
approach to reduce the number of computations that can 
be expected to work for any population structure.

The T matrix has size m × n. The 1−G  matrix 
has size n × n . In iterative solving of the MME by 
PCG, product 1−G d  has to be computed. The number 
of multiplications needed to perform this operation 
using G-1 matrix is 2n . Product 'T Td  needs 2nm 
multiplications. Thus, the product 1−

εG d  needs 2nm + n 
multiplications. The product 1

w
−G d  involves additional 

work due to 1
22

1
w

−A d , which can be performed 

efficiently without making or inverting 22A  using 
sparse matrix operations (Strandén and Mäntysaari, 
2015; Masuda et al., 2016; Strandén et al., 2017) and 
the work can be combined in the other product of 

1
22
−A d  needed in the original ssGBLUP without further 

increasing computational work. When the number of 
genotyped animals n increases, it can be expected that 
the number of multiplications in the product 'T Td  
increases linearly, but in the product 1−G d  the increase 
is quadratic. For 1−

εG d , it can be predicted that this 
product is computationally less demanding in the 
ssGTBLUP than in the original ssGBLUP when the 
number of genotyped animals exceeds 100,000 when 
the number of markers m equals 50,000.

The product 1
APY
−G d  requires nc(2n-nc-1)+n 

multiplications, where nc is the number of core animals. 
This is always less than needed in the product 1−G d  for 
the original ssGBLUP (n2) because nc is less or equal 
to n. For the ssGTBLUP, the number of computations 
to perform 1−

εG d  is (2nm+n), which is more than is 
done in 1

APY
−G d  when the number of the core animals 

(nc) is less than number of markers (m). However, the 
relative advantage of APY diminishes as the number 
of genotyped animals (n) increases. With the most 
challenging multibreed single-step evaluations, the nc 
might have to be higher than m. It can be shown that 
the number of multiplications in 1

APY
−G d  is more than 

that in 1−
εG d  when the number of core animals in APY 

is more than ( )21 2 1 2 1 8
2

n n nm − − − − 
 

 and n is at 

least 2m. This lower bound to nc decreases when n 
increases and m is unchanged. With 100,000 animals, 
50,000 markers, and 50,000 core animals, the original 
ssGBLUP and ssGTBLUP have about the same 
number of multiplications, but APY50K has about 
25% fewer. With 500,000 genotyped animals, the 
ssGTBLUP has ~20% and APY50K has ~19% of the 
calculations of the original ssGBLUP. The difference 
in the calculations is about the same as the difference 
in non-zeroes in the external structure matrix stored in 
the ssGTBLUP and APY50K approaches. When the 
number of core animals equals the number of markers, 
the difference is the size of the number of elements in 
the upper triangle of matrix for the core animals, i.e., 
nc(nc–1)/2, because the (G-1)APY matrix is a squared 
symmetric matrix but the T matrix is rectangular.

We analyzed a multibreed population using 
ssGTBLUP which was shown to work faster than the 
original ssGBLUP when the number of genotyped 
animals is more than twice the number of markers. 
Undoubtedly, this result can be replicated for a single-
breed population as well. However, in a single-breed 
population the APY approach is expected to perform well 
because the core size can be limited typically to numbers 
much less than the number of markers (e.g., Masuda 
et al., 2016, Strandén et al., 2017). A possibility is to 
use the eigendecomposition approach in ssGTBLUP to 
reduce the rank of the T matrix. It is likely that the rank-
reduced T and APY will give similar results as in here 
for the multibreed case. Moreover, to achieve a similar 
agreement with the GEBV from original ssGBLUP, 
the rank of the T matrix is expected to be less than the 
number of core animals in APY. Therefore, in practice, 
the approaches would require about the same solving 
times. Construction of Tr requires eigendecomposition 
and is thus computationally more demanding than the 
construction of 1

APY
−G  with a core size much less than 

the number of markers. This needs to be considered 
in the total computing time in ssGTBLUP(98), but 
the difference is dispensed when more traits are to be 
evaluated with the same G-matrix.

We performed eigendecomposition on a matrix of 
form 1−′Z C Z  in ( ) 11 1 1 1 1

C

−− − − − −′= − + ′G C C Z Z C Z I Z C , 
where = εC I . Alternatively, the decomposition could 
have been done to ( )1−′ +Z C Z I . For this case, we can 
note the following two consequences due to the different 
approaches. First, the two approaches have different 
eigenvalues. Our approach gives lower eigenvalues. 
However, the eigenvalues of our approach can be used 
to calculate eigenvalues of the other approach by a 
simple formula: * 1i id d= + , where id  is the eigenvalue 
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in 1−′Z C Z . Second, our approach leads to the T matrix 

of ( )
1
2

1
r r r

− ′= +
ε

T D I V Z' , but the other approach leads 

to ( )
1

* 21
r r r

−
′=

ε
T D V Z' , where both approaches give the 

same eigenvector matrix rV . Thus, practical differences 
between these approaches are minimal.

Conclusions

We derived an equivalent computational approach 
for the original ssGBLUP called ssGTBLUP which 
needs fewer computations than ssGBLUP in iterative 
solving by the PCG method when the number of 
genotyped animals (n) is more than twice the number 
of used markers (m). The most challenging task is 
a computation of product 'T Td  in each iteration of 
ssGTBLUP instead of 1−G d  in ssGBLUP where G has 
size n x n and T has size m x n. An approximate approach 
of ssGTBLUP uses the most important eigenvalues 
and eigenvectors in the eigendecomposition of the T 
matrix. The approximation allows a decrease in the 
number of rows in the T matrix. The ssGTBLUP gave 
the same solutions as the original ssGBLUP but used 
less computing time in analysis of our data set. The 
approximation approach performed logically when 
the degree of approximation was changed. In the 
challenging multibreed population, solutions by the 
APY algorithm suggested asymmetric deviation from 
the original ssGBLUP but the eigendecomposition 
based ssGTBLUP performed symmetrically. The 
ssGTBLUP with or without eigendecomposition 
approach seems to offer a computationally competitive 
approach for solving genomic breeding values with 
the single-step method when the number of genotyped 
animals is very large even when a genetically 
heterogeneous multibreed population is analyzed.
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