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Abstract

There is growing evidence that population-level brain activity is often organized into propa-

gating waves that are structured in both space and time. Such spatiotemporal patterns have

been linked to brain function and observed across multiple recording methodologies and

scales. The ability to detect and analyze these patterns is thus essential for understanding

the working mechanisms of neural circuits. Here we present a mathematical and computa-

tional framework for the identification and analysis of multiple classes of wave patterns in

neural population-level recordings. By drawing a conceptual link between spatiotemporal

patterns found in the brain and coherent structures such as vortices found in turbulent flows,

we introduce velocity vector fields to characterize neural population activity. These vector

fields are calculated for both phase and amplitude of oscillatory neural signals by adapting

optical flow estimation methods from the field of computer vision. Based on these velocity

vector fields, we then introduce order parameters and critical point analysis to detect and

characterize a diverse range of propagating wave patterns, including planar waves,

sources, sinks, spiral waves, and saddle patterns. We also introduce a novel vector field

decomposition method that extracts the dominant spatiotemporal structures in a recording.

This enables neural data to be represented by the activity of a small number of independent

spatiotemporal modes, providing an alternative to existing dimensionality reduction tech-

niques which separate space and time components. We demonstrate the capabilities of the

framework and toolbox with simulated data, local field potentials from marmoset visual cor-

tex and optical voltage recordings from whole mouse cortex, and we show that pattern

dynamics are non-random and are modulated by the presence of visual stimuli. These meth-

ods are implemented in a MATLAB toolbox, which is freely available under an open-source

licensing agreement.

Author summary

Structured activity such as propagating wave patterns at the level of neural circuits can

arise from highly variable firing activity of individual neurons. This property makes the

brain, a quintessential example of a complex system, analogous to other complex physical

systems such as turbulent fluids, in which structured patterns like vortices similarly
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emerge from molecules that behave irregularly. In this study, by uniquely adapting tech-

niques for the identification of coherent structures in fluid turbulence, we develop new

analytical and computational methods for the reliable detection of a diverse range of prop-

agating wave patterns in large-scale neural recordings, for comprehensive analysis and

visualization of these patterns, and for analysis of their dominant spatiotemporal modes.

We demonstrate that these methods can be used to uncover the essential spatiotemporal

properties of neural population activity recorded by different modalities, thus offering

new insights into understanding the working mechanisms of neural systems.

This is a PLOS Computational Biology Methods paper.

Introduction

Recent advances in brain recording techniques have led to a rapid influx of high spatial- and

temporal-resolution datasets of large neural populations [1–4]. One of the major challenges in

modern neuroscience is to identify and extract important population-level structures and

dynamics from these datasets [5,6]. Traditionally, neural population activity has been mainly

studied from the perspective of temporal synchrony or correlation, and relating correlated

neural activity to brain functions has been the major focus of many studies in neuroscience

during the past two decades [7,8].

However, growing evidence indicates that population-level brain activity is often organized

into patterns that are structured in both space and time. Such spatiotemporal patterns, includ-

ing planar traveling waves [9–11], spiral waves which rotate around a central point [12–14],

source and sink patterns which expand or contract from a point [13,15], and saddle patterns

which are formed by the interaction of multiple waves [13], have been observed at different

neural levels within multiple recording techniques, including multi-electrode arrays [13,16–

18], voltage sensitive dye (VSD) imaging [9,12,19], and electroencephalography (EEG), elec-

trocorticography (ECoG), magnetoencephalography (MEG) and functional magnetic reso-

nance imaging (fMRI) [20–24].

The functional role of these spatiotemporal patterns is a subject of active research: In spon-

taneous activity, propagating patterns have been shown to follow repeated temporal motifs

instead of occurring randomly [13,15], and are postulated to facilitate information transfer

across brain regions [10,17] and carry out distributed dynamical computation [25]. In sensory

cortices, stimuli can elicit repeatable propagating patterns [9,10,19,26,27], and the properties

of these waves can be linked to stimulus features. For instance, the phase and amplitude of

traveling waves in the motor cortex and visual cortex correlate with reach target location [17]

and with saccade size [18], respectively, and the propagation direction of moving patterns in

the visual cortex is sensitive to visual movement orientation [28]. These studies thus indicate

that the ability to detect and analyze these patterns is essential for uncovering the principled

dynamics of neural population activity and for understanding the working mechanisms of

neural circuits [15,26,29,30].

In this study, to detect changes of neural signals happening across both space and time, we

introduce velocity vector fields which represent the speed and direction of local spatiotemporal

propagations. These vector fields allow us to make a novel conceptual link between spatiotem-

poral patterns in neural activity and complex patterns such as vortices or eddies found in the

field of fluid turbulence [31–33], in which these patterns are similarly characterized by using

Spatiotemporal patterns in brain activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006643 December 3, 2018 2 / 29

https://doi.org/10.1371/journal.pcbi.1006643


velocity fields of the underlying moving molecules. Velocity vector fields in our methods are

computed by adapting optical flow estimation methods originally developed in the field of

computer vision [34]. Optical flow techniques have previously been implemented to analyze

brain activity [13,26–28], but here we extend these methods to consider the amplitude and

phase of oscillatory neural signals, allowing for a comprehensive analysis of neural spatiotem-

poral patterns. When constructed from oscillation phase, velocity vector fields are conceptually

similar to phase gradient vector fields as often used in previous studies [15,18]. However,

velocity vector fields provide a conceptual basis for us to adapt methods from turbulence to

develop a unified methodological framework for analyzing neural spatiotemporal patterns.

We show that by examining the critical points in a velocity vector field (also called “station-

ary points” or “singularity points”), where the local velocity is zero [35], different types of spa-

tiotemporal patterns including spiral waves (“foci”), source/sink patterns (“nodes”) and

saddles can be detected. In addition to these complex wave patterns, neural systems can exhibit

widespread synchrony and planar travelling waves. These types of activity are common to

many physical and biological systems, and can be detected by introducing global order param-

eters calculated from velocity vector fields [36]. These methods thus enable the automatic

detection of a diverse range of spatiotemporal patterns after user-defined parameters have

been chosen; these parameters are discussed in detail in Methods and Materials.

Aside from detecting these patterns, our methods can provide systematic analysis of pattern

dynamics including their evolution pathways and their underlying spatiotemporal modes that

exhibit intrinsic and inseparable spatial and temporal features, thus providing a novel alterna-

tive to existing dimensionality reduction techniques which instead separate space and time

components [6]. We validate the effectiveness of all methods and their implementation in the

toolbox through multiple approaches. Using synthetic data with known pattern activity, we

show that spatiotemporal pattern detection is accurate and reliable even in noisy conditions.

We then analyze local field potentials from multi-electrode arrays in marmoset visual cortex

and whole-brain optical imaging data from mouse cortex to test our methodological frame-

work across different recording modalities, species, and neural scales. We find that pattern

properties including location and propagation direction are modulated by visual stimulus, and

that patterns evolve along structured pathways following preferred transitions.

Results

Here we outline a methodological framework for detecting and analyzing wave patterns in neu-

ral recordings using velocity vector fields. These methods can be applied to any recording meth-

odology with high spatial and temporal resolution, including multi-electrode LFPs, VSD and

optical imaging, ECoG, EEG, and MEG. Some of these methods have been briefly described in

our previous work [13], but in this paper we examine them in more depth and show how they

can be uniquely combined with new techniques to form a systematic framework for pattern

detection and analysis. We also discuss their implementation into a freely available MATLAB

toolbox, the NeuroPatt toolbox. Neural data from a two-dimensional spatiotemporal recording

are represented by a four-dimensional matrix, z x; y; t; pð Þ, where z is the recorded signal with

regular spatial coordinates x; yð Þ, time t, and trial presentation p. Recordings without repeated

trials or averaged across all trials have p ¼ 1, although we caution that trial-averaged signals typ-

ically do not capture the spatiotemporal patterns present in single trials [24,28].

Velocity vector fields

Neural activity, although appearing highly disordered at the single-neuron level, can form

dynamical coherent structures such as propagating waves at the population level [37]. There
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are many other complex systems that display similar emergent pattern dynamics, including

fluid turbulence, in which coherent flows and vortices emerge from interacting molecules that

behave irregularly [31,32]. Velocity vector fields, which represent the direction and speed of

fluid motion, are essential mathematical tools for detecting and analyzing coherent activity

patterns embedded in turbulent flow [32]; studies using this approach typically separate activ-

ity patterns at different scales, independently detecting both large-scale flows and small-scale

eddies [33]. In turbulent flow, velocity vector fields are typically measured by following the

movement of tracer particles within the fluid [38]. Here, we introduce a method for calculating

analogous velocity vector fields in neural signals, representing the local direction and speed of

propagating activity at each recording site. As for in studies of coherent structures in turbu-

lence, these velocity fields obtained in neural data provide a powerful conceptual framework

for analyzing a diverse range of propagating wave patterns in the brain.

For a data sequence D(x,y,t), which may represent the raw recorded signal z or the ampli-

tude A or phase θ of an oscillatory neural signal, extracted by using either the Hilbert trans-

form [39] or complex Morlet wavelets [40] (see Oscillatory data filtering in Methods and

Materials), the velocity vector field wðx; y; tÞ ¼ ðuðx; y; tÞ; vðx; y; tÞÞ represents the velocity in

x- and y-directions at each location between time t and t+δt, where δt is the time step specified

by the sampling frequency. If data contain multiple trials, the velocity vector field is computed

iteratively for each trial.

To calculate the velocity field w(x,y,t), we adapt optical flow estimation techniques from the

field of computer science, which were first developed by Horn and Shunck to track the motion

between successive frames of a sequence of images [34]. In their original formulation, the opti-

cal flow is calculated by solving two constraints. The first is the data constancy constraint,

Dðxþ u; yþ v; t þ dtÞ � Dðx; y; tÞ ¼ 0; ð1Þ

which specifies that the same data is present at time t and time t þ dt, only shifted in space. To

first order, this can be expressed as

Ed ¼ Dxuþ Dyvþ Dt � 0; ð2Þ

where Ed is the error in the data constancy, Dx and Dy denote spatial derivatives, and Dt

denotes the temporal derivative at the point x; y; tð Þ. The second is the spatial smoothness con-

straint, which specifies that the computed velocity fields contain smooth and continuous

motion where possible. This constraint can be expressed as

E2

s ¼ jruj2 þ jrvj2; ð3Þ

where Es quantifies the overall departure from smoothness, andr¼
:
@x; @y

� �
denotes the gra-

dient operator. The velocity vector field can uniquely be defined by minimizing both these

error terms:

min
u;v
f∬½rðE2

dÞ þ arðE
2

s Þ�dxdyg; ð4Þ

for some regularization parameter α and penalty function r. Horn and Shunck used a quadratic

penalty, r x2ð Þ ¼ x2, but this can lead to inaccuracies if the underlying data contains hard edges

and adjacent regions moving in different directions [41]. More accurate velocity vector fields can

be obtained by using the Charbonnier penalty, rðx2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b

2
p

, for a small positive constant β
[42]. Eq 4 can be solved by linearizing its corresponding Euler-Lagrange equations, creating a

unique velocity vector field w (see Solving optical flow equations in Methods and Materials).
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Complex wave pattern detection by critical point analysis

Turbulence studies typically separate activity at different scales based on velocity fields [33].

We similarly implement independent procedures to detect global patterns (plane waves and

synchronous activity), which are active across the whole recording area, and complex wave

patterns, including source, sink, spiral and saddle patterns, which are characterized by local

activity around their central points. Complex spatiotemporal wave patterns, which are analo-

gous to eddies, are organized around critical points where the velocity field has zero magnitude

[35]. These complex wave patterns generate distinctive dynamics around their central critical

points; in our methodology, we exploit this dynamical property to automatically detect and

classify such patterns. In velocity fields, we identify critical points as locations where both x-

and y-components of the velocity are zero by finding intersections of the bilinearly interpo-

lated zero-level contours lines of u and v [43]. Each critical point is then categorized by the

Jacobian matrix,

J ¼

@u
@x

@u
@y

@v
@x

@v
@y

0

B
B
B
@

1

C
C
C
A
; ð5Þ

which is estimated at the critical point using bilinear interpolation from the corners of the sur-

rounding 4-element cell of recording sites. Depending on the trace (τ) and determinant (Δ) of

the Jacobian, critical points are classified as a node (D > 0 and t2 > 4D), focus (D > 0 and

t2 < 4D), or saddle (D < 0), and node and focus points are further classified as stable (t > 0)

or unstable (t < 0).

These classes of critical points correspond to different types of wave patterns (Fig 1): Nodes

expand or contract from a critical point, forming sources or sinks, respectively; saddles have

one stable axis and one unstable axis, and are typically formed through interactions between

different waves; and foci rotate around the critical point, thereby corresponding to spiral

waves. In addition to their rotating motion, foci can also involve expansion or contraction

from the critical point, forming spiral-out or spiral-in wave patterns, respectively. However,

previous studies of spiral waves have not distinguished between spirals-out and spirals-in

[12,14,44]. In our methods and toolbox, these patterns can therefore optionally be combined

to facilitate direct comparison with other published results.

Although complex wave patterns are classified only by the local properties of their central

critical point, they can spread over larger regions of space. We thus develop a method for

Fig 1. Critical points in vector fields. Schematic of critical point types in velocity vector fields. Dots and triangles show critical points, arrows show typical

surrounding vector fields for all 2D critical point classes. Unstable and stable nodes correspond to source and sink patterns respectively, unstable and stable

foci correspond to spirals-out and spirals-in respectively. Saddle pattern has stable (solid line) and unstable (dashed line) axes indicated, these axes can

occur at any orientation in general.

https://doi.org/10.1371/journal.pcbi.1006643.g001

Spatiotemporal patterns in brain activity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006643 December 3, 2018 5 / 29

https://doi.org/10.1371/journal.pcbi.1006643.g001
https://doi.org/10.1371/journal.pcbi.1006643


characterizing the spatial extent of complex wave patterns by using the winding number (Poin-

caré index), which has a value of +1 for node and focus patterns and � 1 for saddle patterns for

all closed paths within the pattern’s extent around the location of the critical point [43]. We

create approximately circular paths around the location of the critical point, and the winding

number is estimated in each of these paths as

winding number ¼
1

2p

Xn

k¼1

ðykþ1 � ykÞ; ð6Þ

where yk is the angle of the k-th vector around a closed counter-clockwise path with n points,

angles are subtracted circularly, and where ynþ1 ¼ y1. We compute the winding number in

paths of expanding size around a pattern’s center, and its spatial extent is defined by the largest

area within which all computed winding numbers are consistent with the critical point type.

This procedure therefore provides an efficient estimate how far wave patterns spread across

the cortex, an important property of neural oscillatory activity.

Synchrony and plane wave detection by order parameters

We next introduce methods for detecting and analyzing simple, large-scale patterns such as syn-

chrony and planar waves by defining order parameters based on the velocity vector fields. We

detect planar waves using an order parameter defined as the average normalized velocity [36]:

φðtÞ ¼

�
�
�

�
�
�
X

x;y
wðx; y; tÞ

�
�
�

�
�
�

X

x;y

�
�
�
�wðx; y; tÞ

�
�
�
�
: ð7Þ

This statistic is equivalent to phase gradient directionality [17] except it uses velocity vector

fields instead of the phase gradient. Normalized velocity ranges from zero to one, with φ! 1

as velocity vectors align to one direction, reflecting coherent motion across the recording area.

Plane wave activity is therefore detected at times when φ is greater than some threshold value

Tpw, which should be close to one (Tpw ¼ 0:85 by default in the toolbox).

If data has been band-pass filtered to extract the oscillation phase θ, we also detect large-

spread synchronous activity using another order parameter, which is defined as the resultant

vector length of phase across the recording area [45,46],

RðtÞ ¼
1

N

�
�
�
X

x;y
eiyðx;y;tÞ

�
�
� ; ð8Þ

where N is the number of spatial recording sites in phase maps. The resultant vector also

ranges from zero to one, with R! 1 as the phase of oscillations at all recording sites align to

the same value, reflecting wide-spread synchrony. We note that the order parameter as defined

in Eq 8 is similar to that used to characterize global synchrony in coupled phase oscillators

[47], and 1 � R is commonly defined as the circular variance [45]. Synchronous activity is

therefore detected at times when R is higher than another threshold value Tsyn, the default of

which is Tsyn ¼ 0:8 in the toolbox.

Critical point detection accuracy in simulated data

To test the performance of our pattern detection methods, we generated artificial data sets with

simultaneous source and sink patterns active at the same frequency, located at random positions

and propagating in random directions within a 12×12 spatial grid (see Simulated data in Methods

and Materials). We then added Gaussian white noise, band-pass filtered the signal, calculated

Spatiotemporal patterns in brain activity
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velocity vector fields, searched for complex wave patterns in the velocity fields, and compared the

detected pattern centers with their true locations. An example of this procedure is shown in Fig 2,

which shows calculated velocity fields and pattern centers between two frames of a simulated data

set (Fig 2A). The velocity fields depend on two parameters in the optical flow estimation proce-

dure (Eq 4): The smoothness regularization parameter α, and non-linear penalty constant β.

The smoothness regularization parameter α determines the weighting of the smoothness

constraint compared to the data constraint, and thereby the overall smoothness of the velocity

fields. Small values of α generate velocity fields that primarily capture local changes and are

therefore sensitive to added noise, potentially leading to the detection of spurious, noise-driven

patterns (Fig 2B, left column, α = 0.1). Large values of α are more robust to noise, but can

over-smooth the data, creating mostly uniform flow fields that do not capture the underlying

dynamics (Fig 2B, right column, α = 1.5). Reasonable values for α can range from ~0.1 to ~20,

depending on the size of the data, the dynamics of the propagations, and the level of noise; for

example, reducing the spatial sampling frequency of a dataset reduces the number of grid

spaces between complex patterns, typically requiring a lower value of α to effectively resolve

individual patterns. The non-linear penalty constant β determines the degree of non-linearity

of the penalty functions, with large values b� 1 resulting in a quadratic penalty and small val-

ues b� 1 in a more robust non-linear penalty. Small values of β give more accurate velocity

vector fields for any regions with discontinuous motion in the underlying data [41,48], but we

find that such discontinuities are rare in neural recordings, so using large values of β generally

Fig 2. Effect of optical flow parameters on computed velocity fields. A, Consecutive snapshots separated by arbitrary time step δt of artificial noisy phase data,

containing an expanding source and contracting sink pattern, both drifting slowly across the array. B, Velocity fields between images in A calculated using optical flow

with varying smoothness parameter α and non-linear penalty parameter β. Filled red circles indicate detected critical points, open blue circles indicate true critical point

locations.

https://doi.org/10.1371/journal.pcbi.1006643.g002
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gives similar results (Fig 2B). In addition, when β is large and the equations are effectively qua-

dratic, the optical flow procedure can typically converge much faster.

The choice of appropriate values for α and β cannot be fully automated for a real dataset with-

out making assumptions about the dynamics of the data. However, pattern detection accuracy

can be evaluated in simulated datasets with specified properties and pattern dynamics, which can

then be used to guide parameter choices in real data. Fig 3 illustrates the effectiveness of the pat-

tern detection algorithm for one such set of properties and dynamics (see Simulated data in

Methods and Materials). The detected spatial position of patterns is most accurate when using

small values of a ða � 1, Fig 3A). Using a quadratic penalty function (b ¼ 10) generally gives

more consistent results across a range of a values than a non-linear penalty function (b ¼ 0:01)

and results in fewer missing patterns (Fig 3B), but using the non-linear penalty can give a lower

false positive rate (Fig 3C). Plotting the true positive rate against the false positive rate provides a

clear way to examine the effectiveness of pattern detection across a range of parameters (Fig 3D).

We generally recommend using large values of βwhen examining new data sets, as this provides

more reliable performance and faster processing overall. Additionally, pattern detection is largely

unaffected by noise if the variance of the noise is equal or less than the variance of the pattern

oscillations and remains fairly accurate for significantly greater noise levels (Fig 3E–3G).

Fig 3. Critical point pattern detection performance in simulated data. A, Mean displacement (in grid spaces) between detected and true critical point location across

n = 50 sequences of simulated random critical point patterns for different values of optical flow parameters α and β. Error bars indicate SEM. Outlined points indicate α
parameter value used for plots D-F. B, Mean percentage of true patterns missed or misclassified by pattern detection algorithm. C, Mean number of extra, spurious

patterns detected per time step. D, Mean false patterns detected per time step (false positive rate) against the percentage of patterns correctly identified (true positive rate)

for different parameter values. E-G, Same as A-C, but showing performance under different levels of noise with a fixed value of α. Noise levels are given as the common

logarithm of the standard deviation of added white noise relative to average signal amplitude. Outlined points indicate noise level used for plots A-C.

https://doi.org/10.1371/journal.pcbi.1006643.g003
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Propagating wave patterns in large-scale neural data

To validate our methods and test for wave pattern activity in real neural data from different

scales and imaging techniques, we examined previously published LFP recordings from the

MT area of anaesthetized marmosets [49] and optogenetic voltage imaging recordings from a

complete cortical hemisphere in awake mice [50] (see Experimental recordings in Methods

and Materials). Using our methodology, we searched for wave patterns within the phase and

amplitude of oscillations across a range of frequency bands. Both datasets exhibited a rich rep-

ertoire of wave patterns which were successfully detected. Some examples of common pattern

activity for each modality are shown in Fig 4.

Fig 4. Complex wave patterns in marmoset area MT and mouse cortex. A, B, C, Complex wave patterns in phase maps of 4 Hz LFP oscillations during

ongoing activity recorded from marmoset area MT. Velocity vector fields (black arrows) were calculated between consecutive phase maps separated by 1 ms; we

use larger time gaps between snapshots here to show wave propagation more clearly. Critical points are indicated by symbols corresponding to the classes in Fig

1. D, E, Complex wave patterns in phase maps of 4 Hz optical voltage imaging oscillations in awake mouse cortex. Velocity vector fields are calculated from

phase maps separated by 20 ms. F, Localized propagating activity in amplitude maps of 10 Hz optical voltage imaging oscillations in awake mouse cortex.

https://doi.org/10.1371/journal.pcbi.1006643.g004
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In delta-band phase of the marmoset data, complex waves were commonly present across

the whole 16 mm2 recording area, including saddle (Fig 4A) and spiral-out (Fig 4B) patterns.

We also observed multiple complex wave patterns active simultaneously in different areas of

the cortex, as shown for sink and saddle patterns in Fig 4C. In the mouse data, complex waves

were present in the phase of slow (4 Hz) oscillations, and these waves sometimes spread across

the whole cortical hemisphere, including sink (Fig 4D) and spiral-in (Fig 4E) patterns. Large-

scale propagating patterns were also present in the amplitude of 10 Hz oscillations, where mul-

tiple spreading patterns often interacted to form saddles (Fig 4F). These examples demonstrate

that complex wave patterns are present at multiple scales of brain activity, and that these pat-

terns can be detected and quantified through our methodology.

Analysis of wave pattern properties

Having presented our pattern detection methods, we now demonstrate how these techniques

can be used to examine the properties and dynamics of waves patterns in more detail, and how

these properties can be further related to brain function. Directly tracking simple and complex

wave patterns allows their location, movement direction, prevalence, duration and other prop-

erties to be collated across many occurrences. To validate the results of the pattern detection

procedure, the properties of patterns detected in a real dataset can be compared to those of pat-

terns detected in a surrogate dataset comprised of noise with similar characteristics to the orig-

inal data (see Pattern detection parameters and result validation in Methods and Materials).

The processes of band-pass filtering and velocity vector field estimation can smooth data and

may therefore generate spurious wave patterns in noise-driven surrogates. However, these pat-

terns in surrogate data are typically more localized and transient than real neural wave patterns

and can therefore be mostly removed if the minimum pattern spatial extent and duration

parameters are sufficiently large. In neural recordings with genuine wave pattern activity, all

pattern types will typically occur more frequently (Fig 5A), be present for a larger proportion

of recording time (Fig 5B) and last longer per occurrence (Fig 5C) than equivalent patterns in

noise-driven surrogates.

The properties of wave patterns can vary depending on brain state, recording location, or

cognitive task, revealing relevant dynamical changes in the recorded neural system. An example

of this is shown in Fig 6, which compares properties of patterns in spontaneous and stimulus-

evoked phase velocity fields from the same animal. During ongoing activity (sustained blank

screen stimulus), plane waves were active for much of the recording time and propagated in a

range of directions (Fig 6A, mean resultant vector length 0.28). Complex wave patterns were

also common and did not form randomly in space. Instead their central critical points were

clustered around preferred locations (Fig 6B), which were situated at different points in the

recording array for node and saddle patterns. When relevant stimulus was presented (coher-

ently propagating dot fields turned on and off every two seconds), relatively fewer plane waves

were active overall, but their propagations were more tightly distributed around one preferred

direction (Fig 6C, mean resultant vector length 0.42). The presence of stimulus also affected the

overall prevalence of critical point patterns, increasing the number of stable and unstable nodes

and decreasing the number of saddles, and changed their patterns of distribution across space

(Fig 6D). Our methods can therefore be used to quantify changes in spatiotemporal pattern

dynamics driven by different stimuli, cognitive tasks or behavioral states.

Detected wave patterns can also be processed to reveal their temporal evolution dynamics.

Brain activity evolves between different activity patterns in a complex and non-random way,

but the mechanisms of these transitions are not well-understood [13,15]. Our methodology

provides an ideal framework for exploring such dynamics: Once all patterns in a recording
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have been identified, common pattern transitions and motifs can easily be identified. We dem-

onstrate some of these evolution dynamics in stimulus-evoked LFP recordings (see Pattern

evolution dynamics in Methods and Materials). Patterns were typically active for tens to hun-

dreds of milliseconds, often then transitioning into a different pattern (Fig 7A). The total num-

ber of transitions between all pairs of pattern types were counted across a recording, and the

significance of these observed counts was established by comparison to the expected number

of counts if all patterns began and ended at random times (Fig 7B). Using this simple analysis,

we observed that periods of plane wave and synchronous activity were usually interspersed by

other pattern types, synchronous activity was highly likely to transition to or from all other

pattern types, and patterns commonly evolved from sources to sinks and vice versa. This anal-

ysis illuminates the temporal dynamics of the spatiotemporal activity patterns present in the

recording and provides quantitative measurements which can be linked to cognitive tasks or

used to constrain models of cortical dynamics. Similar analyses can also facilitate tracking the

Fig 5. Wave pattern properties in real data compared to noise-driven surrogate data. A, Mean number of 6 Hz

phase patterns detected per second per trial in real data (white bars, marmoset LFPs during dot-field stimulus) and

surrogate data (shaded bars, white noise with equal mean and variance per recording channel to real data). Error bars

indicate SEM across 100 trials for both datasets. PW, plane wave; SY, synchrony; SI, sink; SO, source; SP-I, spiral-in,

SP-O, spiral-out, SA, saddle. B, Same as A, but showing percentage of recording time active. C, Same as A, but

showing mean pattern duration.

https://doi.org/10.1371/journal.pcbi.1006643.g005
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movement of neural structures of interest across brain regions [15], detecting repeated motifs

in pattern dynamics [13], or examining gradual changes in pattern dynamics corresponding to

changes in brain states [50].

Phase and amplitude patterns

In neural recordings, amplitude and phase data at the same frequency reflect different proper-

ties of brain activity, with amplitude representing a combination of the coherence and overall

activity of a local ensemble and phase representing the timing of its oscillations. Accordingly,

these signals typically contain different spatiotemporal patterns, and both phase and amplitude

patterns can be relevant and informative. Fig 8 illustrates the spatiotemporal profile of raw

LFP data, filtered LFP data, and the amplitude and phase of filtered LFP data, again taken from

marmoset visual area MT. The spatiotemporal dynamics in the raw data (Fig 8A) primarily

reflect those in the oscillations with greatest power, but also contain a large amount of noise

from other frequencies. Filtering the data to a narrow-band signal (Fig 8B) reduces the noise

by extracting the patterns present in the chosen frequency band alone, but these wave patterns

Fig 6. Distributions of plane wave propagation direction and complex pattern center location in ongoing and stimulus-evoked PVFs. A, Histogram of plane wave

propagation direction in 6 Hz phase of ongoing activity. Also shown is the percentage of time across the recording in which plane wave activity occurred. B, Spatial

distribution within the recording array of critical points across all occurrences of node and saddle patterns. Note that foci have been combined with nodes for this

analysis. C, D, Same as A, B, but for a recording visually evoked by moving dot fields.

https://doi.org/10.1371/journal.pcbi.1006643.g006
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are typically complicated as they are influenced by two different types of propagating activity:

amplitude patterns (Fig 8C), which capture the movement of the overall shape of the wave and

travel at the group velocity [51], and phase patterns (Fig 8D), which capture the progression of

timing differences between electrodes and travel at the phase velocity.

In a general oscillating system, the phase and amplitude are independent properties which

have no a priory reason to affect each other. However, there is some evidence that phase and

amplitude patterns can be related in some neural systems: Phase patterns in rabbit sensory cor-

tices are more commonly observed around the formation of new amplitude patterns [52], and

spiral waves in mammalian neocortex exhibit consistently reduced amplitudes at their centers

[12,44]. Examining both phase and amplitude separately may therefore uncover similar rela-

tionships in other experimental protocols and can reveal a more comprehensive understand-

ing of the underlying dynamics of cortical circuits. For example, two simple patterns can be

resolved from the complicated activity in Fig 8B: A gradually expanding activation from a

point near the center of the recording array, as revealed by the amplitude velocity field in Fig

8C, and a plane wave propagating across the recording area, as revealed by the phase velocity

field in Fig 8D.

Analysis of spatiotemporal modes

Whilst direct identification of wave patterns in velocity fields as described in the previous sec-

tions allows for patterns’ individual dynamics to be fully characterized, the procedure does not

specify the extent to which these patterns contribute to the overall spatiotemporal dynamics of

a recording. To address this, we introduce a complementary method for studying wave activity

in neural recordings by using velocity field decomposition, which finds low-dimensional spa-

tiotemporal modes that capture the majority of variance in the system. Dimensionality reduc-

tion techniques are commonly used for uncovering underlying neural mechanisms of brain

Fig 7. Tracking pattern evolution dynamics. A, Snapshots of 6 Hz phase and phase velocity fields from marmoset area MT LFPs during dot field

stimulus, showing evolution from a plane wave pattern to a sink pattern. Black dot marks stable node location. B, Mean percentage difference between

number of observed and expected pattern transitions (within 50 ms) for recording shown in A. Rows give initial pattern, columns give following pattern.

Bold values indicate significant differences between observed and expected counts across all trials (p<0.05, paired t-test with Bonferroni correction). PW,

plane wave; SY, synchrony; SI, sink; SO, source; SA, saddle. Node and focus critical points are combined.

https://doi.org/10.1371/journal.pcbi.1006643.g007
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function [6]. However, the majority of existing techniques use principal component analysis

(PCA) or similar procedures that decompose data into independent spatial and temporal

modes, obscuring activity that is not time-space separable such as propagating waves and pat-

terns [53]. Some studies have used decomposition techniques to specifically detect waves by

examining phase gradients in complex decompositions of data [26,29]. To identify dominant

spatiotemporal patterns in our framework, we again obtain inspiration from the field of turbu-

lence, in which dimensionality reduction is often directly applied to velocity fields, capturing

low-dimensional spatiotemporal dynamics [33].

In turbulence, dimensionality reduction can be performed through a variety of different

decomposition methods, including Reynolds decomposition, principal component analysis

(or proper orthogonal decomposition), and dynamic mode decomposition [54]. These tech-

niques find modes capturing the majority of the energy in the system, which is not well-

defined for velocity fields of neural data as it is in fluid flows, but some of these methods none-

theless can be adapted to find low-dimensional representations of the primary spatiotemporal

dynamics of a neural recording. We implement a simple singular value decomposition (SVD)

Fig 8. Oscillatory filtering and velocity vector field calculation in LFPs from marmoset visual area MT during dot

field stimulus. A, Left: LFP waveforms from two nearby recording sites. Black lines indicate times at which snapshots

are shown. Stimulus onset was at 0 s. Centre: Snapshots of LFPs across all recording channels at the indicated times.

Right: Velocity vector field estimating the motion between the two snapshots. B, Same as A, but with waveforms filtered

with Morlet wavelets to extract 8 Hz oscillations. C, Same as B, but only the amplitude of the 8 Hz oscillations. D, Same

as B, but only the phase of the 8 Hz oscillations. All velocity fields have normalized average magnitude.

https://doi.org/10.1371/journal.pcbi.1006643.g008
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to extract the dominant spatiotemporal patterns from a time series of velocity fields in an effi-

cient and parameter-free way.

To reorganize the velocity fields u x; y; tð Þ; v x; y; tð Þð Þ into standard form for decomposition

with variables in columns and observations in rows, we combine spatial dimensions and rear-

range indices to define ~u t; rð Þ;~v t; rð Þð Þ, for time t and recording site r. We then use two alternate

approaches to combine ũ and ṽ. In the first approach, we concatenate the two matrices across

recording sites to define the real matrix ~wreðt; r0Þ ¼ ½~uj~v�. In the second, we represent the velocity

field as a complex number to form the complex matrix ~wcoðt; rÞ ¼ ~uðt; rÞ þ i~vðt; rÞ. In either

case, the singular vector decomposition (SVD) is defined as

~w ¼ TSR�; ð9Þ

where ~w denotes ~wre or ~wco, T and R are unitary matrices, � denotes the conjugate transpose, and

S is a rectangular diagonal matrix of positive numbers si, called the singular values [55]. This

operation finds orthogonal linear combinations of recording sites that explain the greatest vari-

ance in the velocity fields, and is closely related to PCA: if ~w has been shifted so that each record-

ing site has zero sample mean, then R comprises exactly the principal component loadings, and

s2
i are the principal component scores [56]. However, normalizing the velocities at each recording

site is counterproductive in this application, as biases in propagation direction are an important

component of wave dynamics. The k-th spatial mode, defined by the velocity field in the k-th col-

umn of R, explains a proportion of the overall variance given by s2
k=
P

is
2
i , and has a time course

given by the k-th row of T.

The vector SVD procedure is closely related to traditional PCA methods, as both techniques

reduce the dimensionality of a dataset by extracting patterns that comprise the bulk of the vari-

ance and their evolution over time. The differences between these approaches are illustrated in

Fig 9, which again shows marmoset LFP data during moving dot-field stimulation. PCA typi-

cally decomposes data into orthogonal spatial modes (Fig 9A), which comprise linear combi-

nations of recording sites [6]. Vector SVD instead processes the velocity vector fields to extract

spatial modes which are vector fields themselves (Fig 9B), and therefore represent distinct

propagation patterns in the underlying data. In both cases, each spatial mode has a corre-

sponding time-course (or temporal mode), describing its evolution across the duration of a

recording (Fig 9C and 9D).

Although the dominant PCA modes explain more variance than their SVD counterparts,

their temporal components reveal structured interactions between the dominant spatial

modes (Fig 9C), generating spatiotemporal activity patterns which are difficult or impossible

to determine directly from the PCA modes. In contrast, SVD spatial modes directly reflect

these spatiotemporal patterns, and their evolution over time represents the strength of differ-

ent pattern types in response to stimulus. In Fig 9, stimulus onset generates large, clear changes

in spatiotemporal pattern dynamics revealed by SVD (Fig 9D): Sink pattern activity increases

dramatically but transiently (shown by the large deflection in mode 3); plane waves (modes 1

and 2) increase in activity more modestly, but change direction soon after stimulus onset (as

indicated by the sign change of mode one at 300 ms) and are sustained for a longer period.

These results suggest that stimuli can directly affect the dynamics of propagating wave pat-

terns, but that these changes are obscured when using PCA or other decomposition methods

that separate space and time.

We find that in both spontaneous and stimulus-evoked LFP recordings, velocity vector fields

in phase and amplitude at all frequencies display consistent dynamics: the most dominant modes

typically reflect orthogonal directions of plane wave motion, and the next most dominant modes

contain complex patterns including sources, sinks, spirals and saddles (Fig 10A). Despite these
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similarities, the disparities between spatial modes in different recordings or conditions can reveal

major differences in the underlying pattern dynamics, including the primary directions of plane

Fig 9. Dominant principal component analysis and vector singular value decomposition modes in 10Hz marmoset LFP oscillations during dot-field

stimuli. A, Top spatial PCA modes of filtered LFPs, with percentage variance explained. B, Top spatial SVD modes of phase velocity fields, showing coherent

spatiotemporal activity patterns. C, Temporal evolution of PCA modes, averaged across all trials. Stimulus onset at 0 s. Non-causal effects are due to time

smoothing of signal filtering. D, Same as C, but for SVD modes.

https://doi.org/10.1371/journal.pcbi.1006643.g009
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wave motion, the center location of complex patterns, and the relative prevalence of different pat-

tern types. As an example, we compare the dominant SVD modes during stimulus-evoked activ-

ity in Fig 9B to those during ongoing activity in the same recording (Fig 10A). The four most

dominant modes represent the same activity patterns, but they display slightly different dynamics:

The primary propagation direction of plane waves changes (shown by the direction of mode 1);

the central locus of source, sink and saddle activity changes location (shown by the critical point

in nodes 3 and 4); and ongoing activity overall contains more plane wave and less source, sink

and saddle activity (as revealed by the percentage of variance explained).

Fig 10. Real and complex vector singular value decomposition modes in 10 Hz phase velocity fields. LFPs were

taken from the same recording as in Fig 9, but during ongoing activity. A, Top spatial SVD modes in velocity fields,

with percentage variance explained. Modes correspond to spatiotemporal patterns, which are scaled but not rotated as

they evolve over time. B, Top spatial cSVD modes, with percentage variance explained. These modes are both scaled

and rotated over time, effectively combining multiple SVD modes as indicated by colors: cSVD mode 1 contains SVD

modes 1 and 2; cSVD mode 2 contains SVD modes 3 and 6; and cSVD mode 3 contains SVD modes 4 and 5.

https://doi.org/10.1371/journal.pcbi.1006643.g010
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Real and complex singular value decomposition

In the SVD method discussed thus far, each class of spatiotemporal pattern may be represented

across multiple modes (e.g., modes one and two both reflect plane wave activity), making their

overall prevalence more difficult to calculate. To address this issue, we also implement a modi-

fied SVD procedure that we call complex singular value decomposition (cSVD), which treats

velocity vectors as complex numbers. In this approach, temporal modes have both a real and

imaginary component, allowing spatial modes to both scale and rotate over time: The ampli-

tude of the temporal mode gives the relative strength of the pattern, and the argument of the

real and imaginary components gives the angle by which all vectors are rotated. This approach

effectively combines real SVD modes together (Fig 10): Modes with plane waves travelling in

any direction are combined, as are modes containing source, sink and spiral patterns with the

same center location, or saddles with the same center location. This allows the overall relative

contribution of each type of activity pattern (plane waves, expanding or contracting waves,

saddle patterns) to be accurately evaluated, but information about the direction of patterns is

removed to the complex time evolution.

Discussion

In this paper, we have introduced a methodological framework and associated MATLAB

toolbox for the classification and analysis of propagating wave patterns in neural recordings, and

illustrated these methods using simulated data, LFP recordings from marmoset visual area MT

and whole-brain optical imaging data from mouse cortex. The toolbox is freely available under an

open source agreement from [https://github.com/BrainDynamicsUSYD/NeuroPattToolbox]. As

we have demonstrated, our methods provide a framework for uncovering the spatiotemporal

organization principles of these patterns and for examining how they are related to brain function.

We have introduced velocity vector fields to characterize how neural oscillatory signals change

across space and time. Based on these vector fields a range of mathematical techniques including

order parameters, critical point analysis and winding number calculation are uniquely combined

to detect a diverse range of wave patterns and to characterize their key spatiotemporal organiza-

tion properties. Our methods thus build upon the application of optical flow analysis for detecting

wave patterns developed in previous studies [15,57,30,58]. As we have demonstrated, order

parameters can be used to detect the presence of large-scale plane waves or synchronous activity,

and critical point analysis can detect complex wave patterns, comprising sources, sinks, spirals-in,

spirals-out, and saddles. Calculation of the winding number around critical points can then be

used to measure the precise size of wave patterns, which may be useful in future studies to exam-

ine the spatial scale of neural features and effects across different frequencies [59]. These

approaches allow multiple classes of waves to be tracked simultaneously and systematically.

Applying these methods to experimental data, we successfully identified both small-scale wave

patterns in LFP recordings from anaesthetized marmoset visual cortex and large-scale patterns in

whole-brain optical recordings from awake mice. In both datasets, multiple coexisting patterns

were commonly active and all patterns were significantly more prevalent than in noise-driven

surrogate data (Fig 5). Furthermore, we showed that visual stimulation can change the direction

of plane wave activity and the position of complex waves in marmoset area MT (Fig 6), and that

these waves evolve between different types in a structured way beyond what is expected by chance

(Fig 7). These results are consistent with previous studies associating visual stimuli and traveling

waves [9,10,19], and showing that neural dynamics evolve following preferred pathways

[13,15,60]. However, unlike previous work, our methodology allows these patterns and their

dynamics to be simultaneously detected and quantified, and places them into a framework of

explicit pattern behavior to more precisely study underlying neural dynamics.
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In our methods, dominant spatiotemporal activity patterns can be extracted from a recording

using novel vector field decomposition methods. These present a promising approach to the task

of dimensionality reduction in large-scale neural recordings. Current dimensionality reduction

methods typically process data into separable temporal and spatial modes which reproduce the

dynamics of a recording [6]. However, these approaches find population structures that are often

dominated by single-cell response properties and correlated activity [61], and do not adequately

capture activity patterns that are not time-space separable, such as propagating waves [53]. In con-

trast, vector field decomposition specifically targets propagating waves by directly extracting spatio-

temporal pattern modes from data. We showed that stimulus onset in marmoset LFP recordings

generated complicated responses in spatial PCA modes that are difficult to interpret, but clear

effects on the activity of spatiotemporal pattern modes. We also showed that the dominant spatio-

temporal modes are consistent across recordings but change in dynamics depending on cognitive

function. In the future, this approach could be useful for examining how sensory stimuli and cogni-

tive tasks affect wave dynamics of population-level responses, and for visualization and exploration

of the underlying spatiotemporal activity in large neural data sets. Together, the detailed wave pat-

tern tracking approach, and broad, parameter-free velocity decomposition approach provide a

comprehensive analysis of spatiotemporal activity patterns in neural recordings.

There are many ways that our methodology can be extended to explore spatiotemporal neural

pattern dynamics beyond what has been presented in this paper. For instance, plane waves and

synchronous activity are currently detected as global patterns active across the whole recording

area, but it would be advantageous (particularly in large-scale recordings) to identify discrete

local regions exhibiting these patterns. This would support accurate simultaneous analysis of

brain areas displaying different dynamics, be useful for studying the spread of synchrony or plane

wave propagations, and provide consistency with the localized nature of complex patterns as

defined by the winding number. However, implementing localized order parameters across

regions of different sizes would significantly slow the pattern detection procedure and introduce

additional free parameters to the framework. Future work may develop more efficient methods

to characterize localized regions displaying synchrony or planar propagations, potentially allow-

ing entire cortical sheets to be fully and dynamically segmented into multiple interacting patterns.

Additionally, our methods can be further extended to explore currently unknown mechanisms

of wave pattern interactions in the brain. Firstly, localized patterns with complex dynamics that

are active simultaneously may directly interact. Such interactions are prevalent in modelling stud-

ies including spiking neural networks [37] and neural firing rate models [62], and they are theo-

rized to be directly involved in distributed dynamic computation [25]. In experimental studies,

interactions between sharp-wave ripple patterns in rat hippocampus can result in their reflection

or annihilation [63], but more complex interactions have not been examined. Secondly, patterns

may interact across oscillations at different frequencies. Currently, the phase of low-frequency

oscillations is known to influence the amplitude of high frequency oscillations in the brain

[64,65], but it is not clear how this cross-frequency coupling actually influences or is influenced

by the underlying patterns in these systems. Finally, wave pattern dynamics may interact across

multiple spatial and temporal scales in more complex ways, creating cascades of pattern dynamics

comparable to energy cascades in turbulence studies [66]. By effectively detecting and analyzing

neural spatiotemporal activity patterns simultaneously across multiple scales, our methods pro-

vide a framework for further exploring these key questions in future studies.

Methods and materials

In this section we describe how the methodological framework introduced in the Results sec-

tion is implemented in the NeuroPatt toolbox and outline how user-set parameters affect
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computations. We also briefly describe the experimental protocols of the data shown in the fig-

ures of this manuscript. The NeuroPatt Toolbox was written in MATLAB 2016b, and is freely

available from [https://github.com/BrainDynamicsUSYD/NeuroPattToolbox].

NeuroPatt follows the workflow shown in Fig 11 and includes data filtering to extract oscil-

latory activity; optical flow estimation to quantify the direction and speed of propagations by

constructing velocity vector fields; turbulence-inspired classification and tracking of simple

waves (synchrony, planar travelling waves) and complex patterns (sources, sinks, spiral waves,

saddles); and vector field decompositions to find dominant spatiotemporal dynamics.

Oscillatory data filtering

NeuroPatt includes two complementary methods to band-pass filter oscillatory neural data to

extract amplitude or phase at a chosen frequency prior to detection of spatiotemporal patterns.

The first method uses an eighth-order Butterworth filter as implemented in MATLAB’s Signal

Processing Toolbox to filter data to a specified frequency range. This filter is applied in both

forward and reverse directions to minimize phase distortion. The oscillation amplitude, A, and

phase, θ, are then extracted from the analytic signal, zf þ iẑ f ¼ Aeiy, where ẑ f is the Hilbert

transform [39] of the filtered data zf . The second method estimates the analytic signal at a spec-

ified center frequency using the complex Morlet wavelet transform to filter data and extract

Fig 11. Schematic of data flow in the methodological framework and NeuroPatt toolbox. Neural recordings can either contain oscillatory (e.g. EEG, LFP) or intensity

(e.g. VSD) data, and these inputs are processed to find the spatiotemporal patterns present. White boxes indicate data entities; shaded boxes represent analysis methods.

https://doi.org/10.1371/journal.pcbi.1006643.g011
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phase and amplitude with an optimal trade-off between time and frequency resolution [40], as

implemented by MATLAB’s Wavelet Toolbox.

These two procedures give comparable outputs [67], but each has advantages in different

situations: The Hilbert transform allows the properties of the filtering to be precisely specified

but can be invalid if the underlying frequency is not sufficiently narrow-band; the wavelet

transform is usually faster to compute and always results in a valid analytic signal, but gives a

less concretely defined frequency range. Both procedures are included in the toolbox, with the

wavelet transform as the default option. Users without access to either the Signal Processing

Toolbox or the Wavelet Toolbox can detect spatiotemporal patterns in unfiltered data, which

are valid but can be contaminated by noise from multiple frequencies as illustrated in Fig 8, or

can calculate the analytic signal through other implementations of the Hilbert or wavelet trans-

form for use in the later steps of the toolbox. Any band-pass filtering procedure necessarily

involves some degree of temporal smoothing [68], which can inhibit the extraction of precise

timing information in later analysis steps. We note that this effect will not change the timing of

maxima or minima in time series, as both wavelet and Hilbert filtering techniques do not dis-

tort signal phase, but they will smear out activity between these points.

Solving optical flow equations

Velocity vector fields are calculated by solving the Euler-Lagrange equations corresponding to

the minimization problem given by Eq 4:

r0ðE2

dÞDx½Dxuþ Dyvþ Dt� � ar � ½r
0ðE2

s Þru� ¼ 0;

r0ðE2

dÞDy½Dxuþ Dyvþ Dt� � ar � ½r
0ðE2

s Þrv� ¼ 0; ð10Þ

Where r0ðx2Þ ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b

2
p

Þ
� 1

. Note that for large values of β, r
0 x2ð Þ is approximately con-

stant, and the optical flow for the Charbonnier penalty approaches that of the quadratic pen-

alty. For clarity, we let rd ¼
1

a
r0ðE2

dÞ and rs ¼ r
0ðE2

s Þ, and rewrite these equations as

rdDx½Dxuþ Dyvþ Dt� � rsr
2

u � rrs � ru ¼ 0;

rdDy½Dxuþ Dyvþ Dt� � rsr
2

v � rrs � rv ¼ 0; ð11Þ

wherer2¼
:
ð@2

x ; @
2
y Þ denotes the Laplace operator. These equations can be solved through fixed

point iteration for the functions rd and rs after linearizing all other terms. In the toolbox, we

approximate partial first derivatives with a five-point stencil 1

12
� 1; 8; 0; � 8; 1½ � where possible

(or with centered or forward differences when close to edges), and approximate the Laplacian

with a 2D five-point stencil [69]. If D represents phase data, it will contain temporal and spatial

discontinuities where phase wraps from -π to +π, which invalidate linear difference stencils

taken near these points. Instead, we approximate partial derivatives with centered or forward

differences calculated using circular subtraction, y1 � y2 ¼ mod y1 � y2 þ p; 2pð Þ � p. All fig-

ures in this report use parameters a ¼ 0:1 and b ¼ 10 unless otherwise specified.

Toolbox input data format restrictions

To create valid velocity vector fields, NeuroPatt has some restrictions on the format and con-

tent of input data sets. Firstly, data must be spatially arranged in a 2D square lattice of record-

ing sites. This restriction exists primarily because of the optical flow estimation methods

implemented in the toolbox, which assume spatial uniformity to maximize efficiency and
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accuracy. Alternate optical flow estimation methods exist for 3D data sets sampled volumetri-

cally [70] or from non-uniform surfaces [71], but these implementations require significant

modifications to the methodology described here and are much more computationally inten-

sive. Secondly, data must be consistent across multiple recording sites: Because velocity vector

fields are computed based on local dynamics, any recording sites with erroneous activity can

significantly influence the surrounding velocity vectors. As in previous studies using optical

flow for brain recordings [58,72], we recommend that highly noisy data are spatially filtered

prior to the application of optical flow methods, and that any invalid or discontinuous record-

ing channels are interpolated over. When amplitude spatiotemporal patterns are being exam-

ined, data should also be normalized across recording sites by subtracting the baseline or z-

scoring to remove factors that could cause any regional bias, such as uneven electrode imped-

ance or dye intensity. These processes are included as optional pre-processing steps in the

toolbox.

Finally, the changes between consecutive time steps in recorded signals must also be suffi-

ciently small, as optical flow cannot be estimated if there are large discontinuities between

frames. Such discontinuities can occur if signals are changing on a shorter time scale than the

sampling frequency, which may be an issue for fast neural signals such as action potentials and

high-frequency oscillations, or for recording techniques with low temporal resolution such as

fMRI. There is no strict rule to determine if the sampling frequency is sufficiently high, but as

a general guideline we suggest that signals at a single recording site should typically change by

less than 10% of their maximum range between consecutive time steps. The toolbox will warn

if this condition is not satisfied, potentially leading to non-convergent optical flow estimation

or invalid velocity vector fields, or if the change in data is significantly below this threshold,

indicating that it can be safely down-sampled for computational efficiency.

Tracking spatiotemporal patterns

The toolbox includes multiple parameters for the identification and tracking of spatiotemporal

patterns. Firstly, the user can specify a minimum distance from the edge of the recorded area

Ledge (default 2 grid spaces) for critical points to occupy, as velocity fields can be inaccurate and

contain spurious critical points close to the boundary (mainly due to the use of forward differ-

ences to approximate derivatives at these points). The user can also specify a minimum radius

Lradius (default 2 grid spaces) for critical point patterns to occupy, to exclude small-scale and

potentially noise-driven local patterns from analysis.

Once both simple and complex patterns are detected in individual velocity fields, these indi-

vidual observations are combined across time to identify persistent spatiotemporal patterns.

NeuroPatt allows the user to specify a minimum duration tdur (default 5 time steps) for all pat-

terns (including global synchrony and plane waves): patterns which persist for less than this

amount of time are discarded. To add some error tolerance to the process of linking patterns

together over time, a maximum time gap tgap (default 1 time step) can be specified between suc-

cessive instances of a pattern for it to still be counted as one spatiotemporal structure. Finally,

complex patterns can move over time, so critical points of the same type in successive time

steps are considered part of the same spatiotemporal pattern only if they are separated by less

than a maximum displacement Ldisp (default 0.5 grid spaces).

The pattern detection methods and all relevant parameters can therefore be summarized as

follows: Synchrony occurs when R tð Þ > Tsyn at least every tgap þ 1 time steps for a period of at

least tdur . Plane waves occur when φ tð Þ > Tpw at least every tgap þ 1 time steps for a period of at

least tdur . Nodes, foci and saddles occur when a critical point, at least Ledge away from the edge

of the grid with a minimum spatial radius of Lradius, can be linked to another critical point of
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the same type within tgap þ 1 time steps and distance Ldisp, and this chain of critical points per-

sists for at least tdur time steps. Nodes and foci with the same stability properties are typically

treated as separate patterns. However, they represent the same type of motion (expansion from

or contraction to the critical point), so the toolbox can optionally group these critical points

together for a more robust characterization of these pattern types.

Pattern detection parameters and result validation

NeuroPatt contains a few key parameters that must be carefully selected by the user to ensure

valid and accurate results. As illustrated in Fig 2, the optical flow smoothness parameter a con-

trols many properties of the computed velocity vector fields and can over-smooth the data and

create spurious plane wave activity if too large or generate flow fields dominated by local noise

if too small. To assist with the selection of appropriate values of these parameters, the Neuro-

Patt toolbox can automatically generate simulated datasets with recording size, sampling fre-

quency and oscillation frequency identical to input data, allowing a and b to be optimized

based on the user’s data, as shown in Fig 3. Because the pattern dynamics are typically

unknown prior to processing they must be guessed for the simulated data, but we find that in

most cases the optimal parameter choices do not change significantly with the pattern types or

sizes present.

Even within valid velocity fields, the detection of plane waves and synchronized activity is

largely dependent upon the thresholds Tpw and Tsyn, which are typically arbitrary parameters

set by the user. This is a persistent problem in the detection of such activity patterns: Previous

studies have identified plane waves using template matching [24,30,73] or though alignment

statistics [17]; and synchronous activity through correlation or coherence measures [74,75].

All these methods rely on largely arbitrary thresholds to explicitly detect patterns. To assist

with the choice of these thresholds in our methodology, we implement an optional visual

inspection step in the toolbox, allowing users to view sample periods of plane wave and syn-

chronous activity for various thresholds and display distributions of the underlying velocity

field statistics across a recording. If such distributions are multi-modal, they can suggest mean-

ingful boundary points for threshold values.

To help to validate results, the NeuroPatt toolbox implements surrogate data generation to

test results obtained from real data against results obtained from noise with the same basic

dynamics as the input data. To achieve this, we construct time series comprising white noise

for each recording site with the same mean and standard deviation of the corresponding site

in the original data. We then repeat all processing steps including pre-processing, filtering,

optical flow estimation and pattern detection with multiple random surrogate datasets and

compare identified pattern statistics and dynamics with those obtained from the true data. If

results are comparable between the real and surrogate datasets, it suggests that they may have

been introduced through smoothing or other processing steps rather than being real effects in

the data. This surrogate data testing process will therefore flag most false positive detections

made by the toolbox. To ensure that all findings are robust to changes in parameters, we rec-

ommend that users verify that their results are consistent across a range of values for key

parameters in the pattern detection process.

Pattern evolution dynamics

Once simple and complex spatiotemporal patterns have been detected, the evolution dynamics

between different pattern types can be quantified. For each pair of pattern types (pA; pB), the

observed number of transitions from pA to pB; nobs pA ! pBð Þ, can be counted in each trial by

searching for instances where pB starts within a short time gap tgap of pA ending. This can be
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compared to the expected number of transitions if the patterns in the trial occurred at random

times,

nexpðpA ! pBÞ ¼
nAnBtgap
ttrial

; ð12Þ

where nA and nB are the observed number of patterns pA and pB within the trial and ttrial is the

total length of the trial in seconds. The fractional change between observed and expected tran-

sition counts is then defined as nobs=nexp � 1. We used paired t-tests with the Bonferroni cor-

rection for multiple comparisons to evaluate whether nobs and nexp were significantly different

for each pattern transition across multiple trials of a recording.

Simulated data

We test the pattern detection procedures in NeuroPatt by generating data sets with known pat-

tern properties. To create a simulated wave pattern zsim with wavenumber k and angular fre-

quency w, we use the formula

zsimðx; y; tÞ ¼ Aðx; y; tÞeiðksðx;y;tÞ� wtÞ; ð13Þ

where A(x,y,t) is a function giving the spatial amplitude profile of the wave, and s(x,y,t) is a

function giving the spatial phase profile. Using different functions for s allows different types

of critical point patterns to be generated. All patterns are specified with an initial location (x0,
y0), and a constant velocity (vx,vy), given in grid spaces per time step, so the location of a pat-

tern at time t is xt; ytð Þ ¼ ðx0 þ vxt; y0 þ vytÞ. For source or sink patterns, we use

ssource=sinkðx; y; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � xtÞ
2
þ ðy � ytÞ

2

q

; ð14Þ

for spiral patterns we use

sspiralðx; y; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � xtÞ
2
þ ðy � ytÞ

2

q

þ
1

k
atan2ðy � yt; x � xtÞ; ð15Þ

where atan2 is the multi-valued inverse tangent, and for saddle patterns we use

ssaddleðx; y; tÞ ¼ jx � xtj � jy � ytj: ð16Þ

To ensure that all patterns are localized, we define A(x,y,t) as a symmetric two-dimensional

Gaussian centered on the critical point location:

Aðx; y; tÞ ¼ A0exp
� ððx � xtÞ

2
þ ðy � ytÞ

2
Þ

2c2

� �

; ð17Þ

where A0 is the maximum amplitude and c is the Gaussian width parameter.

To generate complex datasets, we add multiple wave patterns and then add normally dis-

tributed white noise with mean 0 and standard deviation proportional to the amplitude of

each grid point. For Fig 3, we used a 12×12×10 spatiotemporal grid to generate datasets com-

prising two random critical point patterns, both with parameters w = 2π×0.01 and k = 2π/5.

Start positions, velocities, maximum amplitudes and Gaussian width parameters were ran-

domized in each dataset: x0 and y0 were picked uniformly randomly but rejected if patterns

were within 2 grid spaces of each other or an edge, vx and vy were picked randomly between

−0.1 and +0.1, A0 was picked between 1 and 2 and c was picked between 3 and 5. Pattern detec-

tion in simulated data was performed with default parameters.
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Experimental recordings

To demonstrate methods in NeuroPatt, we analyze recordings from the middle temporal area

of adult male marmosets (Callithrix jacchus). Details of preparation are given previously

[49,76]. Anesthesia and analgesia were maintained by intravenous infusion of sufentanil citrate

(6–30 μg kg−1 h−1) and inspired 70:30 mix of N2O and carbogen (5% CO2, 95% O2). Domi-

nance of low frequencies (1–5 Hz) in the EEG recording and absence of EEG or electrocardio-

gram changes under noxious stimulus (tail pinch) were taken as the chief signs of an adequate

level of anesthesia. Drifts towards higher frequencies (5–10 Hz) in the EEG record were coun-

teracted by increasing the rate of venous infusion or the concentration of anesthetic. The typi-

cal duration of a recording session was 48–72 h.

Stimuli were presented on a cathode-ray-tube monitor (Sony G500, refreshed at 100 Hz,

viewing distance 45 cm, mean luminance 45–55 cd m−2), and comprised either a grey screen

held at constant luminance for the duration of the recording (5–25 minutes, ongoing activity),

or a pattern alternating every two seconds between a grey screen and a field of drifting circular

white dots (Weber contrast 1.0; dot diameter 0.4˚; drift velocity 20 deg/s) presented in a large,

stationary circular window (30˚). For dot fields, different motion directions (90˚ steps) were

presented pseudo-randomly, and the procedure was repeated until 100 repetitions were made

for each of the four directions. Data were recorded using multielectrode arrays (10×10 elec-

trodes, 1.5 mm length, electrode spacing 400 μm, Blackrock Microsystems). Recording surface

insertion depth was targeted to 1 mm.

To demonstrate pattern dynamics at a larger spatial scale and during waking activity, we

also examine optical voltage recordings from awake mice, obtained with permission from

Thomas Knöpfel. Details of recording have been described previously [50,77,78]. Briefly, excit-

atory neurons in mouse layer 2/3 were targeted with the gene encoding VSFS Butterfly 1.2

[79], and mice were implanted with a head post and thinned skull cranial window. Image

acquisition was performed with a dual emission wide-field epifluorescence macroscope during

anesthesia induced by pentobarbital sodium (40 mg/kg i.p.). The data presented here were

taken as anesthesia was wearing off, when mice were responsive to touch and exhibited sponta-

neous whisker and limb movement between recordings. Image sequences of 60 s duration

were acquired at 50 Hz temporal resolution and 320 × 240 pixel spatial resolution, with each

pixel corresponding to 33 × 33 μm of a projected cortical area. The voltage imaging signal was

calculated as the ratio of mKate2 to mCitrine fluorescence after equalization of heartbeat-

related fluorescence modulation. The resulting ratiometric sequences of voltage maps were

then spatially down-sampled by a factor of 5 using the MATLAB function imfilter, to smooth

over noise and reduce the density of calculated velocity fields.
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a voltage-sensitive fluorescent protein. J Neurophysiol. 2012; 108: 2323–2337. https://doi.org/10.1152/

jn.00452.2012 PMID: 22815406

78. Akemann W, Sasaki M, Mutoh H, Imamura T, Honkura N, Knöpfel T. Two-photon voltage imaging using
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