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Using 3D epigenomic maps of primary olfactory 
neuronal cells from living individuals to understand 
gene regulation
Suhn K. Rhie1, Shannon Schreiner1, Heather Witt1, Chris Armoskus2, Fides D. Lay1, 
Adrian Camarena2*, Valeria N. Spitsyna2, Yu Guo1, Benjamin P. Berman3, Oleg V. Evgrafov4, 
James A. Knowles4, Peggy J. Farnham1†

As part of PsychENCODE, we developed a three-dimensional (3D) epigenomic map of primary cultured neuronal 
cells derived from olfactory neuroepithelium (CNON). We mapped topologically associating domains and high- 
resolution chromatin interactions using Hi-C and identified regulatory elements using chromatin immunoprecip-
itation and nucleosome positioning assays. Using epigenomic datasets from biopsies of 63 living individuals, we 
found that epigenetic marks at distal regulatory elements are more variable than marks at proximal regulatory 
elements. By integrating genotype and metadata, we identified enhancers that have different levels correspond-
ing to differences in genetic variation, gender, smoking, and schizophrenia. Motif searches revealed that many 
CNON enhancers are bound by neuronal-related transcription factors. Last, we combined 3D epigenomic maps 
and gene expression profiles to predict enhancer-target gene interactions on a genome-wide scale. This study not 
only provides a framework for understanding individual epigenetic variation using a primary cell model system 
but also contributes valuable data resources for epigenomic studies of neuronal epithelium.

INTRODUCTION
Many epigenetic studies of neuronal cells use postmortem brain 
samples. However, the limited numbers of samples due to the re-
quirement for postmortem tissue collection, the intermixed cell 
types in the tissues (such as postmitotic neurons and glial cells), the 
variable quality of the samples, and the relatively small numbers of 
cells per sample (which limits biochemical analyses) point to a need 
for neuronal cell culture systems, especially systems related to neu-
rodevelopment. The olfactory neuroepithelium is one of the few 
regions in the human adult nervous system that displays continu-
ous regeneration of nerve cells, and a relatively noninvasive nasal 
biopsy can be used to collect these cells. Although there are several 
types of cells in a nasal biopsy, pure populations of primary, non-
transformed, proliferating neuronal progenitors can be obtained 
through specific cell culture conditions (1). These cultured neuro-
nal cells derived from olfactory neuroepithelium (CNON) have tran-
scriptomes similar to those of fetal brain tissues (2). Because CNON 
can be subjected to a large number of passages, they are ideal for 
genomic or epigenomic assays that require large cell numbers. In 
addition, as these cells are neural progenitors (1), they may serve as 
a good model for epigenetic studies of the neurodevelopmental com-
ponent of certain brain disorders.

Cellular phenotype is determined by the collective contributions 
of all genes expressed in a given cell type. The level at which any 
individual gene is transcribed is determined by the combination of 
proximal and distal regulatory elements that increase or decrease 

gene expression. Recent studies from the ENCODE Consortium have 
identified more than 1.31 million regulatory elements with a small 
percentage of these elements active in any given cell type (www.
encodeproject.org). This cell-type specificity in the active state of reg-
ulatory elements points to an absolute requirement that regulatory 
elements be mapped in each cell model system. Two types of DNA 
elements involved in gene activation include promoters and enhancers. 
Promoters are defined as genomic regions near transcription start 
sites (TSSs), and active promoters display a region of open chromatin 
spanning the TSS that is flanked on either side by a nucleosome 
containing histone H3 trimethylated on lysine 4 (H3K4me3). En-
hancers have a smaller region of open chromatin flanked on either 
side by one or more nucleosomes containing histone H3 acetylated 
on lysine 27 (H3K27ac) and/or histone H3 monomethylated on ly-
sine 4 (H3K4me1). In contrast, repressor elements are marked by 
histone H3 trimethylated on lysine 27 or lysine 9 (H3K27me3 or 
H3K9me3). All of these “regulatory signposts” can be identified using 
the technique of chromatin immunoprecipitation followed by se-
quencing (ChIP-seq). Further refinement of regulatory regions iden-
tified by ChIP-seq can be accomplished using nucleosome occupancy 
and methyl ome sequencing (NOMe-seq), a method that identifies 
nucleosome- depleted regions (NDRs) within regulatory elements and 
provides information concerning positions of the flanking nucleo-
somes at single-molecule resolution (3–5).

Regulatory elements can be located at quite far distances from 
target genes, but the current model in the field is that most regula-
tory interactions are contained within the same chromatin domain, 
known as a topologically associating domain (TAD), as the gene it-
self. Therefore, to develop a comprehensive regulatory map of a cell 
type, one can identify activation and repression elements genome 
wide and then assign each element to a specific TAD. TADs, which 
are ~500 kb to 1 Mb in size, are thought to be created by long-range 
chromatin loops mediated by the insulator protein CTCF, with one 
CTCF binding to each anchor and then interacting to form a loop. 
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CTCF is also thought to influence enhancer-mediated gene regulation, 
functioning in both positive and negative ways. For example, CTCF 
may help to bring an enhancer closer [in three-dimensional (3D) 
space] to a target promoter via its ability to form loops with other 
CTCF sites. In contrast, binding of CTCF at a site between an enhancer 
and promoter can, in some cases, block long-range regulation (6).

To develop a comprehensive 3D epigenomic regulatory map of 
CNON, we began with nasal biopsies from 63 individuals. Neuro-
epithelial cells from the biopsied tissues were enriched using specific 
culture conditions (see the Supplementary Materials), and the re-
sultant CNON were grown on plastic dishes coated with Matrigel 
for all assays. Using these primary CNON, we identified chromatin 
TADs and interaction loops, profiled regulatory elements genome 
wide, and identified NDRs of open chromatin. Furthermore, we 
identified individual variations (associated with genotypic or phe-
notypic classifications) in epigenetic signatures at regulatory elements, 
and using 3D chromatin maps, we predicted enhancer-target gene 
interactions (Fig. 1).

RESULTS
3D epigenomic maps of CNON that identify active and 
heterochromatic TADs
To develop a genome-wide 3D map of the chromatin structure of 
CNON, we performed in situ Hi-C using primary CNON from two 
different individuals (see table S1 for information concerning all 

genomic and epigenomic datasets). We first analyzed the SEP044 and 
SEP045 Hi-C datasets individually and identified TADs (fig. S1). 
Consistent with previous studies of other cell types (7–9), we iden-
tified 6800 TADs in CNON, having an average size of 405 kb (table 
S2). The boundaries of several TADs and a chromatin interaction 
map for a 700-kb region of chromosome 19 are shown in Fig. 2A.

Although the boundaries between TADs are often conserved 
across cell types from different origins (8), the epigenetic chromatin 
states of TADs can differ between cell types (10), with dynamic ex-
pression levels of genes in the same TAD showing similar changes 
during cell differentiation (11, 12). These previous findings high-
light the importance of characterizing the epigenomic profiles of 
CNON TADs. To develop epigenomic maps in CNON, we performed 
ChIP-seq for histone modifications associated with promoters and 
enhancers (H3K4me3, H3K27ac, and H3K4me1), for repressed and 
heterochromatic regions (H3K27me3 and H3K9me3), and for a DNA 
binding protein associated with establishment of chromatin struc-
tural domains (CTCF). To ensure that the ChIP-seq datasets 
were of high quality, we performed experiments using CNON from 
SEP044 and SEP045, and reproducibility was confirmed using the 
ENCODE3 ChIP-seq pipeline (https://github.com/ENCODE-DCC/
chip-seq-pipeline). After identifying regions enriched for each of 
the histone modifications and/or CTCF in SEP044 and SEP045, a 
sequential classification scheme (see the Supplementary Materials) 
was used to sort the elements into five different chromatin states 
(table S3). An example signal track for each type of ChIP-seq dataset 
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Fig. 1. Project overview. (A) To develop a comprehensive regulatory map of CNON, we began with nasal biopsies from 63 individuals. Neuroepithelial cells from the 
biopsied tissues were enriched using specific culture conditions, and the resultant CNON were grown on plastic dishes coated with Matrigel for all assays. (B) Using pri-
mary CNON, we performed in situ Hi-C (n = 2) and CTCF ChIP-seq (n = 33) to develop a 3D chromatin map, epigenomic profiling using ChIP-seq for modified histones (n = 
56, 47, 4, 22, and 11 for H3K4me3, H3K27ac, H3K4me1, H3K27me3, and H3K9me3, respectively), and NOMe-seq (n = 5) to provide information concerning nucleosome 
positioning. (C) Using comprehensive epigenomic and chromatin maps, we identified TADs, chromatin interaction loops, and regulatory elements and defined NDRs of 
open chromatin [including transcription factor (TF) binding sites (TFBSs)]. Last, we identified regulatory elements having variation linked to genotype, gender, smoking, 
and schizophrenia (SCZ), as well as observed and predicted enhancer-target gene interactions for these olfactory neuroepithelial cells.
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Fig. 2. Creation of a 3D epigenomic map of active and heterochromatic TADs in CNON. (A) A browser snapshot of the H3K4me3, H3K4me1, H3K27ac, CTCF, 
H3K27me3, and H3K9me3 patterns for a 700-kb region of chromosome (Chr) 19p13.11. All datasets shown are from CNON taken from an individual designated SEP044. 
A track indicating chromatin state, the RefSeq gene track, a track indicating the identified TADs, and a Hi-C chromatin interaction browser snapshot for the region are also  
shown. (B) A browser snapshot of the CTCF, H3K27me3, and H3K9me3 patterns for a 2.5-Mb region of chromosome 2 that harbors H3K9me3-marked TAD. The Hi-C inter-
action data, the RefSeq gene track, a track indicating all TADs within the region, and a track indicating an H3K9me3-marked TAD are shown. (C) The average expression 
level of genes in H3K9me3-marked TADs (blue) and all other TADs (dark gray). (D) The ChIP fragment depth for CTCF, H3K4me3, H3K9me3, and H3K27me3 datasets, 
centered on TAD boundaries. Profiles of H3K9me3-marked TADs are shown in blue, and profiles of the other TADs are shown in dark gray.
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is shown in Fig. 2A; details concerning the ChIP-seq datasets used 
in this study can be found in table S1.

Although most TADs were associated with active chromatin, we 
identified 830 TADs that have more than 50% of their genomic re-
gion covered by the heterochromatic mark H3K9me3 (H3K9me3-
marked TADs; Fig. 2B and table S2); these TADs have a median of 
five genes per TAD (as compared to a median of seven genes per TAD 
in the other 5970 TADs). On average, genes within H3K9me3-marked 
TADs are expressed at considerably lower levels than are genes in 
other TADs (Fig. 2C). Plotting the ChIP-seq signals at the bounda-
ries of the H3K9me3-marked TADs (Fig. 2D), we found that, as with 
most TADs, the boundaries are flanked by CTCF. As expected, we 
found that H3K4me3 signals are lower and H3K9me3 signals are 
higher in the H3K9me3-marked TADs. There is a dip of H3K9me3 
and a peak of H3K27me3 at the boundaries of the H3K9me3-marked 
TADs (Fig. 2D). Peaks of H3K27me3 were not found at the bound-
aries of other TADs (see Fig. 2B for an example of an H3K9me3-
marked TAD that is covered by H3K9me3 with H3K27me3 signals 
at the borders). Although different protein complexes, such as G9a/
GLP and polycomb repressive complex 2 (PRC2), create H3K9me3 
and H3K27me3, respectively, it has been suggested that a cross-talk 
between H3K9 and H3K27 methylation can cooperate to maintain 
silencing (13). Thus, PRC2 may assist in creating or stabilizing the 
loops (14, 15) in the inactive H3K9me3-marked CNON TADs.

Predicting target genes of CNON enhancers using  
3D epigenomic maps
After identifying promoters, enhancers, insulators, and repressed and 
heterochromatic regions in CNON (Fig. 3A and table S3), our next 
goal was to associate target genes with these regulatory elements. It 
is easy to assign a target gene to regulatory elements near a TSS. 
However, many H3K27ac marks and CTCF sites are far from a TSS 
and are thought to interact with target promoters via long-range 
loops. Therefore, we used the Hi-C chromatin interaction data to 
assist in linking distal CNON regulatory elements to target genes. 
First, we called intrachromosomal chromatin interactions from each 
of the Hi-C datasets at 10-kb resolution, after adjusting the local back-
ground using the Fit-Hi-C program (q < 1 × 10–12; table S4) (16). 
Next, to gain insight into the function of the identified chromatin 
interactions, we classified the chromatin interactions according to 
the type of regulatory elements at one or both ends (Fig. 3B and ta-
ble S5). For these analyses, we used a merged Hi-C dataset to cap-
ture as many as possible promoter-enhancer chromatin interactions 
at high resolution (5-kb resolution). We found that the most fre-
quent chromatin interactions have active regulatory elements such 
as CTCF at one or both ends (Fig. 3B) and that chromatin interac-
tions that have repressed or heterochromatic anchors are less fre-
quent than ones that have active regions at anchors (fig. S2). We 
identified 115,039 interactions (5-kb resolution) that have at least 
one end mapping to an active promoter (q < 0.05). These interac-
tions encompassed 79% of promoters marked by H3K4me3 in CNON 
cells (13,738 of 17,427 active promoters), with a median number of 
four chromatin interactions per promoter. However, among the 
promoter-anchored interactions, only a small number of interactions 
(12,970 of 115,039) were between a promoter and an enhancer, with 
a median number of two interactions for 9276 different promoters.

To further study the association of chromatin interactions and 
gene activation, we selected the subset of interactions identified in 
the Hi-C datasets that occur between promoters and enhancers. We 

next determined whether the presence of a CTCF peak at one or 
both anchors strongly influenced the promoter-enhancer interac-
tion strength. We found that among the 12,970 promoter-enhancer 
interactions, 1063 had CTCF at both anchors, 5731 had CTCF at 
one anchor, and 6176 did not have CTCF at either anchor. The q 
values of each of these subgroups are shown in Fig. 3C. Similar to 
studies of other cell types (17, 18), the promoter-enhancer interac-
tions identified by the CNON Hi-C datasets that have a CTCF peak 
at both anchors have the lowest q values, suggesting that these are 
the strongest type of promoter-enhancer interactions. However, the 
median q value for all of the promoter-enhancer loop categories is 
quite low, providing strong support for this set of experimentally 
observed interactions.

The studies described above provide direct chromatin interac-
tion evidence that allows determination of target genes of a set of 
CNON enhancers. However, an additional set of target genes of 
enhancers can also be predicted using chromatin interaction data. 
For example, it is thought that most enhancers do not cross loop 
boundaries but rather regulate promoters that are within the same 
chromatin loop (19). Specifically, previous studies (20, 21) have iden-
tified promoter-enhancer regulatory pairs that occur within strong 
CTCF-CTCF interaction loops but which were not identified by di-
rect observation of chromatin loops between the promoter and en-
hancer. Therefore, we further analyzed the CTCF-CTCF interaction 
loops that do not have promoters or enhancers at their anchors. We 
identified all active promoters (as determined by the presence of 
H3K4me3 at the TSS) and all active enhancers (as determined by 
the presence of H3K27ac at a nonpromoter site) within CTCF-
CTCF interaction loops. These analyses identified ~17,000 active 
genes that reside within a CTCF-CTCF interaction loop that also 
contains at least one active enhancer. Some of these genes had al-
ready been identified in the set of experimentally observed promoter- 
enhancer pairs described above; however, the intraloop analysis 
identified an additional 12,120 unique genes that could be putative-
ly paired with a distal enhancer. Thus, in total, we identified 5623 
genes involved in direct promoter-enhancer chromatin interactions 
and predicted 12,120 additional enhancer-regulated genes within 
CTCF-CTCF interaction loops (Fig. 3D and table S6). Notably, all 
categories of genes involved in direct promoter-enhancer interac-
tions had higher expression levels than did the genes in the set of 
predicted promoter-enhancer pairs (for which no direct interactions 
were observed in the Hi-C data; adjusted P < 3.1 × 10−7; Fig. 3E).

Assessing individual variation in epigenomic profiles of 
active regulatory elements
In the analyses above, we used ChIP-seq peaks from CNON ob-
tained from two individuals. Although this approach provides a high- 
confidence peak set, many regulatory elements could be missed because 
of individual-to-individual variation and uncontrollable technical 
issues in ChIP assays. Therefore, to obtain a comprehensive view of 
the CNON epigenome, we performed H3K4me3, H3K27ac, and CTCF 
ChIP-seq using CNON derived from 63 individuals in an attempt to 
identify all possible promoters, enhancers, and insulators active in 
this cell type. The set of ChIP-seq peaks for each mark was subjected 
to a cluster analysis to ensure that outlier datasets were not included 
in our analyses (fig. S3); the final datasets include 56 H3K4me3, 47 
H3K27ac, and 33 CTCF ChIP-seq samples (tables S1 and S7).

To determine how many additional peaks can be identified us-
ing a larger set of individuals, we plotted the number of newly found 
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peaks in each subsequently analyzed dataset, with promoter (de-
fined as ±2 kb from a TSS) and nonpromoter peaks in each dataset 
being separately analyzed. We identified ~13,000 to 18,000 sites for 
each mark at promoter regions for a single individual; in addition, 
we identified ~52,000 to 69,000 nonpromoter sites for each mark 
for a single individual (table S7). H3K4me3 is normally associated 

with promoter regions. The nonpromoter H3K4me3 signals may be 
due to the presence of previously uncharacterized (alternative) pro-
moters, to H3K4me3 spreading over very broad domains (22), to 
RNA polymerase II initiating transcription at an enhancer, or to 
capturing the H3K4me3 mark at a looped enhancer region (23, 24). 
Many other studies have shown that both proximal and distal CTCF 
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peaks can be robust and involved in chromatin interactions (17, 25); 
therefore, it was expected to identify promoter and nonpromoter 
CTCF peaks. In addition, of course, H3K27ac can be found at both 
promoters and distal enhancers. We note that the vast majority of 
the peaks in the individual sets of H3K4me3, CTCF, or H3K27ac peaks 
located in promoter regions are common across samples. However, 
nonpromoter peaks for each mark were more variable (Fig. 4A); we 
found that only 1613 nonpromoter H3K4me3 peaks are common to 
all 56 individuals, 16,295 nonpromoter CTCF peaks are common to 
all 33 individuals, and 10,962 nonpromoter H3K27ac peaks are com-
mon to all 47 individuals. When we analyzed only those sites that 
are found in at least 20% of the individuals (Fig. 4B), we identified 
16,711 H3K4me3, 12,871 CTCF, and 16,100 H3K27ac promoter 
peaks and 40,125 H3K4me3, 50,314 CTCF, and 61,419 H3K27ac 
nonpromoter peaks (table S7). We note that, for each mark, the set 
of nonpromoter peaks that were in less than 20% of the individuals 
was, on average, considerably smaller than the other sets of peaks 
(Fig. 4C). In addition, when we selected peaks that are found in only 
one individual, we found that the signals of those peaks were very 
low. Therefore, it is possible that some of the elements found in only 
one or two samples could be false positives.

Enrichment of neuronal-related transcription factor motifs 
in CNON regulatory regions
To gain insight into the TFs that establish the transcriptome of a 
given cell type, one can perform motif analysis of the regulatory 
regions. Because enhancers are thought to be responsible for cell 
identity (26, 27), we have focused on CNON enhancers for motif 
studies. H3K27ac ChIP-seq peaks are quite broad, at minimum 
spanning two nucleosomes. Therefore, motif analysis using the en-
tire genomic span of the H3K27ac peaks could identify TF motifs 
that are at the edges of a ChIP signal; these would likely be false 
positives (not actually occupied by a TF). Therefore, we have used 
NOMe-seq to identify NDRs within the large H3K27ac-marked re-
gions. NOMe-seq is a genome-wide method that uses endogenous 
CpG DNA methylation levels along with accessibility of GpC dinu-
cleotides to exogenous methylation to precisely identify nucleosome- 
free regions at single-molecule resolution (3–5). Regions of at least 
140 bp that have high levels of GpCm and low levels of CmpG are 
defined as NDRs (see the Supplementary Materials). By intersecting 
the NOMe-seq data with the larger H3K27ac ChIP-seq peaks, we 
can precisely define the TF binding platforms in active enhancer 
regions (Fig. 5A).

Because the number of NDRs identified is highly correlated with 
sequencing depth (fig. S4), we generated NOMe-seq datasets from 
CNON from five different individuals (table S1), sequencing be-
tween 700 million and 1.1 billion read pairs for each library. To se-
lect robust NDRs, we first applied stringent cutoffs (P < 10−15) for 
called NDRs from each NOMe-seq dataset. We next took the union 
of the NDRs from the most sequenced library (from SEP030; se-
quenced at 1.1 billion read pairs) and the NDRs found in at least 
two of the other libraries, identifying 166,240 NDRs (table S8). We 
then classified the NDRs as overlapping a promoter, an active en-
hancer, or an insulator, using the ChIP-seq peaks that were found in 
more than 20% of the samples in each set of regulatory elements 
(table S7). We note that 82% of the NDRs overlap with these three 
classes of regulatory elements; 45,793 NDRs overlap promoter re-
gions, 58,059 NDRs overlap insulator regions, and 74,323 NDRs 
overlap enhancer regions (table S8). As expected, the opposite pat-

terns of CpG and GpC methylation can be seen at promoters, insu-
lators, and enhancers (Fig. 5B). The promoter NDRs have a large 
region of open chromatin, as defined by a broad region that has low 
levels of endogenous CpG methylation, a peak of nucleosome-free 
chromatin surrounding the TSS, and phased nucleosomes down-
stream of the TSS. The insulator NDRs have a narrow region of 
open chromatin with low levels of endogenous CpG methylation 
and highly phased nucleosomes on either side of the bound CTCF 
(the position of the tightly bound CTCF can be visualized by the 
dip in open chromatin centered at the CTCF motif). The enhancer 
NDRs also have a narrow region of open chromatin with low levels 
of endogenous CpG methylation; the phasing of nucleosome in the 
enhancer NDRs is not as prominent as the phasing of nucleosomes 
surrounding CTCF sites.

We identified 28,657 NDRs that do not overlap with the three 
classes of active regulatory elements (designated as “NDRs without 
features”). These NDRs have two notable characteristics (Fig. 5C). 
First, they have slightly higher levels of endogenous DNA methyla-
tion than active regions and smaller peaks of open chromatin. Sec-
ond, they have very robust nucleosome phasing on either side of the 
NDR, suggesting that these NDRs are not false positives but instead 
are highly structured regulatory regions. Plotting the endogenous 
CpG methylation and the exogenous GpC methylation reveals four 
clusters of these NDRs. The tightly phased nucleosomes suggest 
that the NDRs in cluster 1 may be binding sites for CTCF or pioneer 
TFs that can access nucleosomes (28). The methylation patterns of 
the NDRs in cluster 2 suggest that they may be poised enhancers or 
distal repressor elements (which are not marked by H3K27ac). The 
NDRs in clusters 3 and 4 have similar nucleosome phasing patterns 
as promoters, but the region of low DNA methylation is narrower 
than at active promoters.

We next performed motif analysis using the 74,323 NDRs con-
tained within the distal H3K27ac peaks found in more than 20% of 
individuals (Fig. 5D). We found that the enhancer NDRs are en-
riched for several different clusters of motifs. For example, the or-
ange cluster is enriched for motifs for basic helix-loop-helix (bHLH) 
TFs, such as ATOH1, NEUROD1, and MYOD1; motifs for bHLH 
TFs have been previously identified in brain-specific enhancers (29). 
Another group of enhancer NDRs (the pink cluster) is enriched for 
motifs for basic leucine zipper domain TFs, such as BACH1, BACH2, 
NFE2, and MAF; BACH2, NFE2, and MAF are involved in neuro-
nal processes (30, 31). The group of enhancers identified by the red 
cluster is enriched for motifs for the MYB family; MYB family 
members are involved in regulating stem cell populations (32, 33). 
The green cluster includes motifs for CTCF family members, as well 
as interferon regulatory factor and signal transducers and activators 
of transcription family members, which are known to cooperate in 
transcriptional regulation (34, 35).

Characterization of factors that affect individual  
variation in enhancers
To further investigate variability in distal regulatory elements, we 
correlated changes in the strength of the H3K27ac peaks in individ-
ual CNON samples with variables such as genotype, gender, smok-
ing, and disease. We first examined genetic variation in the set of 
H3K27ac sites using data from genotyping arrays (table S1) (2). We 
found that of the 254,705 nonpromoter H3K27ac peaks that are 
found at least once among the 47 samples, 165,482 H3K27ac peaks 
had at least one single-nucleotide polymorphism (SNP) underneath 
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the peak. Of these 165,482 SNP-containing peaks, 4167 showed 
a statistically significant correlation between genotype and peak 
strength (adjusted P < 0.05; table S9A); the 4167 unique H3K27ac 
peaks showed a correlation of peak strength with 8847 unique SNPs, 

giving 8847 peak SNP pairs. Furthermore, as a SNP may affect the 
binding of TFs that recruit histone acetyltransferases, which could 
affect H3K27ac peak signals, we determined whether any of the 
genotype variation that shows a correlation with H3K27ac peak size 
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Fig. 4. Assessing individual variation in epigenomic profiles of active regulatory elements. ChIP-seq was performed from 63 individuals; after quality assessment 
(see fig. S3), peak sets were retained for 56 H3K4me3 datasets, 33 CTCF datasets, and 47 H3K27ac datasets. (A) The number of peaks shared in the different sets of 
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alters a TF motif that lies within an NDR. An example of an H3K-
27ac site that is located in a gene desert region of chromosome 10 
and that shows a correlation of peak strength with the genotype of 
rs1757069 is shown in Fig. 6A (top); the H3K27ac peak shows a cor-
relation of signal strength that varies according to the sequence of 
the SOX3 motif at the two alleles at rs1757069 (Fig. 6A, bottom).

We next determined whether we could identify factors other 
than genotype that correlate with H3K27ac ChIP-seq signal strength. 
We found 619 H3K27ac peaks that showed a signal difference be-
tween male (n = 33) and female (n = 7) samples [false discovery rate 
(FDR) < 0.05, empirical P < 0.05; table S9B]. Among these 619 sites, 
150 sites had a stronger signal in males than in females (with 79 of 
these 150 sites being located on ChrY), and 469 sites had a stronger 

signal in females than in males (with 60 sites of these 469 sites being 
located on ChrX). As an example, female-linked H3K27ac sites in-
clude ones in the long noncoding RNA FIRRE locus (Fig. 6B), which 
helps maintain an important epigenetic feature of the inactive X 
chromosome in female (36). We also identified 114 H3K27ac peaks 
that showed different signal strengths between smoking and non-
smoking individuals (FDR < 0.05, empirical P < 0.05; Fig. 6C and 
table S9C). We attempted to identify H3K27ac peaks that correlated 
with age but could not do so due to the fact that most of the individ-
uals that provided the biopsies were of similar ages. SCZ is a herita-
ble psychiatric disorder often associated with defects in olfactory 
perception; because CNON cells are derived from the olfactory 
neuroepithelium, it has been suggested that CNON may be a good 
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source for studying SCZ (1). When the CNON biopsies were taken, 
the subjects were classified as having a diagnosis of SCZ or as non-
schizophrenic controls (CON). To investigate whether any of the 
variable H3K27ac peaks were associated with a diagnosis of SCZ, we 
selected the H3K27ac datasets from 20 SCZ and 20 CON biopsies 
and confirmed that the samples were correctly classified by geno-
typing the ChIP-seq datasets. Then, we compared the H3K27ac sig-
nals between CON and SCZ samples. We identified 607 H3K27ac 
sites that are differentially enriched (FDR < 0.05, empirical P < 0.05; 
table S9D), with 479 sites having a higher signal in SCZ than in CON 
samples and 128 sites having a higher signal in CON than in SCZ 
samples. For example, an H3K27ac site that is located near the NCF4 
gene shows a higher signal in a subset of SCZ samples than of CON 
samples (Fig. 6D). NCF4 has previously been suggested to be associ-
ated with SCZ and bipolar disorder (37, 38). We note that most of the 
disease-associated sites we identified were not identified in the cor-
relations analyzing genotype, gender, or smoking status (Fig. 6E).

Identification of SCZ risk-associated regulatory elements 
that are active in CNON
SCZ is highly heritable, but few genes have been linked to the dis-
ease. To gain insight into the genetic mechanisms of SCZ, several 
groups have used genome-wide association studies (GWAS) to identify 
more than 100 genomic loci significantly associated with increased 
risk for the disease (39, 40). However, GWAS is performed using 
arrays, which only allow identification of an index variant for each of 
the identified loci. Functional characterization of the risk-associated 
loci requires analysis not only of the index variants but also of all 
variants inherited with the index variants. We, and others, have taken 
the approach of focusing on variants that fall within regulatory ele-
ments (7, 41–45), under the assumption that these variants are more 
likely to be the causal variants. Several previous studies have charac-
terized SCZ-associated risk loci using epigenomic profiles (46, 47). 
However, these studies used primary tissues; thus, further follow- 
up experiments were not practical. In contrast, CNON represent 
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neuronal tissues that can be expanded in culture for functional 
studies. Therefore, as a complementary study to other post-GWAS 
studies performed in different cell types and tissues, we identified 
SCZ risk-associated variants located in regulatory regions of CNON 
(Fig. 7). We began with 224 SCZ-related GWAS index variants, lo-
cated at 132 different genomic loci (39, 40), and then selected index 
and high LD (linkage disequilibrium) variants (R2 > 0.5) that fell within 
CNON regulatory elements (H3K4me3, H3K27ac, and CTCF ChIP- 
seq peaks and NDRs) using the FunciSNP tool (48). Then, we fur-
ther refined the set of regulatory variants to only include those variants 
that are both in high LD with the index variant and located within 
the same TAD or CTCF-CTCF interaction loop as the index vari-
ant, under the assumption that variants, even if in high LD with an 
index variant, would not influence expression of the same genes as 
the index variants unless they were in the same TAD or CTCF-CTCF 
interaction loop. Using this classification scheme, we identified 2891 
variants from 118 SCZ risk-associated loci located in regulatory ele-
ments active in CNON (table S10).

One explanation for how a SNP located outside of a coding re-
gion can influence disease risk is that it may alter TF binding poten-
tial in a regulatory element. As noted above, the TF binding platform 
of a regulatory element identified by ChIP-seq can be further re-
fined by intersection with the set of NDRs. Of the set of 2891 iden-
tified SCZ risk-associated variants, 215 fell within an NDR, with 
most of these variants being located in promoters and enhancers. 
Further analysis identified a subset of these variants that alter the 
motif of a known TF or TF binding, as determined using ENCODE 
TF ChIP-seq data (table S10). We also found a subset of SCZ risk- 
associated variants that are highly correlated with ChIP-seq signals 
(table S10).

Functional significance of individual variation in distal 
regulatory elements
We have identified individual variation in H3K27ac peak strength 
that can be correlated with genotype, sex, smoking status, disease 
diagnosis, and SCZ-risk associated SNPs. It is possible that the 
variation in the H3K27ac peak strength may, in some cases, result 
in differences in expression levels of target genes in different indi-
viduals. To identify genes that may be regulated by these variable 
H3K27ac sites, we selected (i) the set of target genes determined 
by the direct promoter-enhancer chromatin interaction data, (ii) 
the set of target genes predicted using the CTCF-CTCF looping 
data, and (iii) the set of target genes predicted using TAD infor-
mation (Fig. 8A and table S6). When we correlated expression 
levels of putative target genes with enhancer signals, we identified 
12,620 promoter-enhancer pairs for 5115 genes that had a statis-
tically significant correlation between the strength of the H3K27ac 
signal and the expression level of the predicted target gene (ad-
justed P < 0.05; table S11). As an example, expression of the CASK 
gene is positively correlated with the strength of the H3K27ac sig-
nal in ChIP-seq datasets taken from many different individuals; 
the correlated enhancer is located 170 kb from the promoter of 
the CASK gene (Fig. 8A). Gene ontology analyses identified genes 
involved in hormone receptor binding in the potential target 
genes of enhancers linked to gender, genes involved in flavonoid 
and drug metabolic processes as potential target genes of en-
hancers linked to smoking, and genes involved in regulation of 
neurodevelopmental processes in the set of SCZ-linked enhancers 
(Fig. 8B).

DISCUSSION
We have performed epigenomic profiling of CNON using biopsies 
from 63 individuals, identifying hundreds of thousands of regulato-
ry elements and NDRs. Using Hi-C data, we identified TADs and 
regulatory elements involved in chromatin interactions, predicting 
a large set of enhancer-target gene interactions for CNON. By inte-
grating genotype and metadata, we identified enhancers having epi-
genetic patterns linked to genetic variation, gender, smoking, and 
SCZ. Motif searches within NDRs revealed that many CNON en-
hancers are bound by neuronal-related TFs and that target genes of 
enhancers linked to SCZ are related to development and neurogen-
esis. These findings suggest that CNON may be a useful model sys-
tem for understanding neurodevelopment. In summary, we provide 
comprehensive epigenomic and 3D chromatin maps of an under-
studied primary neuroepithelial cell model.

A current model in the field is that long-distance gene regulation 
is achieved by the interaction of distal enhancers with the promoter 
regions of their target genes. To study promoter-enhancer chromatin 
interactions, we developed a high-resolution 3D epigenomic map of 
CNON by combining in situ Hi-C chromatin interaction data with 
epigenomic ChIP-seq data (using ChIP-seq data from the same in-
dividuals as used for Hi-C), identifying ~13,000 chromatin interac-
tions that directly link an active enhancer to an active promoter; 
this represents ~53% of promoters with H3K4me3 mark and ~30% 
of distal H3K27ac sites in CNON cells. These results suggest that 
only a subset of promoters and enhancers that are active in CNON 
engage in chromatin interactions that are detectable by Hi-C. It 
is possible that some promoter-enhancer interactions are too weak 
or transient to detect using Hi-C data. Therefore, we also identified 
pairs of active promoters and enhancers located within CTCF-CTCF 
interaction loops. The target genes directly linked to active enhancers 
via chromatin interaction data are expressed higher than other genes 
in CNON cells.

Although it is recognized that there may be individual differ-
ences in active enhancers in a given cell type, few studies have exam-
ined genome-wide enhancer profiles using primary biopsy samples 
from many individuals. Because CNON are obtained from a rela-
tively noninvasive procedure (and can be grown to large cell num-
bers), we were able to compare genome-wide enhancer profiles from 
47 people. Although only ~11,000 active enhancers were common 
to all 47 individuals, we identified a union set of 110,000 active en-
hancers that were detected in two or more individuals. By integrat-
ing metadata of the samples, we identified distinct sets of enhancers 
linked to genetic variation, gender, and smoking.

We have also taken advantage of our comprehensive epigenomic 
datasets to study SCZ, a neurodevelopmental psychiatric disorder. 
We identified 607 enhancers differentially enriched between SCZ 
and CON groups, which clustered into different subgroups of indi-
viduals with SCZ; further studies with increased sample sizes may 
reveal unique characteristics of these different subgroups of patients 
with SCZ. Moreover, using GWAS SNPs linked to SCZ, we also iden-
tified 2891 SCZ risk-associated variants in promoters, enhancers, or 
insulators that are active in CNON. We note that other studies (46), 
as well as colleagues in the PsychENCODE Consortium (49, 50), 
have used different neuronal cell types to classify SCZ GWAS SNPs. 
However, because enhancers are very cell type specific (even when 
comparing different cell types from primary brain tissues), each ad-
ditional neuronal cell type studied adds new information regard-
ing the genetic heritability of SCZ. Last, by integrating ChIP-seq, 
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NOMe-seq, Hi-C, RNA sequencing (RNA-seq), and genotype data, 
we predicted target genes of enhancers enriched in SCZ ChIP-seq 
datasets and of enhancers harboring SCZ risk-associated SNPs. The 
identification of neurogenesis as an enriched category in both sets of 

target genes is consistent with the classification of SCZ as a develop-
mental disease.

In conclusion, we provide a comprehensive genomic and 3D epi-
genomic profile of CNON, which are a renewable source of primary 
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human neuroepithelial cells that can be grown to large cell num-
bers. We have capitalized on these unique characteristics of CNON 
to study individual variation of regulatory elements. The 3D epi-
genomic map of cultured neuronal cells derived from olfactory epi-
thelium biopsies from many living individuals, generated in this 
study, will serve as a great resource for future studies that investi-
gate regulatory elements in primary neuroepithelial cells.

MATERIALS AND METHODS
CNON were derived from nasal biopsy tissue samples obtained from 
63 individuals. The study was approved by the University of Southern 
California Institutional Review Board, and informed consent was 
obtained from all individuals. Most patients and CON subjects were 
recruited from participants of the National Institutes of Health–
funded GPC (Genomic Psychiatry Cohort) study (1R01MH085548), 
and some patients were recruited through Los Angeles County/
University of Southern California outpatient psychiatric clinics.

In situ Hi-C experiments were performed following the original 
protocol by Rao et al. (17) with minor modifications, such as the 
use of a four-cutter restriction enzyme (MboI) instead of a six- 
cutter restriction enzyme (7). Hi-C datasets were processed using the 
HiC- Pro (51), TADs were identified using the TopDom program 
(9), and intrachromosomal loops were selected using Fit-Hi-C 
(16). ChIP- seq data were processed using the ENCODE3 ChIP-seq 
pipeline (www.encodeproject.org/chip-seq/). All sequencing data 
were mapped to hg19 (see table S1). Using the DiffBind R package 
(52), ChIP-seq signals were normalized and compared across sam-
ples. HOMER (http://homer.ucsd.edu/homer/) was used to perform 
motif analyses and generate plots. NOMe-seq data were aligned to 
a bisulfite- converted genome using BSMAP (53) and processed to 
call NDRs as previously described (3). CNON RNA-seq and geno-
type data were processed as previously described (2). The FunciSNP 
R package (48) was used to find high LD regulatory variants active 
in CNON. The motifbreakR R package (54) was used to search for 
TF motifs overlapping the SCZ-related variants, and ENCODE TF 
ChIP-seq data were used to investigate TF binding. Detailed descrip-
tion of methods can be found in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/12/eaav8550/DC1
Supplementary Materials and Methods
Fig. S1. CNON Hi-C datasets.
Fig. S2. Chromatin interactions with different q value cutoffs.
Fig. S3. H3K27ac ChIP-seq clustering results.
Fig. S4. NOMe-seq depth and number of NDRs.
Table S1. Information about the CNON ChIP-seq, NOMe-seq, and Hi-C datasets.
Table S2. CNON TADs identified by Hi-C.
Table S3. CNON ChIP-seq peaks classified as promoters, enhancers, insulators, repressed, or 
heterochromatin regions.
Table S4. CNON chromatin interactions identified by Hi-C.
Table S5. Epigenomic classification of CNON Hi-C chromatin interactions.
Table S6. Predicted target genes of enhancers using CNON Hi-C. 
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