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Injury to the central nervous system (CNS) can leavepatientswithdevastatingneurological
deficits that may permanently impair independence and diminish quality of life. Recent
insights into how the CNS responds to injury and reacts to critically timed interventions
are being translated into clinical applications that have the capacity to drastically improve
outcomes for patients suffering from permanent neurological deficits due to spinal cord
injury, stroke, or other CNS disorders. The translation of such knowledge into practical
and impactful treatments involves the strategic collaboration between neurosurgeons,
clinicians, therapists, scientists, and industry. Therefore, a common understanding of key
neuroscientific principles is crucial. Conceptually, current approaches to CNS revitalization
can be divided by scale into macroscopic (systems-circuitry) and microscopic (cellular-
molecular). Here we review both emerging and well-established tenets that are being
utilized to enhance CNS recovery on both levels, and we explore the role of neurosur-
geons in developing therapies moving forward. Key principles include plasticity-driven
functional recovery, cellular signaling mechanisms in axonal sprouting, critical timing for
recovery after injury, andmechanismsof actionunderlying cellular replacement strategies.
We then discuss integrative approaches aimed at synergizing interventions across scales,
and we make recommendations for the basis of future clinical trial design. Ultimately, we
argue that strategic modulation of microscopic cellular behavior within a macroscopic
framework of functional circuitry re-establishment should provide the foundation formost
neural restoration strategies, and the early involvement of neurosurgeons in the process
will be crucial to successful clinical translation.

KEYWORDS: Stroke, Spinal cord injury, Neurorehabilitation, Neural repair, Axonal regrowth, Neuroregeneration,
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I njury to the central nervous system (CNS)
can leave patients with devastating functional
deficits that may permanently impair

independence and diminish quality of life. From
a societal perspective, this remains a huge and

ABBREVIATIONS: BMI, brain-machine interface;
CNS, central nervous system; CST, corticospinal
tract; ECoG, electrocorticography; EES, epidural
electrical stimulation; ESS, European Stroke Scale;
FES, functional electrical stimulation; GAP43,
growth-associated protein 43; MAP, myelin-
associated protein; PTEN, phosphatase and
tensin; SCI, spinal cord injury; STDP, spike timing-
dependent plasticity; TMS, transcranial magnetic
stimulation

costly burden.1 Although the CNS has some
capacity for recovery during the first year after
injury, chronic deficits tend to be static and
display minimal improvement over time.2,3
Recent neuroscientific advances, however, have
led to new hope for conditions previously
considered untreatable.4 For example, for the
first time in history, novel interventions have
allowed patients with chronic and clinically
complete spinal cord injuries (SCI) to regain
some degree of voluntary motor control of
the legs5-9 and arms.10 Furthermore, through
combined immunotherapy and task-based
rehabilitation protocols, functional corticospinal
tract (CST) regeneration11 and functional
synapse formation12 have been produced in
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animal models of SCI, while full functional recovery of forelimb
activity has been demonstrated in animal models of stroke.13
Collectively, these advances are based on a set of emerging neuro-
science principles that are being translated from the laboratory
to the clinic, providing the first tangible evidence of meaningful
recovery in such patients.
Conceptually, approaches to repairing the CNS can be

classified by scale into systems-circuitry level approaches (ie,
macroscopic) and cellular-molecular interventions (ie, micro-
scopic). Macroscopic approaches currently under investigation
include rehabilitation paradigms14,15 with or without neural
interfaces5,16 and electrical stimulation strategies6-10,17-20
aimed at increasing the excitability of intact neural elements
and inducing circuit plasticity across lesions. Contemporary
microscopic strategies, most of which will require surgical admin-
istration, include cellular replacement (ie, stem or embryonic cell)
therapy,21-26 induction of axonal growth via molecular mecha-
nisms,27-33 optogenetic modulation,34 immunotherapy,13,35-37
and/or enhancement of neurotrophic guidance.38 Emerging
evidence suggests that strategically combining approaches
on both scales and utilizing conscious intent to re-engage
damaged circuitry will be essential to achieving full neuro-
logical recovery.4,39 In this paper, we review key scientific
principles, discuss integrative approaches, and examine the role
of neurosurgeons in translating such techniques into clinical
realities.

SYSTEMS-CIRCUITRY PRINCIPLES

Plasticity Drives Functional Recovery
In the acute-to-subacute period after a CNS injury (ie,

several days to several weeks), some level of spontaneous clinical
improvement often occurs due to reduction in edema, resolution
of diaschisis, and optimization of residual dormant (or recov-
ering) but intact functional elements.40,41 Further recovery is
achieved through intrinsic plasticitymechanisms such as collateral
sprouting from nearby intact neurons and/or dynamic alter-
ations in existing synapses through changes in neurotransmitters,
ionic gradients, gap junctions, and glial cells.42-49 During this
period, axonal and synaptic plasticity are enabled because the
extracellular neural environment has relatively loose extracel-
lular space, more neurotrophic factors, additional open synaptic
sites, and probing axonal growth cones.33,50,51 Neurogenesis, on
the other hand, does not significantly contribute to recovery
of function.52-54 After 6 to 12 mo, further clinical progress
wanes55,56 as the environment stabilizes by forming a glial
scar with inhibitory mechanical properties57,58 and re-expresses
inhibitory molecules such as myelin-associated proteins (MAPs)
and proteoglycans.59-62 Interventions aiming to maximize neural
recovery, therefore, have tended to focus on the critical time
period before 1 yr when functional plasticity mechanisms remain
active.63 Efforts after this period usually emphasize strengthening
existing circuits, building endurance, and treating the deleterious
effects of inappropriate plasticity (eg, spasticity and seizures).

FIGURE 1. Transverse section of a central spinal cord contusion at C7.
Hemorrhage is seen preferentially in the central gray matter with largely
intact surrounding white matter. Reprinted by permission from SpringerNature:
Paraplegia. The disturbance of circulation in traumatic paraplegia in acute and
late stages: A pathological study. Wolman L.64 Copyright 1965.

More recently, however, emerging evidence suggests that
even patients with chronic and complete SCIs may retain
some capacity for functional improvements through previously
untapped plasticity mechanisms. In 2016, Donati et al5 demon-
strated that some recovery could be achieved in patients with
chronic and complete thoracic SCIs by implementing extensive
training with a brain-controlled exoskeleton. In doing so, this
group provided the first report of a therapeutic strategy that
enabled the reclassification of patients from chronic-complete to
incomplete SCIs. A similar result was recently published in 2017
by Rejc et al,9 showing that extensive training combined with
epidural electrical stimulation (EES) of spinal elements distal to a
lesion could achieve similar long-term results.
The implication of these pilot human experiments is that

there are likely surviving but dormant, or subclinical, white
matter tracts that are recruitable for strengthening and plasticity
induction in select cases. In most SCIs which are usually due to
blunt traumatic compression, hemorrhage tends to occur prefer-
entially in the central gray matter due to its softer consistency
and relatively increased vascularity (Figure 1).64 Thus, there is
potential for some more mechanically resilient peripheral white
matter tracts to remain intact (ie, central cord contusions). Impor-
tantly, the volume of residual white matter tracts has been shown
to directly relate to postinjury locomotive ability in rat models
of SCI.65 In parallel, human SCIs that are clinically complete
may also demonstrate residual subclinical supraspinal connec-
tions. Such injuries are now being called “discomplete,” indicating
potential for a clinical response to the aforementioned inter-
ventions.66,67 As such, exoskeleton and spinal cord stimulation
strategies are now being combined to help further facilitate
rehabilitation in motor complete, or discomplete, paraplegics.8
In addition to intrinsic spinal plasticity, the relative role of

cortical plasticity in facilitating such recovery is yet undefined.
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FIGURE 2. Cortical plasticity induced by bilateral hand transplantation in an amputee. A, Hand activation in M1 before surgery
and 6 mo after grafting. After receiving the graft, hand representation expanded medially to reoccupy the entire hand region. B,
Center of gravity shifts over time. The right-hand representation shifted 10 mm, and the left-hand representation shifted 6 mm from
the lateral to the central part of the M1 hand region. Reprinted by permission from SpringerNature: Nature Neuroscience. Cortical
reorganization in motor cortex after graft of both hands. Giraux P et al.74 Copyright 2001.

Significant cortical reorganization is known to occur after chronic
nonuse or amputation of a limb68-71 as well as in response
to directly injured motor cortex,72 and such reorganization
tends to include the expansion of somatotopically neighboring
functions into newly dormant or damaged areas in a behavior-
dependent fashion.72 Furthermore, there is some evidence that
this plasticity is reversible.73,74 Therefore, it is also likely that
re-engagement of previously lost functions can help maintain
or induce cortical plasticity to re-establish and/or re-grow
critical somatotopy and connectivity for improved performance
(Figure 2).74,75
Experimental approaches aimed at enhancing cortical plasticity

after stroke have included electrical stimulation of the cortex,18,76
vagus nerve stimulation,77 paired associative stimulation (ie,

paired peripheral nerve and transcranial magnetic stimulation
[TMS]),78 and brain-state-dependent stimulation (ie, paired
TMS and neural interfacing).79 While cortical stimulation
paradigms have shown promise in animal models,17,80,81 a recent
phase III clinical trial was negative at its primary endpoints.19
However, future studies may incorporate a variety of novel stimu-
lation protocols and/or combine stimulation with a host of micro-
scopic interventions discussed later in this review. The lack of
an FDA-approved device for this type of stimulation remains a
major barrier. However, a fully implantable electrocorticography
(ECoG) device with wireless transmission capabilities is now
undergoing clinical trials in Europe for brain-machine interface
(BMI) applications, but it is currently being used for recording
only.82
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FIGURE 3. Assistive vs rehabilitative interfaces. The assistive interface bypasses a lesion to produce an action, whereas the rehabil-
itative interface times a goal-oriented intention with positive feedback to induce plasticity. The effector device can be anything that
produces a desired output, including cursor on a screen, an exoskeleton, FES, EES, EMG, or a typing device, for example. Reproduced
from Krucoff et al, 20164 under license CC BY-ND 4.0.

Neurons that Fire Together Wire Together
Also known asHebbian plasticity, the principle of spike timing-

dependent plasticity (STDP) states that synaptic strength is redis-
tributed to favor functionally relevant pathways that are coinci-
dently active.83-85 This tenet underlies several new rehabilitation
paradigms that utilize neural interfaces and invasive stimulation
strategies to pair goal-oriented intention with critically timed
feedback to encourage positive plasticity. The paradigm shift from
assistive to rehabilitative interfaces has been explored in several
recent reviews,4,86,87 and a schematic diagram outlining the
conceptual evolution in this approach is reproduced in Figure 3.
The experiments of Donati et al5 and Rejc et al9 explored
in the previous section also likely owe much of their success
to their utilization of STDP principles, as these systems pair
conscious intention with exoskeleton and EES-aided movements,
respectively. Overlapping principles are also explored in the
section “Conscious Engagement is Key for Long-term Functional
Improvement,” wherein the importance of conscious engagement
is discussed.

Intact Neuromuscular Elements Distal to a CNS Lesion
can be Recruited for Function
SCI leads to a “disconnection syndrome” where cognitive

intent can no longer communicate with distal neuromuscular

anatomy. Therefore, indirectly reconnecting motor plans to
execution of its intended action could theoretically restore
function. This concept has led to the development of bypass (ie,
assistive) BMI, or ways to circumvent lesions to restore critical
functions.88 Such strategies89,90 are not necessarily designed to
engender plasticity; however, it turns out that improved perfor-
mance during long-term training with such BMIs is likely due in
part to significant neuroplasticity.73
Approaches to reanimating paralyzed extremities include

functional electrical stimulation (FES) of distal muscu-
lature10,91,92 and EES of distal spinal elements.6-8,88 FES
involves the stimulation of electrodes in target muscles directed
by signals decoded from a neural implant. So far, FES systems
have enabled brain-controlled joint-specific movements of
paralyzed limbs in 3 dimensions, and have assisted quadriplegic
patients in feeding themselves.10 Continuous EES, on the other
hand, lowers the excitation threshold of intact distal neuronal
circuitry such that any subclinical supraspinal connections can
re-exert their influence and enable volitional control of the
distal anatomy.66,67,93 Demonstrations of such techniques have
enabled both volitional and nonvolitional stepping movements,
task-specific single-joint movements, and standing in patients
with complete and chronic SCI6-8 that in 1 case persisted
after stimulation was ceased.9 To help further develop control
techniques for EES, FES, and proprioceptive stimulation
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modalities, ethical animal models for reversible paraplegia are
also being developed.94

CELLULAR-MOLECULAR PRINCIPLES

Cellular Signaling can Alter Axonal Sprouting
In the mature CNS, neurons do not spontaneously regen-

erate, and attempts at axonal regrowth generally fail due to a
lack of appropriate extracellular guidance.95-97 Therefore, altering
intrinsic transcription factors and regeneration-associated genes
may provide pharmacological solutions to enhance regrowth,
guidance, and reinnervation.50,98-100 To date, several important
targets have been identified, such as phosphatase and tensin
homolog (PTEN) 101,102 and Socs3.103 Additionally, the proto-
oncogene bcl-2 is known to play a key role in preventing cell death
after injury.104,105 Also, growth and differentiation factor 10 and
growth-associated protein 43 (GAP43) are known to promote
axonal growth and are released in the subacute period after stroke
in rat models.31,32 Moreover, use of the purine nucleoside inosine
in animal models of SCI and stroke have been shown to restore
GAP43 levels and improve behavioral outcomes.27-29,101,106,107
In addition, extrinsic factors like MAPs and proteoglycans can

also prevent axonal regeneration, especially in glial scars formed
after injury.59-62 However, recent evidence suggests that the glial
scar itself may provide a necessary scaffolding for successful iatro-
genically induced regeneration.108 Removal or blockage of extra-
cellular inhibitory factors alone has generally failed to achieve
effective axonal regeneration.109,110 One exception has been
neutralization of Nogo, a negative regulator of growth.111 Anti-
Nogo immunotherapies have successfully demonstrated increased
sprouting associated with functional recovery in both rat35,112,113
and primate36 models of SCI and stroke.13 Surgical intervention
may be required to iatrogenically deliver therapies such as these
to critical targets.

Inflammation is Complex and Important
While some components of inflammation cause tissue damage

and apoptosis/necrosis, others promote phagocytosis, debris
removal, cell survival, and axonal sprouting depending on timing
after injury.101,114-118 Both oncomodulin, a macrophage-derived
growth factor, and injury-induced cytokine release appear to play
a role in inflammation-induced axonal regeneration.116,119,120
Traditional anti-inflammatory therapies (eg, nonsteroidal anti-
inflammatory drugs) may stifle both helpful and harmful
components of the immune response.59,115,121 For example,
when combined with PTEN deletion and elevation of cyclic
adenosine monophosphate, intraocular inflammation has been
shown to enable some retinal ganglion cells to regenerate injured
axons from the eye to the brain and restore simple visual
responses.61 Therefore, therapeutic approaches might aim at
balancing cellular phenotypes in the injury microenvironment,
as microglia, macrophages, and astrocytes exhibit a spectrum of
states that are under active investigation.122,123

Cellular Replacement mayWork Through a Variety of
Mechanisms
Rates and extent of recovery across patients with CNS

injuries can vary widely. It is now recognized that some of
this variability may be due to a host of cellular processes,
such as (1) number and neuroplasticity of surviving neurons,
synapses, and circuits; (2) extent of reorganization and neural
innervation; (3) degree of dendritic arborization, synaptogenesis,
and remyelination; (4) release of trophic factors; (5) activity of
immune cells; and (6) generation of new neurons, glial, and
endothelial cells from endogenous stem cells that integrate into
injured neuronal networks.124 Therefore, while traditional neural
grafting has emphasized the role of neurons in reconstituting
neural circuitry through synaptic connectivity,125,126 many new
approaches emphasize a much broader range of cell sources and
actions once grafted (Figure 4).127-130
Though cellular transplantation has shown promise in animal

models,12,131,132 translation to neurological improvement in
human studies has proven difficult as the underlying mechanisms
of action remain poorly understood and unexpected toxicity
has occurred.133 In animal models of Huntington’s disease131
and ischemic stroke, direct injection of embryonic cells has
been shown to improve deficits,132 and a phase 1 clinical trial
of human fetal brain-derived immortalized neural stem cells
for stroke demonstrated safety with some suggestion of neuro-
logical improvement.134 Recently, Kodoya et al12 demonstrated
robust CST regeneration and synapse formation caudal to an
SCI after grafting homologous multipotent neural progenitor
cells to the site of injury in rats. Similarly, cultured human
neurons derived from an embryonal carcinoma cell line135 were
studied in an open-label phase 1 trial that showed improvement
on the European Stroke Scale (ESS) and metabolism by
fluorodeoxyglucose-positron emission tomography.136 However,
a subsequent phase 2 randomized study demonstrated no statis-
tically significant difference in ESS or overall motor outcome,
although improvement was seen on Fugl-Meyer Assessments and
in cognitive function.137
In addition to embryonic or carcinoma-derived stem cells,

it is possible to genetically reprogram differentiated mature
somatic cells, such as fibroblasts, into pluripotent stem cells that
exhibit the morphology and growth properties of embryonic
stem cells.138 Use of autologous induced pluripotent stem
cells has the potential to avoid immunosuppression and
ethical issues associated with the use of human embryonic
cells. An open-label phase 1/2a study of stereotactic injection
of these cells into the area of a previous ischemic stroke
demonstrated significant improvement in stroke scale and
motor scores, leading to randomized controlled trials.25 Thus,
critical questions for future studies in addition to efficacy
include defining viable cell sources, understanding safety
concerns, delineating effects on endogenous cell populations,
and understanding mechanisms of action for different cell
lines.
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FIGURE 4. Possible mechanisms of action of cellular replacement therapy. After transplantation, stem cells can promote CNS repair through several mechanisms, such
as cellular replacement, neurotrophic support, immunomodulation, and/or induction of plasticity at existing synapses. These mechanisms are not mutually exclusive.
Reprinted by permission from SpringerNature: Nature Neuroscience. Kokai Z et al. Cross-talk between neural stem cells and immune cells: the key to better brain
repair?127 Copyright 2012.

INTEGRATIVE PRINCIPLES

Regeneration �= Functional Restoration
Robust axonal regeneration and development of appropriate

connectivity alone does not necessarily ensure restoration of
function.139 In 1 example, Bei et al140 were able to induce
adult mouse retinal axons to regrow and synapse in the superior
colliculus; however, these connections did not restore visual
function on their own—addition of a voltage-gated potassium
channel blocker was required to enable the proper conduction
of action potentials, as the newly regenerated axons were not
properly myelinated. For more complex functions, targeted
behavioral training will almost certainly need to accompany
anatomic realignment to ensure establishment of the proper
functional connectivity,72 as not all plasticity is known to be
beneficial (eg, spasticity, postinjury seizures, and pathological
pain). Research groups remain heavily focused on both under-
standing the precise roles of different neuronal populations in
repair, as well as crossing the bridge from structural to functional
restoration.

Micro- andMacroscopic Interventions Might be
Synergistic or Antagonistic, and Timing is Critical
While microscopic interventions can alter cell populations,

improve cellular signaling, and induce axonal sprouting and
synapse formation, macroscopic paradigms may strengthen and
stabilize functional circuits to enhance performance. Therapy
on each scale can affect the other in crucial ways. Wahl et
al13 perhaps most clearly demonstrated this principle when they
injected an anti-NogoA antibody intrathecally into rats with large
strokes, and then followed the injection with intensive task-
specific training (Figure 5). When immunotherapy and training
were combined simultaneously, greater axonal sprouting was
seen, but fiber branching was chaotic and functional outcome
was worse compared to no treatment (also seen by Maier
et al35). This demonstration illustrates both the distinction
between simple regrowth and functional restoration, as well as
the importance of timing between interventions on different
scales to stabilize essential circuitry. In general, the principle
of micro- and macroscopic interaction is only recently being
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FIGURE 5. Functional CST sprouting depends on relative timing of anti-NogoA injection and rehabilitation training in rat models of stroke. Four rehabilitation
schedules (anti-Nogo-A/parallel, control/parallel, anti-Nogo-A/sequential, and control/sequential) were tested and differently influenced CST fiber sprouting from
the intact hemicord (left) across midline. Abhorrent growth (anti-Nogo-A/parallel group) displayed worse functional outcomes compared to control groups, whereas
organized growth (anti-Nogo-A/sequential) demonstrated improved functionality. A, Micrographs of CST fibers in the intact spinal hemicord (left) growing into the
stroke-denervated hemicord (right) at C4. B, Fibers crossing the midline (M) and branching in the gray matter at distances D1 to D4 were counted and normalized
to the number CST fibers in the main tract. C, Micrographs showing different sprouting patterns of corticospinal fibers from the ipsilateral cortex in the denervated
cervical spinal cord (C4) in lamina 7. Scale bar—200 mm; M—midline; BDA—biotinylated dextran amine. ∗P < .05, ∗∗P < .01, ∗∗∗P < .001. FromWahl AS,
Omlor W, Rubio JC, et al. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science. 2014;344(6189):1250-1255.
doi:10.1126/science.1253050. Reprinted with permission from AAAS.

rigorously explored. Such experiments can be difficult to
design, execute, and interpret, as they require multidisciplinary
expertise. However, achieving a better understanding and appre-
ciation of such interplay appears to be critical for developing
therapeutic strategies that hope to realize a positive clinical
impact.

Conscious Engagement is Key for Long-Term Functional
Improvement
One of the first studies to demonstrate the restoration of

supraspinal control of gait in a rat model of SCI also demonstrated
the importance of conscious engagement in long tract regrowth.11
In this study, all rats were trained with EES. However, the rats
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that were trained with passive treadmill rehabilitation achieved
no restoration of volitional motor control, whereas the rats that
were trained with goal-oriented tasks both regained volitional
control of ambulation and showed evidence of functional
long-tract regrowth. Additionally, in a human clinical trial of
recovery after hemiparetic stroke, passively assisted robotic arm
movements showed less improvement than unassisted, patient-
direct movements.141 Exactly how conscious agency relates to
neuroanatomical principles of circuitry and guidance remains a
mystery, but they are intimately connected.142-144 From a clinical
perspective, this implies that patients who suffer from disorders
of consciousness (eg, comatose or vegetative patients) may need
completely different therapeutic strategies which are much farther
from being realized. It also suggests that experiments that have
failed in vitro may still be viable therapies when integrated into
a framework that includes conscious intent and goal-directed
therapy, and therefore should not be explicitly excluded from
clinical trial design.4

THE NEUROSURGEON’S ROLE IN CNS
RESTORATION

Neurosurgeons have a unique opportunity to play a critical role
in the advancement of therapeutic modalities aimed at functional
CNS restoration. While most neurosurgeons interact with
patients with neurological deficits from brain tumors, strokes,
traumatic brain injury, or SCIs daily, they have limited tools to
help such patients regain function after their condition has been
stabilized. At this point in treatment, neurosurgeons generally
take a back seat to other providers such as physical, occupational,
and speech therapists. To advance the utility of interventions such
as BMI, FES, EES, stem cell therapy, immunotherapy, pharma-
cotherapy, optogenetics, and gene therapy, collaborations between
neurosurgeons, clinicians, therapists, basic scientists, funding
agencies, and industry will be essential. Neurosurgeons have
already played prominent roles in the BrainGate10,145 and the
Northstar Neuroscience (Everest) trials,19 and the progression of
such techniques into the realm of CNS repair may provide oppor-
tunities for neurosurgeons to expand their capabilities in the care
of these patients beyond just the implantation-stabilization phase.
Furthermore, such BMI and cortical stimulation strategies will
likely continue to play a large role in future macroscopic frame-
works within which microscopic advancements will be tested.
The engagement of neurosurgeons early in the process of

developing CNS repair strategies is essential not only because
neurosurgeons maintain critical access to patients with CNS
injuries and the ability to perform invasive CNS procedures,
but neurosurgeons also have intimate clinical experience with
the relationship between structural and functional CNS anatomy
and its response to injury and intervention. Additionally, as any
currently proposed therapy will need to navigate the tortuous
pathway to FDA approval before realizing any large-scale imple-
mentation, neurosurgeons should be involved early to help stave

off potential pitfalls of human translation and clinical trial design.
Therefore, a basic understanding of the translational principles
outlined in this manuscript and a sense for where therapeutic
advances may be heading are necessary.

CONCLUSION

Despite numerous scientific advances, many patients continue
to experience persistent functional deficits following SCI, stroke,
and other CNS disorders. As explored in this review, new inter-
ventions are starting to provide hope for better outcomes, and
strategic approaches that utilize both micro- and macroscopic
interventions will be the most likely to have a broad clinical
impact. While macroscopic (ie, systems-circuitry) techniques
such as neural interfaces, FES, and EES have begun to demon-
strate positive results in human patients, most microscopic
(ie, cellular-molecular) therapies such as cellular treatments,
immunotherapies, molecular interventions, and optogenetics
remain in the in vitro or animal model stage and have encoun-
tered significant hurdles to clinically relevant translation. Tomake
the leap, 3 strategic and harmonious integrative principles are
important for future translational clinical trial design: (1) axonal
regeneration does not by itself ensure functional restoration, (2)
timing between cellular and systems-level (ie, behavioral) inter-
ventions is critical, and (3) conscious engagement plays a vital role
in neurological restoration. Neurosurgeons will have the oppor-
tunity to play a variety of roles in the adaptation of such therapies
into mainstream clinical practice, which can range from passive
observers to expert technicians or intellectual leaders. Which role
is played will largely depend on active and early engagement, an
understanding of important translational neuroscience principles,
and a willingness to collaborate and help facilitate clinical trial
design.
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COMMENT

I n light of recent developments positing improved functional recovery
from central nervous system injuries, this timely review seeks to

lay down microscopic and macroscopic principles that guide CNS
restoration based on a review of recent data. The target audience
includes neurosurgeons interested in helping push this field forward.
The authors summarize the impact of different “cellular-molecular
principles”, meaning transcription factors, factors in the extra-cellular
matrix, and stem cells as well as the influence of different “system-
circuitry principles” (macroscopic) like neuronal plasticity and brain-
machine interfaces on CNS restoration. They then argue that the
best and necessary approach to achieve functional recovery is to
synergistically combine these 2 approaches of different scales. This
point is demonstrated by studies that effectively elicited post-injury
neuronal connectivity but not a return of proper function. They
describe some recent data connecting immunotherapeutic and behavioral
interventions.

The authors conclude by sharing a few insights to bring neurosurgeons
who may become involved in clinical trial design in this field up to speed
with current thinking. Namely, that cellular regeneration does not neces-
sitate a return of proper circuit-level function, and that both the proper
combination and timing of microscopic and macroscopic interventions
and the conscious engagement of patients in their rehabilitative efforts is
central to their recovery.

Bradley Lega
Dallas, Texas
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