Table 2.
Gene name | Linear regression models (Ridge regression) |
Linear regression models (Principal component regression) |
||
---|---|---|---|---|
R2 | Variables significantly contribute to evolutionary rates (positive; negative) | R2 | Amino acid significantly contribute to the first Principal component (positive; negative) | |
alaS | 0.93 | F,H,T; Y,M,W,E,C,D,I,P | 0.7 | A,D,G,H,S,R; C,E,I,K,N,Y |
ileS | 0.93 | A,G,Q; D,C,V,W | 0.84 | A,D,G,M,P,R,W; E,F,I,K,L,N,S,Y |
argS | 0.77 | Q; S,E,I | 0.69 | A,D,G,H,M,Q,P,R,T; C,E,F,I,K,N,S |
hisA | 0.88 | Y,L,R,A; D,M,E | 0.77 | A,D,G,H,L,Q,P,R,T; E,F,I,K,M,N,S |
glnA | 0.64 | S,A,C,Q; D | 0.46 | A,G,H,P,S,T; C,E,F,K,L,N |
purM | 0.72 | P,N; H,T,I | 0.55 | A,D,G,H,L,Q,P,R,T,W,V; E,F,I,K,M,N,Y |
All multiple linear models in this table have P-values less than 1.539E-06. Amino acids coded by GC-rich codons are A, P, R, and G, while amino acids coded by AT-rich codons are F, I, N, K, M, and Y.