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Abstract
The organization of the extracellular matrix has a profound impact on cancer development and progression. The matrix
becomes aligned throughout tumor progression, providing “highways” for tumor cell invasion. Aligned matrix is
associated with breast density and is a negative prognostic factor in several cancers; however, the underlying
mechanisms regulating this reorganization remain poorly understood. Deletion of the tumor suppressor Pten in the
stroma was previously shown to promote extracellular matrix expansion and tumor progression. However, it was
unknown if PTEN also regulated matrix organization. To address this question, a murine model with fibroblast-specific
Pten deletion was used to examine how PTEN regulates matrix remodeling. Using second harmonic generation
microscopy, Pten deletion was found to promote collagen alignment parallel to the mammary duct in the normal gland
and further remodeling perpendicular to the tumor edge in tumor-bearingmice. Increased alignment was observed with
Ptendeletion in vitro using fibroblast-derivedmatrices. PTEN losswas associatedwith fibroblast activation and increased
cellular contractility, as determinedby traction forcemicroscopy. Inhibition of contractility abrogated the increasedmatrix
alignment observed with PTEN loss. Murinemammary adenocarcinoma cells cultured on alignedmatrices derived from
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Pten−/− fibroblasts migrated faster than onmatrices fromwild-type fibroblasts. Combined, these data demonstrate that
PTEN loss in fibroblasts promotes extracellular matrix deposition and alignment independently from cancer cell
presence, and this reorganization regulates cancer cell behavior. Importantly, stromal PTEN negatively correlated with
collagen alignment and high mammographic density in human breast tissue, suggesting parallel function for PTEN
in patients.

Neoplasia (2019) 21, 132–145
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ammographic density is a significant risk factor for both ductal
rcinoma in situ and invasive breast cancer [1], representing one of
e largest independent risk factors for breast cancer development [2].
igh mammographic density in more than 50% of breast tissue is
sociated with a 3.5-fold higher risk of invasive breast cancer as
mpared to breasts with less than 10% density [1]. Although high
ammographic density poses a lower relative risk for cancer initiation
an mutations such as BRCA1/2 [3], it contributes greatly to this
iology due to its frequent occurrence. It is estimated that breast
nsity contributes to the development of 30%-65% of breast cancers
,3]. Mammographic density is attributable to a number of
ructural changes within the breast, including increased collagen
position [4,5], higher proteoglycan expression [6], and a greater
ea of glandular structures [5]. Of these factors, collagen deposition is
ost strongly associated with mammographic density [5]. Increased
llagen density has been shown to directly promote tumorigenesis in
mouse model [7], underscoring the importance of the extracellular
atrix (ECM) in cancer initiation. In cases of high mammographic
nsity, not only do changes in collagen deposition occur but also
anges in collagen organization. Collagen coherency, a measure of
cal fiber alignment, and increased fibrillar organization surrounding
ammary ducts were recently observed to correlate with mammo-
aphic density and local tissue stiffness [8]. However, the changes in
CM organization that occur in cases of high mammographic density
understudied, and it remains unclear how these changes affect
CM organization in the tumor microenvironment.
ECM reorganization occurs extensively throughout tumor devel-
ment and progression, and this remodeling regulates cancer cell
havior. Throughout tumor progression, collagen fibers surrounding
e tumor become linearized and aligned, first parallel to the tumor
ge (termed tumor-associated collagen signature 2 or TACS-2) then
cally perpendicular (TACS-3) [9]. High collagen density has been
own to promote early formation of the TACS-3 phenotype in the
mor microenvironment in a mouse model [7]. The presence of
ese perpendicularly aligned fibers promotes cancer cell invasion
ay from the primary tumor [9,10]. In the peritumoral stroma of the
east, there is a strong correlation between collagen linearization and
ncer invasion, as well as tissue stiffness [11]. Indeed, collagen
ignment is an independent prognostic factor in breast carcinoma
tients [12]. The effects of fiber alignment on cancer cell behavior
ve been extensively studied in vitro using a variety of methods,
cluding 2D studies on micropatterned surfaces and 3D studies
ing collagen gels or fibroblast-derived matrices (FDMs). Cancer-
sociated fibroblasts (CAFs) have been found to produce highly
igned extracellular matrices as compared to normal fibroblasts
3,14], and matrix alignment promotes elongation [15] and
rectional migration [14] of cancer cells in CAF-derived matrices.
milarly, cancer cells migrate with higher directionality [16] and
rsistence [17] in aligned collagen gels.
Fibroblasts play a central role in ECM deposition and organization.
ownregulation of the tumor suppressor phosphatase and tensin
molog (PTEN) is a common feature of the activated stroma
rrounding tumors, with nearly half of patients with invasive breast
rcinoma showing low stromal PTEN expression [18]. Pten deletion
mammary fibroblasts greatly increases collagen deposition

rrounding mammary ducts, promotes gelatinase activity, and
creases macrophage infiltration into the mammary gland [18].
rthermore, Pten deletion in fibroblasts modifies the adjacent
ithelium, increasing the mammary stem cell–enriched myoepithe-
l cell population [19]. Stromal Pten deletion additionally increases
morigenesis and tumor burden in the presence of theNeu oncogene
8], acting in part through downregulation of miR320 [20]. As
romal PTEN loss dramatically modifies the mammary environ-
ent, it is not possible to separate these factors in vivo to determine
w changes to the ECM contribute to tumor growth.
PTEN has been shown to function as a negative regulator of fibroblast
tivation in a pulmonary fibrosis model, and deletion of Pten exacerbates
rosis [21]. Therefore, we hypothesized that loss of PTEN in stromal
roblasts could stimulate activation (similar to a CAF phenotype) and
crease matrix alignment even in the absence of a tumor. To test this
pothesis, we used a previously developedmouse model in which Pten is
ecifically deleted in fibroblasts to investigate how loss of PTEN affects
CM reorganization in vivo [18]. Fibroblasts from this model were used
examine fibroblast activation, matrix organization, and the effects of
atrix alignment on cancer cell migration in vitro. The role of PTEN in
gulating cellular contractility—and the subsequent effect on matrix
ignment—was also investigated. Finally, the relationship of PTEN loss
d human breast density was explored.

aterials and Methods

ouse Studies
Pten loxP/loxP, Fsp-cre;Pten loxP/loxP, MMTV-Neu;Pten loxP/loxP, and
MTV-Neu;Fsp-cre;PtenloxP/loxP FVB/N mice were generated and
aintained as previously described [18,22] in accordance with NIH
gulations and approved by the Ohio State University Institutional
nimal Care and Use Committee.

ollagen Imaging and Orientation Analysis
Tissues from the upper mammary gland of 8-week-old mice were
ed using 4% paraformaldehyde or formalin, then paraffin-
bedded and sectioned at 5-μm thickness. The sections were
paraffinized, soaked for 8 minutes in Weigert's hematoxylin (Sigma-
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ldrich), washed for 10 minutes in deionized water, and stained with
crosirius red (Abcam) according to the manufacturer's protocol. The
ctions were imaged using an Olympus FV1000 MPE microscope
uipped with a 25× XLPlan water immersion objective lens (N.A. 1.05)
d a Mai Tai DeepSee Ti:Sapphire laser (Spectra-Physics, Newport
orp.) tuned to a wavelength of 950 nm. Images were taken through the
mple depth in 1-μm intervals, and a maximum intensity projection of
ese images was analyzed using CurveAlign software (version 2.3; http://
ci.wisc.edu/software/curvealign). Using the picrosirius red images, a
rder was drawn manually at the duct edge or at the tumor-stroma
undary. This boundary was superimposed onto second harmonic
neration images, and collagen fiber orientation was analyzed within 25
m of the boundary. Collagen fiber orientation was analyzed relative to
e duct edge for mice without tumors and relative to the tumor-stroma
undary inMMTV-Neu mice. Overall, 8478 points were analyzed for
ientation in WT samples, 8763 in Pten−/− samples, 1081 in WT;
MTV-Neu samples, and 2151 in Pten−/−;MMTV-Neu samples.

ell Lines and Culture Conditions
Wild-type and Pten−/− murine mammary fibroblasts (MMFs) were
lated from mice as previously described [20] and used at passages 30-50.
hey were maintained in high-glucose DMEM (Invitrogen) with 10%
at-inactivated fetal bovine serum (FBS; VWR), 2 mM L-glutamine, 10
/ml penicillin, and 10 μg/ml streptomycin. FBS was heat-inactivated at
°C for 30 minutes. DB7 murine mammary adenocarcinoma cells [23]
ere maintained in the same growth media except the FBS was not heat
activated, and used at passageb30.Cells were tested formycoplasma upon
ceipt and maintained in a humidified 37°C incubator with 5% CO2.

ibroblast-Derived Matrix Production
FDMs were produced over a period of 5 days according to previously
blished protocols [24], with the exception that media changes occurred
ily. In brief, fibroblasts were plated on gelatin-coated plates at 50,000
lls/cm2. Medium was changed daily with the addition of 50 μg/ml L-
corbic acid (Sigma-Aldrich).Matrices were fixed or decellularized 5 days
ter plating. Cells were extracted from thematrices using 0.5%Triton X-
0 (Sigma-Aldrich) and 20 mM NH4OH for 3-5 minutes, at which
int three times the volume of phosphate-buffered saline (PBS) was
ded to each well and the matrices were allowed to equilibrate at 4°C for
minimum of 12 hours. The matrices were washed in PBS three times
d then treated with 10 U/ml DNAse (Sigma-Aldrich) in PBS
pplemented with CaCl2 and MgCl2 for 30 minutes at 37°C. WT
atrices were extracted three times and Pten−/− matrices were extracted
ce due to differences inmatrix thickness.Matrices were stored in PBS at
C for a maximum of 1 week before use.

munofluorescence and Cell Morphology Analysis
To fix samples, half of the media was removed from each sample, and
equivalent volume of fixative (4% paraformaldehyde and 5% sucrose
PBS) was added for 20 minutes at room temperature. Samples were
rmeabilized in 0.5% Triton X-100 and blocked in 10% normal goat
rum (Invitrogen) before incubating with primary antibodies in blocking
lution. Samples were washed and incubated with fluorescent secondary
tibodies, 1:2000 Hoechst 33342 (Invitrogen, Thermo Fisher
ientific) and, if applicable, 1:100AlexaFluor 555-conjugated phalloidin
nvitrogen,ThermoFisher Scientific), and thenwashed beforemounting
slides using ProLong Gold Antifade solution (Life Technologies,

hermo Fisher Scientific). To quantify cell morphology, phalloidin
aining was analyzed using CellProfiler software [25]. In CellProfiler,
oechst staining was used to identify nuclei, with a minimum diameter
10 pixels, and shape was used to distinguish clumped objects. The
alloidin staining for each cell was propagated from the identified nuclei,
d the area and axis lengths of each cell were determined.

ntibodies and Dilutions
The following antibodies were used in these studies: α-smooth muscle
tin (Sigma-AldrichA2547, clone 1A4, used 1:1000 forWestern blotting
d 1:300 for immunofluorescence), fibronectin (Abcam ab23750, used
200 for immunofluorescence), GAPDH (Thermo Fisher Scientific
B600502, clone 6C5, used 1:1000 for Western blotting), PTEN (Cell
gnaling 9552, used 1:1000 forWestern blotting, or Cell Signaling 9559,
ed for immunohistochemistry), AlexaFluor-conjugated goat anti-rabbit
anti-mouse (ThermoFisher Scientific A11034 andA21422, used 1:500
r immunofluorescence), and horseradish peroxidase–conjugated goat
ti-rabbit or anti-mouse (Thermo Fisher Scientific 32460 and 32430,
ed 1:1000 for Western blotting).

ibroblast-Derived Matrix Imaging and Orientation Analysis
AnOlympus FV1000 confocal microscope equipped with a 40× (N.A.
3) oil-immersion objective lens was used to image the fibronectin
ructure in the top 12μmof eachmatrix in 1-μmsections. Themaximum
tensity projection of these images was analyzed with the OrientationJ
ugin for ImageJ [26], which analyzes fiber orientation on a pixel-by-pixel
sis, using previously published settings [24]. Themode of the orientation
stribution of the fibers was set to 0°, andmatrix alignment was quantified
determining the fraction of fibers falling within 10° or 20° of the mode.

estern Blotting
Cells were lysed in RIPA buffer containingHALT protease/phosphatase
hibitor (ThermoFisher Scientific) and frozen at −70°C until use. Samples
ere thawed and centrifuged at 12,000RPMfor 15minutes. Protein in the
pernatant was quantified using the μBCA assay (Thermo Fisher
ientific), and 20 μg of protein were loaded into each well. Samples were
parated using SDS-PAGE and transferred onto a PVDFmembrane, then
cubated with primary and secondary HRP-conjugated antibodies and
aged using chemiluminescent substrate. Densitometry was performed
ing ImageJ software (version 1.43u, National Institutes of Health).

ncapsulation of Cells for Determination of Matrix Metallo-
oteinase (MMP) Activity
This assay was performed as previously described [27], with the
ception that MMP activity was normalized to Hoechst 33342
orescence to control for the number of cells per sample. In brief, a
gle cell suspension of MMF was encapsulated at 2×106 cells/ml in a
lution of 6 wt% 4-arm 20 kDa polyethylene glycol (PEG) (JenKem) to
rm 50-μl hydrogels. PEG-norbornene was synthesized as previously
scribed [27] and cross-linked with a MMP-degradable cross-linker
CGPQG↓IWGQCK, where the arrow denotes the site of cleavage;
merican Peptide Company), 5 mMCRGDS peptide (American Peptide
ompany), and a fluorogenic MMP-sensit ive peptide
GPQG↓IWGQKDdeAEEAcC). The mixture was polymerized using
7mMlithiumphenyl-2,4,6-trimethylbenzoyl-phosphinate and exposure
UV light at 4 mW/cm2 for 3 minutes. One hour before reading,
oechst 33342 was added to each well at a dilution of 1:1000. Hoechst
orescence was measured (excitation/emission 350/461 nm) along with
llagenase fluorescence (excitation/emission 494/521 nm) at 24 hours
ter encapsulation using area scans on a SpectraMax M2 plate reader
olecular Devices). Background fluorescence was subtracted using

http://loci.wisc.edu/software/curvealign
http://loci.wisc.edu/software/curvealign
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adings from corresponding no-cell conditions. Collagenase fluorescence
as normalized to Hoechst fluorescence to control for the number of cells
each sample.

CR
Cells were plated at 50,000/cm2 and cultured for 24 hours in growth
edium, atwhich point themediumwas changed and supplementedwith
μg/ml ascorbic acid. Cells were cultured for another 24 hours before

sis. RNA was isolated using Tri-Reagent (Sigma-Aldrich) according to
e manufacturer's protocol, reverse transcribed, and used for qRT-PCR.
imers were obtained from the Harvard Primer Bank (https://pga.mgh.
rvard.edu/primerbank/) and verified using Primer BLAST (https://
ww.ncbi.nlm.nih.gov/tools/primer-blast/). qRT-PCR was run using
BR Green (Thermo Fisher Scientific) for detection. Primers were used
900 nM, and expression levels were normalized to the endogenous
ntrol, 18S (Thermo Fisher Scientific). Primer sequences were as follows:
Col1a1: sense (s), GCTCCTCTTAGGGGCCACT; antisense
s), CCACGTCTCACCATTGGGG; Col4a1: s, TCCGGGAGA
ATTGGTTTCC; as, CTGGCCTATAAGCCCTGGT; Fn1: s,
TGTGGACCCCTCCTGATAGT; as, GCCCAGTGATTTCAG
AAAGG; Tnc: s, GCATCCGTACCAAAACCATCA; as, AACCC
TAGGGATTAGTGTCG.

raction Force Microscopy
Traction force microscopy was performed as previously described
8]. In brief, polyacrylamide gels containing 0.01% 0.5 μm red
orescent carboxylate modified microspheres (Invitrogen, Thermo
sher Scientific) were prepared by mixing 8% acrylamide and 0.04%
s-acrylamide (Bio-Rad) with 0.05% ammonium persulfate and
05%N,N,N′,N′-tetramethylethylenediamine to polymerize on 22-
m square glass coverslips. The gel surface was activated twice with
mM sulfo-SANPAH (Thermo Fisher Scientific) for 5 minutes
der a 254-nm UV lamp and then coated with 200 μg/ml type I
vine collagen (Advanced BioMatrix) for 30 minutes at room
mperature. Cells were seeded onto the surface at 200 cells/cm2 and
own overnight. Cells were imaged under phase contrast to obtain
e location of the cell boundary. Fluorescence images of the beads
ere taken before and after trypsinization of the cells to obtain the
sitional changes of the beads with cell detachment. Using
ATLAB (MathWorks) image registration, the bead positions
ere aligned and were used to calculate displacement field by
rrelation based particle image velocimetry. The 3D finite element
ftware COMSOL Multiphysics was used to compute traction
resses, Ti(r), by setting the displacement values as the boundary
nditions on cell surface. Maximum traction force, Tmax = max[Ti

)], and net contractile moment, Mnet, were analyzed as follows:

net ¼ Mxx þMyy

ij ¼ 1
2

Z
d2r xiT j rð Þ þ x jTi rð Þ� �

here r is the position on the gel surface and x is the distance from
nter of mass of the cell to the gel surface.

igration Studies
Spheroids were produced via the hanging drop method, using 1000
lls per 10-μl drop. Cells were suspended for 3 days to form spheroids
fore plating on TCPS or decellularized FDM; drops were transferred
ing a 1000-μl pipette. The spheroids were allowed to adhere for 7 hours
fore imaging. Images were taken under transmitted light every 10
inutes for 12 hours. The cells were maintained at 37°C and 5% CO2.
o quantify cell migration, the area of the spheroid was determined by
anual tracing in ImageJ. To control for variation in initial spheroid size,
e final area covered by the cells after 12 hours of imagingwas normalized
the initial area covered by the spheroid. The aspect ratio of the
heroids after 12 hours of imaging was determined using the FitEllipse
nction in ImageJ.

uman Breast Density, PTEN, and Collagen Analysis
Fibroglandular breast tissue N2 cm from the primary tumor site was
ssected from the breast specimens of women undergoing definitive
rgery for breast cancer at the James Cancer Hospital of the Ohio
ate University. Tissue collection was performed in accordance with
stitutional guidelines under IRB protocol #1999C0262. Fibro-
andular tissue was dissected within 1 hour of surgical excision and
aced immediately into 10% buffered formalin for 24 hours.
mples were then changed to 70% ethanol and paraffin embedded.
ammographic density was evaluated in accordance with the fifth
ition of BIRADS of the American College of Radiology, with four
tegories for breast density. Patients were classified as high density
eterogeneously dense or dense) or low density (fatty or scattered
roglandular density) based on presurgery mammography. A total of
patients' samples were used for this study, 5 of which were

assified as low density, while 8 were high density.
Tissue sections were stained using the Bond RX autostainer (Leica
iosystems Inc.). Slides were baked at 65°C for 15 minutes, and the
tomated system performed immunohistochemistry using Bond
agents (Leica), a PTEN primary antibody (Cell Signaling), and
AB for detection. Slides were counterstained with hematoxylin.
mples were then dehydrated through a series of ethanol and xylenes
d mounted. The VECTRA Automated Quantitative Pathology
aging system (PerkinElmer) was used to quantify PTEN
munostaining using the pattern recognition algorithm in inForm
0 software (PerkinElmer). The slides were scanned in their entirety,
d the region with the lowest visual DAB staining in the periductal
roma in each sample was imaged. Multispectral image cubes were
epared using inForm software, followed by trainable tissue
gmentation of images into epithelium and stroma and further
gmentation into nuclei and cytoplasm. The spectrally unmixed
AB signal was scored based on a user-defined threshold into four
tegories (0+, 1+, 2+, and 3+). The percent of cells within each
oring category was determined based on cell segmentation with the
matoxylin counterstain. An H-Score was then calculated using
llowing formula: [1×(% cells 1+) + 2×(% cells 2+) + 3×(% cells 3+)].
Collagen imaging was performed analogously to the murine
mples. Samples were blinded to the experimenter with regards to
ammographic density. Epithelial PTEN staining was used to
anually draw a border at the duct edge, and collagen orientation was
termined relative to this border.

ell Proliferation Assays
Cell proliferation was determined using the CyQUANT assay
hermoFisher) according to the manufacturer's instructions.
MFs were seeded at 50,000/cm2 in 96-well plates. At 4, 24, or
hours after seeding, the medium was aspirated, and the cells were

ozen at −70°C prior to using CyQUANT.

https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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ata Analysis
Statistical analyses were done using GraphPad Prism 7 software.
omparisons between two groups were done using an unpaired one-sided t
st, except for traction force microscopy and patient data, which were
alyzed using a Mann-Whitney test. Comparisons between more
nditions were done using a one-way ANOVA followed by Tukey's
ultiple comparisons test. Data were considered significant atPb.05. Each
periment was repeated a minimum of three times with two technical
plicates. For experiments using tissue sections, each tissue section was
tained from a differentmouse or patient. Aminimumof four images was
ken per section, with the exception of PTEN quantification, and one
MTV-Neu;PtenloxP/loxP section where only two images were taken due
a lack of stroma in the section. Fiber orientation distributions were
mpared using a two-sample Kolmogorov-Smirnov test.

esults

tromal Pten Loss Alters Collagen Organization
While PTEN has been identified as a tumor suppressor in many
ncers for its role in cancer cells, PTEN expression in the stromal
mpartment also critically regulates disease progression. Pten
letion specifically in fibroblasts using a murine model (Fsp-Cre;
H
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23, where n represents the number of ducts imaged from 7 and 5 mice
ten loxP/loxP) has been shown to greatly promote collagen deposition
ithin the mammary gland [18]. However, it remains unclear if
TEN controls other key characteristics of the ECM that regulate
mor invasion and metastasis, such as matrix alignment [7,9,29]. To
vestigate how collagen organization changes with loss of stromal
TEN, second harmonic generation (SHG) microscopy was used to
serve fibrillar collagen organization surrounding ducts in mammary
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sp-Cre;Pten loxP/loxP) mice. As previously reported [18], stromal Pten
− mammary glands exhibited remarkably enhanced ECM deposi-
on surrounding mammary ducts (Figure 1A). The orientation of
ch fiber in the SHG imaging was quantified, and the distribution of
ber orientation was plotted as a histogram (Figure 1B). The
mulative probability distribution of fiber orientation was signifi-
ntly different between the WT and Pten−/− samples. The fraction of
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romal Pten Loss Promotes Perpendicular Collagen Orientation
rrounding Tumors
Collagen alignment changes throughout tumor progression [9];
erefore, we also examined the effect of stromal Pten knockout on
llagen organization in the tumor microenvironment. PtenloxP/loxP;
MTV-Neu mice (WT;MMTV-Neu) and Fsp-Cre;Pten loxP/loxP;
MTV-Neu (Pten−/−;MMTV-Neu) mice were generated as previous-
described [18], and collagen fiber alignment at the tumor-stroma
undary was examined (Figure 2A). Collagen fiber orientation
stribution relative to the tumor edge, graphed as a histogram in
gure 2B, was significantly different between two groups. The
oportion of fibers oriented parallel to the tumor edge (Figure 2C)
d not change with stromal loss of PTEN; however, significantly
ore fibers were oriented perpendicular to the tumor edge in Pten−/−;
MTV-Neu mice (Figure 2C).

ten Deletion in Fibroblasts Enhances Matrix Alignment In Vitro
To investigate the mechanism by which Pten deletion regulates
CM alignment, we used an in vitro system in which fibroblasts are
eated with ascorbic acid to stabilize their natural matrix production.
hese FDMs can then be subsequently decellularized and reseeded
H
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gure 2. Pten knockout affects collagen alignment surrounding tumor
d staining of murine mammary gland tissue sections containing tumo
d image. Solid lines represent the tumor-stroma boundary. (B) Histog
ing CurveAlign software. Bin size=10°. P value represents the probab
stribution. (C) Graph of the fraction of fibers oriented at b10° or N80° re
12. Pten−/−;MMTV-Neu: n=15, where n represents the number of
ith cancer cells, allowing isolation of the effects of matrix alignment
cancer cell behavior. Pten−/− MMFs produced highly aligned

atrices compared to matrices from WT MMF, both when the
atrices were fixed immediately after matrix production and
llowing decellularization of the matrix (Figure 3A; quantified in
pplemental Figure 1). Fibronectin is the most prevalent protein
pressed in FDM [13]; therefore, fibronectin fibers were analyzed
r orientation. Fibronectin is necessary for collagen network
rmation by cells [30], and the two proteins have been found to
ient equivalently and colocalize in FDM [30,31]. Matrix fiber
ientation was graphed as a histogram (Figure 3B), and the fraction
fibers falling within 10° or 20° of the mode orientation was
bsequently determined. The fraction of fibers falling within these
nges in the Pten−/− matrices was nearly twice that of the WT
atrices, indicating that loss of PTEN greatly increases matrix
ignment (Figure 3C). This is consistent with the enhanced collagen
ignment observed in vivo, where Pten knockout promoted collagen
ganization parallel to the edge of the duct. The matrices produced
the WT fibroblasts were significantly thicker than those produced
the Pten−/− fibroblasts (Figure 3D). However, when the matrix

as solubilized, the Pten−/− matrices contained significantly more
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otein relative to the DNA content (Figure 3E), indicating that the
ten−/− fibroblasts produce more protein on a “per cell” basis. As
ch, the increased thickness of the WT matrices is likely due to the
gher proliferation rate of the WT cells in vitro (Supplemental
igure 2).

ibroblast Activation with Pten Deletion
CAFs are often activated to a myofibroblast-like state, with
ightened cellular contractility, MMP secretion, and ECM synthesis
2]. CAFs produce significantly more aligned matrices in vitro as
mpared to normal fibroblasts [13,14]. Because we observed changes
matrix alignment in vivo and in vitro with loss of stromal PTEN,
e hypothesized that Pten deletion may result in an activated
enotype, similar to CAFs. To evaluate the activation state of the
MFs, we examined the myofibroblast marker α-smooth muscle
tin (αSMA). Immunofluorescence of αSMA revealed pronounced
ress fiber formation in Pten−/− MMF compared to WT MMF
igure 4A). Moreover, αSMA protein expression was significantly
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gher in Pten−/− cells (as normalized to GAPDH) (Figure 4B),
dicating that Pten knockout regulates αSMA in terms of both
otein expression and organization.
We additionally hypothesized that MMP activity would be
regulated in the Pten−/− fibroblasts. MMPs are a family of zinc-
pendent enzymes widely involved in matrix reorganization, and
eir activity is typically upregulated in CAFs [32]. To assess MMP
tivity, fibroblasts were encapsulated in PEG-based hydrogels with
MMP-sensitive fluorescent peptide [27], which is cleaved by

MP-1, -2, -3, -7, -8, and -9, among others [33]. MMP activity of
ten−/− MMF was found to be approximately two-fold higher than
at of WT MMF (Figure 4C).
The matrix produced by CAFs is different than that of quiescent
broblasts, including increased assembly of collagen I and tenascin C
4–36]. Given the CAF-like phenotype of the Pten−/− fibroblasts, we
pothesized that Pten−/− fibroblasts would produce higher quantities
these proteins. mRNA levels for several ECM components in

corbic acid–stimulated MMF were measured by qRT-PCR. When
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rmalized to the loading control 18S, Pten−/− MMF expressed
eater than 10-fold more tenascin C (Tnc) mRNA as compared to
T cells (Figure 4D). No significant changes were detected in
RNA levels of collagen I (Col1a1), collagen IV (Col4a1), or
ronectin (Fn).

egulation of Matrix Alignment by Cellular Contractility
Changes in ECM organization during cancer progression have
en attributed to a variety of factors, including increases in lysyl
idase expression [37] and increases in cellular contractility [37,38].
ecreases in contractility have been observed to correlate with lower
llagen alignment in vivo as well as decreased FDM alignment in
tro in a caveolin-1 knockout model [29]. In addition, the direction
fibronectin fiber assembly by fibroblasts closely correlates with the
rection of cell-generated traction forces [39] and the orientation of
actin stress fibers in the cell [31]. Because Pten deletion promoted
roblast activation, we hypothesized that loss of PTEN increases
llular contractility to regulate matrix alignment. Traction force
icroscopy was used to determine how PTEN loss affects cellular
ntractility. Traction forces generated by the Pten−/− cells were
gher than those fromWT fibroblasts, as shown by color maps of the
action stress fields (Figure 5A). The maximum traction stress
nerated by each cell was significantly higher with Pten knockout
igure 5B). The net contractile moment, a measure of the
rectionality of the traction forces, was also significantly higher in
en−/− cells (Figure 5C).
To determine if the increased contractility in Pten−/− fibroblasts
as necessary for the enhanced matrix alignment, contractility was
duced using Blebbistatin, a nonmuscle myosin inhibitor, as well as
-27632, a Rho-associated protein kinase (ROCK) inhibitor. ROCK
gnaling has been shown to contribute to myosin light chain
osphorylation and is necessary for fibroblast contractility [40].
ell-generated traction forces are important for fibronectin fibrillo-
nesis, and previous studies have shown that complete ablation of
llular contractility, such as through high concentrations of myosin
ROCK inhibitors, can inhibit this process [14,39,41]. Therefore,
latively low concentrations of Blebbistatin and Y-27632 (1 and 10
M) were used here to investigate the effect of reduced contractility
Pten−/− FDM alignment. Previous work has shown that these

ncentrations of Blebbistatin are insufficient to cause changes in
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atrix assembly [14]. Treatment with either Blebbistatin or Y-27632
sulted in significant decreases in matrix alignment (Figure 5 D and
). Treatment with 10 μM Blebbistatin resulted in a significant
crease in alignment as compared with a 1-μM dose of the same
hibitor. Collectively, these results demonstrate that the increased
llular contractility observed with Pten knockout was necessary for
e changes in matrix alignment.

ffect of Matrix Organization on −−Cancer Cell Elongation and
igration
Changes in ECM composition and organization can influence
ncer cell behavior. To examine the effect of the observed changes in
atrix structure on cancer cell function, we used DB7 murine
ammary adenocarcinoma cells, a cell line with low metastatic
tential derived from MMTV-PyMT mice with a PyMTY315F/Y322F

utation [23]. FDMs were decellularized in order to isolate the
fects of the ECM from any effects due to fibroblast cell signaling,
d subsequently reseeded with DB7 cells. DB7 cells were stained
ith phalloidin and Hoechst to visualize cell morphology, and
bronectin staining was used to visualize the matrix (Figure 6A).
ecause the Pten−/− FDMs were thinner than the WT FDMs (Figure
), it is possible that cells seeded on Pten−/− FDMs could respond to

iffness of the glass underneath the matrices. Previous work has
elded varying estimates of the minimum height necessary to prevent
lls from sensing the glass substrate underneath thin coatings,
nging from as small as 3.4 μm [42], well below the thickness of the
atrices used here, to several tens of microns [43]. DB7 cells had a
gnificantly higher cell area when plated on glass coverslips as
mpared to either of the FDM, while no difference in cell area was
served between cells on WT or Pten−/− FDM (Figure 6B). This
ggests that the cells were not responding to the rigidity of the glass
rough the matrix. Furthermore, previous work has shown that cells
ated in FDMs form matrix adhesions similar to those seen in vivo,
th of which are morphologically and compositionally distinct from
lls plated on stiff, 2D substrates [44]. Interestingly, the DB7 cells
ere significantly more elongated on the Pten−/− FDM as compared
those plated on glass or WT FDM, as determined by the aspect
tio of the cells (the ratio of the long axis of each cell divided by its
ort axis; Figure 6C). The area of the nuclei was not significantly
fferent between any of the substrates. However, nuclei were
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gnificantly more elongated in the cells plated on the Pten−/− FDM as
mpared to those plated on glass or the WT FDM (Figure 6C), a
enomenonwhich has been previously connected to cell migration [45].
Matrix reorganization in vivo has previously been implicated in
oviding “highways” for cancer migration [9]. We hypothesized that
e increased alignment found in the Pten−/− matrices would
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erefore increase cancer cell migration. However, very little single
ll random migration occurred on any substrate (Supplemental
gure 3). To provide impetus for the cells to migrate, DB7 cells
ere formed into spheroids and plated on FDM or on tissue
lture polystyrene (TCPS). Over 12 hours, the spheroids plated on
CPS spread the most, followed by those plated on Pten−/− matrices
igure 6, D-E). In comparison, the WT spheroids showed little
ange over time. The aspect ratio of the spheroids was significantly
gher on Pten−/− matrices than on TCPS (Figure 6F), although there
as no significant difference between the spheroids on WT or Pten−/−

M. In agreement with the increase in spheroid aspect ratio, the
heroids on Pten−/− matrices often spread preferentially in one
rection, whereas cells on TCPS spread radially (Figure 6D). This is
ely due to local matrix alignment within the Pten−/− matrices, as
e contact guidance cues provided by matrix alignment have been
own to increase the directionality and persistence of cancer cell
igration [14,17,46]. Overall, these results indicate that matrix
organization due to Pten deletion in fibroblasts promotes cancer cell
igration, even in the absence of fibroblast cell signaling.

orrelation of High Mammographic Density with Low
romal PTEN and Collagen Alignment
Although our data support a role for stromal PTEN in ECM
position and reorganization, the relevance of the murine model to
man disease remained unclear. To begin to test the hypothesis that
romal PTEN levels contribute to mammographic density, we
rformed a small pilot study in which we evaluated stromal PTEN
pression and matrix alignment in fibroglandular breast tissue
tained from breast cancer patients determined to have high or low
ammographic density (Figure 7A). Paraffin-embedded tissue
ctions were immunostained for PTEN (Figure 7B). To quantita-
vely assess the expression of PTEN in the stroma, the PTEN H-
ore was calculated where the stromal PTEN expression surrounding
ammary ducts was lowest throughout each tissue section. The
romal PTEN H-score was significantly lower in samples from
omen with high mammographic density (Figure 7C).
Fibrillar collagen organization surrounding the epithelial ducts was
en evaluated using SHG microscopy (Figure 7D). The orientation
stribution of fibers relative to the duct in high-density breasts was
gnificantly different from the distribution in low-density breasts
igure 7E). The fraction of fibers oriented parallel to the duct
ge was significantly higher in samples from high-density breasts
igure 7F). This observation is consistent with a recent study which
monstrated that collagen coherency is increased in cases of high
ammographic density [8].
To determine how collagen organization and PTEN expression
ere related, we graphed the fraction of fibers parallel to the duct edge
rsus the stromal PTEN H-score (Figure 7G). A Pearson correlation
dicated that the collagen alignment and PTEN expression were
gnificantly negatively correlated. In combination with our data in
e Fsp-Cre;PtenloxP/loxP mouse model, this suggests that low PTEN
pression in fibroblasts may promote collagen deposition and
ignment, both characteristic of high mammographic density.

iscussion
ow stromal PTEN expression likely primes the microenvironment
r tumor development through several mechanisms, including ECM
organization and fibroblast activation. Stromal fibroblasts are
tivated during tumor progression to a myofibroblast-like state
AFs) and produce more aligned ECM than quiescent fibroblasts
3,14]. A similar phenotype was observed here with deletion of Pten,
ggesting that PTEN loss promotes CAF-like behaviors. PTEN loss
as also associated with greatly increased mRNA expression of the
CM protein tenascin C. Tenascin C deposition is commonly
regulated in the breast tumor microenvironment [47], and
pression of tenascin C has been shown to promote lung metastasis
breast cancer [48,49].
The changes in collagen structure observed with loss of stromal
EN are reminiscent of the tumor-associated collagen signatures
ACSs) observed in breast tumors, which describe changes in
llagen organization throughout tumor progression [9]. TACS-1 is
fined as a drastic increase in collagen deposition and correlates with
rly stages of tumor growth. TACS-2 is characterized by collagen
earization and organization parallel to the tumor edge, while
ACS-3 is indicated by local collagen fiber orientation perpendicular
the tumor edge. This perpendicular orientation creates “highways”
r cancer cell invasion away from the primary tumor and into the
roma [9]. The presence of TACS-3 is a prognostic factor in breast
ncer patients, associated with poor disease-free and overall survival
2]. In tumor-bearing mice with loss of stromal PTEN, we observed
small but statistically significant increase in the number of fibers
iented perpendicular to the tumor edge, similar to TACS-3, as
mpared to control mice. The presence of TACS-3 correlates with
gnificantly reduced overall survival in breast cancer patients
respective of its quantity [12], suggesting that small changes in
ACS-3 organization have biological significance. This change in
atrix alignment may be a contributing factor to the increased tumor
ze and tumor burden reported during the initial development of this
ouse model [18]. Recent work has demonstrated that an antibody
lysyl oxidase homolog 2 notably decreases collagen alignment
rrounding mammary tumors in a murine model, thereby reducing
mor growth and lung metastasis [50]. Modulation of ECM
ignment in the tumor microenvironment through effectors of
EN signaling may therefore provide a potential therapeutic target.
A variety of inhibitors for downstream effectors of PTEN signaling are
rrently in clinical trials. PTEN is best characterized as a lipid
osphatase which antagonizes PI3K/AKT pathway signaling through
phosphorylation of PIP3, although it has additional protein phospha-
se activity [51]. The PI3K inhibitors idelalisib and copanlisib, as well as
e mTOR inhibitors temsirolimus and everolimus, are FDA-approved
r treatment of several cancers, and a variety of other PI3K/AKTpathway
hibitors are currently undergoing clinical trials [52]. The Rho/ROCK
ntractility pathway provides another potential target to reduce the
ility of CAFs to remodel the tumor microenvironment. No ROCK
hibitors are currently approved for cancer treatment [53]. However, the
OCK inhibitor fasudil, which is FDA-approved for treatment of
rebral vasospasms, has been shown to markedly reduce breast cancer
etastasis in a mouse model [54]. Cell contractility pathways may
erefore prove a useful target for reducing metastasis by abrogating
atrix remodeling by CAFs.
Interestingly, even in the absence of oncogene expression, deletion
stromal Pten increased collagen deposition and promoted

ganization parallel to the edge of ducts in the murine mammary
and. We observed similar increases in parallel collagen orientation
rrounding mammary ducts in patients with high mammographic
nsity, and this negatively correlated with stromal PTEN expression.
his organization is reminiscent of the TACS-2 signature, despite the
ck of tumor presence. This suggests that low PTEN expression in



fi
al
or
co
of
w
m

co
or
co
de
re
W
st
m
su
m
in
ad
ex
re
PT

do

A
Im
an
O
ca
N

A

M
H
E
dr
an

R
[

[

[

[

[

[

[

[

[

[1

[1

[1

[1

[1

[1

[1

[1

[1

[1

[2

[2

[2

[2

[2

[2

[2

[2

144 Stromal PTEN regulates matrix alignment in the mammary gland Jones et al. Neoplasia Vol. 21, No. 1, 2019
broblasts may prime the microenvironment for tumor development,
lowing the ECM to be more easily reorganized into a TACS-3
ientation after tumor development. Consistent with this idea,
llagen accumulation promotes tumorigenesis and earlier formation
TACS-3 surrounding tumors in a Col1a1TmJae mouse model, in
hich the sequence of type I collagen is mutated to abrogate MMP-
ediated cleavage of collagen I [7].
Although increased collagen deposition has been well established as a
ntributing factor to breast density, it is unclear how collagen
ganization may change with breast density and how this might
ntribute to tumor development. We show here that stromal Pten
letion in a murine model leads to increased ECM deposition and
organization of fiber alignment parallel to the edge of mammary ducts.
e correspondingly demonstrated in a small cohort of patients that
romal PTEN expression negatively correlated with both increased
ammographic density and collagen alignment. Taken together, this
ggests that low stromal PTEN expression may contribute to high
ammographic density. Stromal PTEN loss is associated with metastasis
prostate cancer [55], suggesting that stromal PTEN loss may
ditionally contribute to cancer progression. Future investigation to
tend this pilot study and determine how stromal PTEN expression
lates to clinical outcome will be vital in elucidating the role of stromal
EN in human breast cancer development and progression.
Supplementary data to this article can be found online at https://
i.org/10.1016/j.neo.2018.10.010.
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