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Abstract

Pulmonary lymphangioleiomyomatosis (LAM) is a slow-progressing
metastatic disease that is drivenbymutations in the tumor suppressor
tuberous sclerosis complex 1/2 (TSC1/2). Rapamycin inhibits LAM
cell proliferation and is the only approved treatment, but it cannot
cause the regression of existing lesions and can only stabilize the
disease. However, in other cancers, immunotherapies such as
checkpoint blockade against PD-1 and its ligand PD-L1 have shown
promise in causing tumor regression and even curing some patients.
Thus, we asked whether PD-L1 has a role in LAM progression.
In vitro, PD-L1 expression in murine Tsc2-null cells is unaffected by
mTOR inhibition with torin but can be upregulated by IFN-g. Using
immunohistochemistry and single-cell flow cytometry, we found
increased PD-L1 expression both in human lung tissue from patients
with LAM and in Tsc2-null lesions in a murine model of LAM.
In this model, PD-L1 is highly expressed in the lung by antigen-
presenting and stromal cells, and activated T cells expressing PD-1
infiltrate the affected lung. In vivo treatmentwith anti–PD-1 antibody
significantly prolongs mouse survival in the model of LAM.
Together, these data demonstrate that PD-1/PD-L1–mediated
immunosuppression may occur in LAM, and suggest new

opportunities for therapeutic targeting that may provide benefits
beyond those of rapamycin.
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Clinical Relevance

We present the novel finding that human lymphangioleiomyomatosis
(LAM) lungs express the molecule PD-L1, a key player in
T-cell inhibition, and this finding was recapitulated in our
immunocompetent mouse model of LAM. We demonstrate
that large numbers of innate and adaptive immune cells
infiltrated the lungs but failed to eradicate the disease, in part
owing to immune evasion via PD-L1. Importantly, treatment of
a mouse LAM model with anti–PD-1 antibody dramatically
improved survival. Our exciting new data suggest the potential
for repurposing cancer immunotherapies as novel treatments
in LAM, especially for patients with LAM who are
unresponsive to rapamycin.
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Pulmonary lymphangioleiomyomatosis
(LAM), a rare genetic lung disease that
affects primarily women of reproductive
age, is characterized by the growth of
atypical smooth muscle–like LAM cells
forming microscopic lesions within the
lungs and axial lymphatics (1). LAM is
characterized by cystic destruction of the
lung interstitium, obstruction of pulmonary
lymphatics, and progressive loss of lung
function. Investigators have made marked
progress in understanding the etiology
of LAM by linking inactivating mutations
of the tumor suppressor genes TSC1 and
TSC2 to the constitutive activation
of mammalian/mechanistic target of
rapamycin complex 1 (mTORC1) with
neoplastic LAM cell growth (2–5).
Successful preclinical and clinical studies
targeting mTORC1 culminated in Food
and Drug Administration approval of the
mTOR inhibitor rapamycin (sirolimus) as
the first treatment for LAM in 2015 (6).
However, rapamycin only slows disease
progression, and incomplete responses are
common (7, 8). Thus, there remains an
urgent need to identify new targets for the
development of curative LAM treatments.

Recently, immunotherapies have
emerged as promising treatments for
various diseases, including neoplastic
tumors (9, 10). These treatments seek to
reactivate antitumor immune responses
that have been shut off by immune-evasive
mechanisms induced by the tumors (9).
Various mechanisms have been found
in tumors to evade the immune system,
including 1) downregulation or loss of
neoantigens, 2) enhancement of resistance
to immune cell–induced cytotoxicity via
antiapoptotic mechanisms, 3) inhibition
of T-cell entry, 4) suppression of cytotoxic
functions of T cells through recruitment
of antiinflammatory cells (e.g., myeloid-
derived suppressor cells), and 5) induction
of T-cell anergy or exhaustion by activating
checkpoint molecules such as programmed
cell death protein 1 (PD-1) and cytotoxic
T lymphocyte–associated antigen 4 (CTLA-4)
(10–14). Although many studies have
focused on understanding the tumor
immune microenvironment, our knowledge
and understanding of immunity in
LAM are very limited (1). An important
unanswered question is how LAM cells
escape detection and elimination by the
immune system (14). Studies have
demonstrated that LAM cells express
melanoma antigens such as ganglioside

D3 and gp100 (15, 16), suggesting that
LAM cells may be susceptible to cytotoxic
lymphocytes. LAM cells have also been
shown to express the pro-oncogenic
transcription factor STAT3, sustaining their
survival (17, 18). However, it is unclear how
LAM cells escape immune surveillance.
Interestingly, type II IFN-g, which is
known to suppress cancer cell growth, was
shown to have a very limited inhibitory
effect on uncontrolled LAM cell growth in
culture (17), suggesting that LAM cells can
develop a resistance to immune cytotoxicity
mediated by IFN-g. LAM lesions may
also change their microenvironment by
recruiting tumor-associated macrophages
(19) and stromal fibroblasts (20). In
addition, elevated levels of natural killer
(NK) cell–activating receptors and their
ligands in LAM tissue and serum suggest
a role for the innate immune system in
LAM (21). However, the potential clinical
application of immunomodulatory approaches
for treatment of LAM requires further
investigation into the role of immunity in
LAM.

In cancer, checkpoint blockade has
proven to be among the most effective
immunotherapeutic treatments (10–13).
Among these, the most clinically validated
are antibodies that block PD-1 or PD-1
ligand (PD-L1 or B7 homolog 1 [B7-H1])
axis. PD-L1 is upregulated in some tumor
microenvironments (on tumor cells,
stromal cells, and/or antigen-presenting
cells [APCs]), and the interaction of PD-L1
with PD-1 on T cells is a potent driver of
T-cell anergy and exhaustion (10). Thus,
therapeutic blockade of these molecules
(e.g., with blocking antibodies) can
stimulate antitumor immunity (10, 12).
Anti–PD-1 therapy has proven particularly
effective in subsets of patients with
non–small cell lung cancers, metastatic
melanoma, Hodgkin’s lymphoma, and
bladder cancer (12). Furthermore, unlike
cell-based therapies, engineered T cells, or
dendritic cell vaccines, checkpoint blockade
is far easier to administer in nonspecialized
centers, and thus has been the subject
of more clinical trials than any other
immunotherapy (22, 23). In this study,
we examined the expression patterns of
PD-L1 protein in lung tissue from patients
with LAM, in TSC2-null cells, and in an
immunocompetent murine model of LAM.
Furthermore, we assessed T-cell infiltration
in our murine model and investigated the
potential of using immunotherapies (here,

anti–PD-1 treatment) as novel treatments
for LAM.

Methods

Immunohistochemical/
Immunofluorescence Analysis
Lung tissue samples from six patients with
advanced LAM disease and four control
subjects were obtained from the National
Disease Research Interchange and
University of Texas Health Science
Center in compliance with University of
Pennsylvania Review Board–approved
procedures. Immunohistochemistry/
immunofluorescence was performed
using antibodies against human PD-L1
(E1L3N) XP (Cell Signaling Technology)
or murine PD-L1 (Novus Biologicals),
phospho-ribosomal protein S6 (pS6)
(Cell Signaling Technology), smooth
muscle (SM) a-actin (Sigma Chemical Co.),
and prospero homeobox protein 1 (Prox1)
(Abcam, ab199359 clone Epr19273).
Images were analyzed using Aperio
ImageScope software (Leica Biosystems
Imaging) and quantified using FIJI
deconvolution software.

Immunocompetent Mouse Model of
LAM
To study the immune involvement in LAM,
we developed a metastatic model of LAM
in immunocompetent C57BL/6 mice. We
examined lung lesion formation induced by
Tsc2-null, kidney-derived epithelial tumor
TTJ cells derived from Tsc22/1 C57BL/6
mice, first in immunodeficient nude
BALB/c mice and then in C57BL/6 mice.
As controls, we used Tsc2-expressing mouse
kidney tubular epithelial TM1 cells and
Lewis lung carcinoma cells, an established
model of mouse lung cancer (24).
A detailed description of how the TTJ
and TM1 cells were generated and the
immunocompetent mouse model of
LAM was established is included in the
data supplement. All animal procedures
were performed according to a protocol
approved by the University of Pennsylvania
Animal Care and Use Committee.

In Vivo Treatment with Anti–PD-1
Antibody
Mice were treated either with 300 mg/mouse
anti-mouse PD-1 antibody (CD279)
(RMP1-14) (BioXCell) (n = 20) or with
300 mg/mouse anti-mouse control IgG2a
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(BioXCell) (n = 10) by intraperitoneal
injection twice a week. Treatment started
at 10 days after tail vein injection of
106 TTJ cells into C57BL/6 mice. We
observed the animals by monitoring their
weights, and they were killed when they
exhibited an z20% loss of body weight,
in accordance with our Animal Care and
Use Committee–approved protocol.
The lungs were inflated under 25 cm2

H2O pressure and fixed for morphological
and immunohistochemical analyses as
described previously (19).

Flow Cytometry
In human LAM lungs, the expression of
PD-L1 and CD14 was analyzed by
flow cytometry of single-cell suspensions
prepared as previously described (25, 26).
Mouse lungs were digested into single-cell
suspensions and cells were stained with
antibodies for the appropriate markers
to identify cell types, including T cells,
stromal cells, and APCs. Antibodies were
purchased from Biolegend or eBiosciences
(ThermoFisher Scientific).

Data Analysis
Data points from individual assays represent
the mean 6 SE. Statistically significant
differences among groups were assessed
by ANOVA (with the Bonferroni-Dunn
correction), Kaplan-Meier (with log-sum
rank analysis), or Student’s t test, and P
values , 0.05 were considered sufficient to
reject the null hypothesis for all analyses.

For further details regarding the
methods used in this work (including cell
culture, the immunocompetent mouse model
of LAM, flow cytometry, Western blotting,
and qRT-PCR), see the data supplement.

Results

PD-L1 Expression and T-Cell
Infiltration in Human LAM Lung
Lesions
We performed immunohistochemistry
(IHC) staining of tissue sections from distal
lungs obtained from patients with LAMwho
had undergone transplantation to determine
whether LAM cells expressing smooth
muscle (SM) a-actin and phospho-
ribosomal protein S6 (pS6), a biomarker of
TSC2 loss and mTORC1 activation, also
express PD-L1. IHC-specific staining of
control lung tissue (Figure 1A, upper
panels) compared with LAM lung tissue

(Figure 1A, lower panels) highlighted
typical LAM cell nodules (arrows). Marked
reactivity for PD-L1 was also detected in
some LAM nodules (Figure 1A, lower
panel), whereas PD-L1 staining was
significantly lower in lung sections from
healthy control subjects (Figures 1A, upper
panel, and 1B). To determine the specificity
of PD-L1 staining for LAM disease, we
performed an IHC analysis of lung sections
from patients with cystic fibrosis, and
smooth-muscle cells of the aorta and
bronchus. PD-L1 was not detected in these
samples (data not shown).

In addition to the LAM cell nodules
found in LAM lungs, metastasizing LAM
cell clusters have been detected in chylous
pleural fluid and in the lumen of the thoracic
duct of patients with LAM (27). These
clusters are covered by vascular endothelial
growth factor receptor 3–positive lymphatic
endothelial cells (28), which might prevent
immune detection of LAM cells, facilitating
their uncontrolled growth, survival, and
metastasis (29, 30). In our study, we
identified LAM cell nodules positive for
pS6 and SM a-actin, which also showed
immunoreactivity for PD-L1 and the
lymphatic endothelial marker Prox-1
(Figure 1B). A quantitative analysis of IHC
staining using FIJI deconvolution software
demonstrated statistically significant PD-L1
upregulation in LAM nodules and LAM
lung interstitium compared with control
lung interstitium (Figure 1C).

PD-L1 upregulation was further
demonstrated by flow-cytometry analysis
of single-cell suspensions obtained by
enzymatic digestion of LAM lungs. LAM
lung cells, gated on all live cells (left
column), demonstrated elevated expression
of PD-L1 in both CD141 and CD142

populations compared with peripheral
blood monocytic cells from the same
patients with LAM used as controls
(Figure 1D). A high level of PD-L1
was associated with CD141 monocytes/
macrophages in LAM tissue compared with
peripheral blood CD141 cells (Figure 1D,
red box). Expression of PD-L1 at a lower
level was also found on other CD142 cells
(Figure 1D, blue box), consistent with
PD-L1 expression in LAM lungs.

Because PD-1-/PD-L1–based immune
suppression requires a direct interaction
between cells expressing PD-L1 and T cells
expressing PD-1, we assessed colocalization of
these cells in LAM lungs. We show that CD31

T cells infiltrate pS61 LAM lesions (Figure 1E;

images are consecutive slices), indicating that
T-cell–LAM-cell interactions may occur and
could modulate the T-cell response in LAM.

PD-L1 Upregulation in Tsc2-Null TTJ
Lesions in the Immunocompetent
Mouse Model of LAM
Preclinical testing of anti–PD-1/
PD-L1 antibodies for potential immune-
targeting therapies for LAM requires an
immunocompetent mouse model of LAM.
Because genetic deletion of either Tsc2 or
Tsc1 is embryonically lethal, and
heterozygous animals do not recapitulate
LAM disease (31), we focused our efforts
on generating a Tsc2-null lung tumor
model similar to LAM. A mouse model of
experimental metastasis of Tsc2-null cells
to the lung could recapitulate the proposed
metastatic model of LAM, which postulates
that in some patients, cells with TSC2
mutations from the kidney metastasize to
the lung (24). Our initial efforts to generate
a xenograft model in severe combined
immunodeficiency mice using primary
human LAM cells showed that when cells
were injected into the tail vein, only a few
LAM cells were detected in the lung after
months of observations with no evidence of
progressive growth (unpublished data). These
observations suggest that primary human
LAM cells do not grow in the lungs of even
immunocompromised mice. It is possible that
LAM cells can trigger innate immune tumor
suppression even in an adaptive immune
compromised environment.

To develop an experimental metastatic
model of LAM with Tsc2-null lung lesions
in immunocompetent C57BL/6 mice, we
used Tsc2-null TTJ cells, which show
mTORC1 activation (Figure 2A). TTJ
cells were generated by successive propagation
of the original Tsc2-null MKOC cells derived
from mouse kidney lesions that spontaneously
develop in heterozygous Tsc21/2 C57BL/6
mice (31, 32) (schematically represented
in Figure 2B and described in the data
supplement). The original Tsc2-null
MKOC cells underwent in vivo immune
editing, producing TTJ cells by sequential
propagation in immunodeficient
nude BALB/c background and
immunocompetent C57BL/6 mice. This
approach allows selection for growth of
tumor variants that escape from immune
suppression (14).

We first sought to test whether, when
cultured in vitro, mouse MKOC and TTJ
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Figure 1. Upregulation of programmed death ligand-1 (PD-L1) in human lymphangioleiomyomatosis (LAM) lungs. (A and B) Representative images of
immunohistochemistry (IHC) analysis of PD-L1 in human LAM lungs. LAM cells were detected with smooth muscle (SM) a-actin and phospho-ribosomal
protein S6 (pS6), and lymphatic endothelial cells were detected with prospero homebox protein 1 (Prox1). (A) Lung specimens from healthy human
subjects (control subjects, n = 4; upper panels) and LAM lungs (lower panels). Scale bars: 300 mm. (B) Tissue samples from human LAM lungs (n = 6).
Arrows indicate LAM nodules. B = bronchus; H&E = hematoxylin and eosin; V = vessel. Scale bars: 200 mm and 50 mm. (C) PD-L1 expression in images
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cells (compared with Tsc2-expressing M1
cells and Tsc22/2- and Tsc21/1 mouse
embryonic fibroblasts [MEFs]) express
PD-L1 and major histocompatability

complex I (MHCI) molecules, which would
allow for direct interaction with the T-cell
receptor and subsequent suppression of
T cells along the PD-1/PD-L1 axis. In

addition, because it is well established that
IFN-g produced by cytotoxic T cells
prevents tumor development by immune
evasion, we also sought to determine
whether IFN-g stimulation would enhance
PD-L1 and MHCI expression similarly to
what is seen in stromal cells (33). Our
analysis demonstrated that both Tsc2-
expressing cells (M1 and Tsc21/1 MEFs)
and Tsc2-deficient cells (MKOC, TTJ, and
Tsc22/2 MEFs) expressed low levels of
PD-L1 and MHCI at baseline, and that this
expression was significantly potentiated
by stimulation with IFN-g (Figure E2).
Interestingly, the Tsc2-null cells derived from
mouse kidney lesions (MKOC and TTJ)
had approximately four- to fivefold higher
PD-L1 expression upon IFN-g stimulation
compared with Tsc2-expressing M1 cells
(Figure E2A). Expression patterns were
minimally affected or increased by mTORC1
inhibition with torin in mouse cells, both at
baseline and after IFN-g stimulation (Figures
E2B, E2D, and E2F). Interestingly, in MEFs,
mTORC1 inhibition with torin significantly
increased MHCI expression upon IFN-g
stimulation (Figure E2H), a phenomenon we
are now investigating. PD-L1 expression was
confirmed by qRT-PCR (Figure E3).

When we tail-vein–injected Tsc2-
null TTJ cells to form a mouse model of
metastatic LAM, we saw multiple lesions
covering 50.7%6 6.6% of the total lung
in nude mice (Figures 2C and 2D). In
contrast, the same number of TTJ cells
injected into C57BL/6 mice formed
significantly fewer lesions (21.5%6 4.6%)
(Figures 2C, 2D, and E4), likely due to both
the very different phenotypes of BALB/c-
derived nude mice and C57BL/6 mice and
the increased immune suppression of Tsc2-
null lung tumors in immunocompetent
C57BL/6 mice. Immunohistochemical
staining showed mTORC1 activation as
detected by pS6 immunoreactivity and SM
a-actin and PD-L1 expression in Tsc2-null
TTJ lesions in lungs from C57BL/6 mice
(Figures 2E and E5). CD31 T-cell infiltrates
were also detected near Tsc2-null TTJ lesions
(Figure 2E), suggesting that an interaction
between T cells and Tsc2-null cells may
modulate T-cell activation and tumor growth.

Figure 1. (Continued). was quantified as PD-L1–positive pixels/hematoxylin (nuclei) using FIJI ImageJ deconvolution software, and LAM lungs (n = 6) were
compared to control lungs (n = 4). Statistics were performed using Student’s t test; *P, 0.05. (D) Flow-cytometric analysis of PD-L1 expression in CD141

versus CD142 cells from single-cell lung suspensions obtained from enzymatically digested LAM lung tissue (right column) (n = 2); peripheral blood
monocytic cells (PBMCs) served as controls (n = 2). Red box: a high level of PD-L1 was associated with CD141 monocytes/macrophages in LAM tissue
compared with peripheral blood CD141 cells. Blue box: expression of PD-L1 at a lower level was found on other CD142 cells, consistent with PD-L1 expression
in LAM lung nodules. FSC = forward scatter. (E) Representative images of CD31 cell infiltration of pS61 human LAM lesions (n = 4). Scale bars: 400 mm.
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APCs Infiltrate Mouse Lungs with
Tsc2-Null Lesions and Express High
Levels of PD-L1 in a Murine Model
of LAM
We investigated lung infiltration of APCs,
which are known for their interactions with
lymphocytes, and their PD-L1 expression in
the metastatic mouse model of LAM with
Tsc2-null lung lesions. We found marked
increases in dendritic cells, both CD11b1

and CD11b2 subtypes, monocytes, and
macrophages in mouse lungs with Tsc2-
null lesions compared with controls
(Figure 3A). PD-L1 expression was
increased in the various APC populations

in the lungs from the mouse model of
LAM (Figure 3B, upper panels), as
evident in the shift of fluorescence intensity
(representative histograms are shown in
Figure 3B, upper panels; blue: LAM model
with Tsc2-null lesions; control: control
lung), and this difference was statistically
significant when quantified via flow
cytometry (Figure 3B, lower panels).
Interestingly, PD-L1 expression was also
significantly increased in CD452 stromal cell
populations, including CD140a1 fibroblasts,
epithelial cells, and CD312 cells (including
Tsc2-null TTJ cells in the mouse model of
LAM) (Figure 3C). Overall, our data indicate

that high levels of PD-L1 expression occur in
stromal cells (including Tsc2-null TTJ cells)
as well as immune cells (particularly APCs)
that can modulate T-cell activation and
respond to Tsc2-null TTJ cells.

T Cells Expressing High Levels of
PD-1 Infiltrate the Lungs with
Tsc2-Null Lesions
In our previous study, we identified the
infiltration of innate immune cells such as
macrophages, eosinophils, and neutrophils
in lungs from the mouse model of LAM
on a BALB/c-derived nude background
(19). However, little is known about the
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Figure 3. Antigen-presenting cells infiltrate lungs with Tsc2-null lesions and highly express PD-L1. (A) Lungs with Tsc2-null lesions taken from C57BL/6
mice killed z3 weeks after injection had increased numbers of macrophages, dendritic cells (CD11b1 and CD11b2), and monocytes (activated Ly6C1

and nonactivated Ly6C2). (B) Representative histograms show a shift in PD-L1 expression in lungs with Tsc2-null lesions (blue) compared with control
lungs (red) in antigen-presenting cells, and quantification of PD-L1 expression via median fluorescence intensity (MFI) in these cell populations. (C) PD-L1
expression in CD452 stromal cell populations, including CD140a1 fibroblasts, epithelial cells, and CD312 cells (including Tsc2-null TTJ cells) in the mouse
model of LAM. Statistical analysis was performed using Student’s t test with significance at *P , 0.05 (**P , 0.01, ***P , 0.001, n > 5 mice, n = 2
experiments). DC = dendritic cell.
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T-cell response in LAM lungs. We
used our mouse model of LAM in
immunocompetent mice to explore the
adaptive immune response to LAM.
Here, we found that in addition to innate
cell infiltration, total T-cell numbers
(including both CD41 and CD81 T cells)

were increased (Figure 4A). Interestingly,
we found that the distribution of T-cell
subsets differed between mice with Tsc2-
null lesions and control mice. Thus, Tsc2-
null lung lesions had significantly higher
numbers of effector memory T cells (both
CD81 and CD41) compared with controls,

and also showed increased numbers of
regulatory T cells (Figures 4A and 4B).
Furthermore, CD41 and CD81 effector
memory T cells in Tsc2-null lungs had
significantly higher expression of PD-1, the
binding partner for PD-L1, compared with
control lungs (Figure 4C).

T cells

Con
tro

l

Tsc
2-

nu
ll

0

5

10

15 *

to
ta

l n
um

be
r 

(1
0^

6)

CD4+ T cells

Con
tro

l

Tsc
2-

nu
ll

0

2

4

6

8 *

CD8+ T cells

Con
tro

l

Tsc
2-

nu
ll

0

1

2

3

4 *

CD4+ TEM

Con
tro

l

Tsc
2-

nu
ll

0

20

40

60

80 ***

%
C

D
4+

CD8+ TEM

Con
tro

l

Tsc
2-

nu
ll

0

20

40

60

80 ***

%
C

D
8+

TREGS

Con
tro

l

Tsc
2-

nu
ll

0

5

10

15 *

%
C

D
4+

A B

104

103

0

–103

105 TCMTE/EM

Tnaive

Control

Q4
1.21

103 104 1050–103

104

103

0

–103

105

Q4
1.21

103 104 1050–103

104

103

0

–103

105

Q4
3.15

104

103

103 104 105

0

0

–103

–103

105

Tsc2-null

Q4
1.94

CD62L

C
D

4+
C

D
8+

C
D

44

CD4+ PD1+

Con
tro

l

Tsc
2-

nu
ll

0

20

40

60

80

100
***

%
C

D
4+

CD8+ PD1+

Con
tro

l

Tsc
2-

nu
ll

0

20

40

60

80

***

%
C

D
8+

C

PD1

CD4+ Tem

–103 103 104 1050

CD8+ Tem

–103 103 104 1050

Control

Tsc2-
null

10%

TE/EM

73%7%

TCMTE/EM

5% 12%

TCM

11%

82%

Tnaive

82%

TCMTE/EM

37% 29%

Tnaive

31%

Tnaive

14%
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Treatment with Anti–PD-1 Antibody
Improves Survival in the Mouse Model
of LAM
To assess whether immunotherapeutic
targeting of the PD-1/PD-L1 axis in mice
with Tsc2-null lung lesions suppressed
LAM, we performed a survival study
comparing the effects of treatment with
anti–PD-1 antibody and a control isotype
antibody. As shown in Figure 5A, survival
was significantly increased by anti–PD-1
treatment. At day 55, z70% of the
anti–PD-1-treated mice survived, compared
with only z30% of the isotype-treated
mice. Furthermore, at day 75, more than
45% of the anti–PD-1-treated mice still
survived, whereas none of the isotype-
treated mice did. A morphometric analysis
of lungs taken when the animals were killed
(i.e., when they had lost z20% of their
body weight) surprisingly demonstrated
that the percentage of lesions per total lung
was not significantly different between the
groups (Figure 5B). However, there was
great heterogeneity in the size and
morphology of the lesions in both anti–PD-
1–treated and IgG-treated lungs
(Figure 5C). Collectively, our data
demonstrate a significant increase of
survival in mice with Tsc2-null lesions by
treatment with anti–PD-1 antibody.

Discussion

Cancer immunotherapies require an
existing pool of T cells that can respond
to antigens specific to a particular type
of cancer. These cancer antigen-specific
T cells are suppressed by the immune
microenvironment but subsequently can be
activated by immunotherapy (34–36). In
LAM, several antigens have been identified
that are also found in melanoma and
neuroendocrine tumors. These include
ganglioside D3 and gp100, both of which
are potential targets for NKT and cytotoxic
T cells (15, 16). Indeed, studies by Klarquist
and colleagues and Gilbert and colleagues
demonstrated that LAM cells are susceptible
to NKT-cell and cytotoxic lymphocyte–
mediating immune targeting (15, 16).
These studies also identified that despite
expression of GD3, there was no NKT-
cell recruitment to LAM lungs. This
suggests that enhancing NKT-cell responses
through immunization targeting GD3 may
provide new therapeutic LAM treatments.
However, clinical application of this approach

for treatment of LAM has not been
investigated (37).

Our studies have focused on classic
CD81/CD41 T-cell responses in LAM,
and we have found that in our mouse
model, significantly more T cells infiltrate
lungs with Tsc2-null lesions compared
with lungs of controls. In addition, we
have found that these infiltrating T cells
highly express PD-1, suggesting that
T cells may have been shifted toward

tolerance or anergy by PD-1–PD-L1
interactions (38).

Recent evidence in cancer has
demonstrated that the therapeutic efficacy
of treatments such as the anti–PD-1 therapy
we used in the present studies is highly
dependent on T-cell infiltration into tumors
(10, 39, 40). Indeed, patients with “hot
tumors,” or tumors with significant
immune cell infiltrates, respond better to
immune checkpoint blockade, whereas
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Figure 5. Anti–PD-1 antibody treatment enhances survival in a mouse model of LAM. (A) Kaplan-
Meier analysis of survival in mice with Tsc2-null lung lesions. Mice were treated with either anti–PD-1
antibody (green) (n = 20) or isotype control IgG2a antibody (red) (n = 10). Animal survival was
assessed as 20% loss of body weight. Statistical significance was determined for mice treated with
anti–PD-1 antibody versus IgG2a antibody by log-sum rank test; P , 0.0001. (B) Percentage of lung
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images of lungs with Tsc2-null lesions from mice treated with either anti–PD-1 antibody or IgG2a at
the time they were killed. Scale bars: 5 mm.
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patients with “cold tumors” often fall in the
nonresponder group. Further advances
have demonstrated that the immune
infiltrates are likely due to increased
chemokine production in some tumors that
attract immune cells (39, 41). For this
reason, efforts to enhance chemokine
production in tumors to transform
previously “cold” tumors into “hot” tumors
have shown significant promise.
Chemokines such as CCL21, which attracts
CCR71 naive and central memory T cells
along with other immune cells, have been
combined with other immunotherapies as
effective treatments for tumors lacking
immune infiltration (42–45). Strategies
such as these could potentially be applied in
LAM to enhance immune infiltration into
the lungs. When combined with checkpoint
inhibition or other immunotherapeutic
strategies, this may further enhance
treatment efficacy.

The present study identifies PD-L1
as a potential novel therapeutic target
in LAM. Identification of PD-L1 upregulation
in LAM cell nodules demonstrates one
potential mechanism of immunomodulation
that may enable LAM cells to escape
immune detection and destruction.
Activation of Akt and mTOR has been
linked to PD-L1 upregulation in experimental
animal models and in glioma (46, 47).
In LAM, mutational inactivation of

TSC1/2 uncouples mTORC1 from
upstream control by growth factors and
nutrients, leading to uncontrolled growth
(1, 3, 29, 30). Our study adds to the
pathobiology of LAM by demonstrating
PD-L1 upregulation in LAM lungs. In
addition, we show that Tsc2-null lesions in
immunocompetent mice have increased
levels of both innate and adaptive immune
cells. Furthermore, stromal cells, epithelial
cells, fibroblasts, and T cells have
upregulated expression of PD-L1. In this
immunocompetent mouse model of
metastatic LAM, treatment with anti–PD-1
antibody significantly extended mouse
survival. Several important caveats with
regard to this model should be noted. First,
the cell of origin for the TTJ lung lesions in
our model is a kidney-derived tumor. In
human LAM, the origin of the LAM lung
cells is still unclear, although kidney
angiomyolipomas are common in
this patient population. Second, the
subcutaneous injection of Tsc2-null
TTJ cells and their passaging through
BALB/c-derived nude and C57BL/6 mice
may have selected for particularly immune
evasive cells that may respond well to
immunotherapy, such as anti–PD-1. Third,
Tsc2-null lung tumor growth in the mouse
is much more aggressive than lung lesion
growth in patients with LAM, so
immunotherapy may have different effects

in human LAM cells because of their slower
proliferation kinetics. Further studies are
needed to identify specific molecular and
cellular mechanisms of PD-L1 upregulation
and its role in immunomodulation in
LAM. Because blockage of the immune
checkpoint axis PD-1/PD-L1 is among the
most promising approaches in cancer
immunotherapy, our findings also provide
a new opportunity for therapeutic targeting
that extends beyond the stabilization
benefits of rapamycin. Such targeting may
also provide an approach for patients who
are unresponsive to rapamycin treatment
and those with advanced LAM disease. n
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