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Abstract

The purpose of the present study is to compare performances of mixture modeling
approaches (i.e., one-step approach, three-step maximum-likelihood approach, three-
step BCH approach, and LTB approach) based on diverse sample size conditions. To
carry out this research, two simulation studies were conducted with two different
models, a latent class model with three predictor variables and a latent class model
with one distal outcome variable. For the simulation, data were generated under the
conditions of different sample sizes (100, 200, 300, 500, 1,000), entropy (0.6, 0.7, 0.8,
0.9), and the variance of a distal outcome (homoscedasticity, heteroscedasticity). For
evaluation criteria, parameter estimates bias, standard error bias, mean squared
error, and coverage were used. Results demonstrate that the three-step approaches
produced more stable and better estimations than the other approaches even with a
small sample size of 100. This research differs from previous studies in the sense that
various models were used to compare the approaches and smaller sample size condi-
tions were used. Furthermore, the results supporting the superiority of the three-
step approaches even in poorly manipulated conditions indicate the advantage of
these approaches.
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Introduction

Recently, researchers in the behavioral sciences have been concerned with grouping.

To identify unobserved heterogeneity in the population, mixture models are very use-

ful and popular statistical tools. Mixture models can classify individuals into sub-

groups using similar responses according to some variables or similar change patterns

(B. Muthén, 2004). Therefore, when individuals in the population have unobserved

heterogeneity, the population can be divided into meaningful subgroups, also called

‘‘latent classes,’’ which cannot be observed through the data itself but through statis-

tical analysis.

The latent class model has been used in diverse research fields such as education

(Bowers & Sprott, 2012; Gage, 2013), psychology (Galatzer-Levy, Nickerson, Lits,

& Marmar, 2013), adolescence (Aldridge & Roesch, 2008), criminology (Feingold,

Tiberio, & Capaldi, 2014; Lovegrove & Cornell, 2014), medical science (Steffen,

Glanz, & Wilkens, 2007), and marketing (Sell, Mezei, & Walden, 2014). These stud-

ies applied mixture models by including latent classes and external variables to figure

out not only the identification of the latent class but also the cause and effect of its

classification. Thus, identifying latent classes and estimating the relationship between

latent classes and external variables are two major parts of the mixture model.

When analyzing a mixture model with external variables, two methods are typi-

cally used, the ‘‘one-step approach’’ and the ‘‘three-step approach.’’ The one-step

approach is a method that analyzes all variables simultaneously, and the three-step

approach is a method that analyzes data in a step-by-step approach by identifying

latent classes, assigning individuals to groups, and estimating the relationship

between latent classes and external variables.

The one-step approach had been used for a long time until Vermunt (2010) pointed

out its disadvantages. This approach is not considered effective for applied research-

ers since the latent classes have to be identified again whenever the combinations of

external variables are changed. Moreover, indicators and external variables affect the

latent class identification sometimes by giving different results (Bakk, Tekle, &

Vermunt, 2013; Vermunt, 2010).

On the other hand, the three-step approach was developed to address the shortcom-

ings of the one-step approach (Bolck, Croon, & Hagenaars, 2004; Vermunt, 2010). In

the three-step approach, classification of individuals and estimation of relationships

are not analyzed simultaneously but in consecutive order. Therefore, regardless of the

different combination of external variables, the classification of individuals can be

maintained. Nevertheless, the three-step approach was found to underestimate the

relationship between latent classes and external variables (Bolck et al., 2004). To

overcome this underestimation, bias-correction methods of the three-step approach

have been suggested (Bakk et al., 2013; Gudicha & Vermunt, 2013; Vermunt, 2010).

There are two bias-correction methods of the three-step approach, which are the

maximum-likelihood (ML) approach (i.e., ‘‘the three-step ML’’) and Bolck et al.’s

(2004) modified approach (known as the ‘‘three-step BCH’’) by Vermunt (2010).
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In addition to the one-step and three-step approaches, Lanza, Tan, and Bray

(2013) recently developed a new approach, called the ‘‘LTB approach.’’ The LTB

approach can analyze a mixture model with only the distal outcome variables as an

external variable while one-step and three-step approaches can analyze a mixture

model with both predictor variables and distal outcome variables. The advantage of

the LTB approach lies in estimating the distribution of the distal outcome variable

empirically. Since it is not necessary to follow the specific distribution, the LTB

approach is a flexible model-based approach.

Since bias-correction methods of the three-step approach and the LTB approach

were developed, simulation studies (e.g., Asparouhov & Muthén, 2014; Bakk et al.,

2013; Bolck et al., 2004; Gudicha & Vermunt, 2013; Lanza et al., 2013; Vermunt,

2010) were conducted to compare the performance of existing methods. In these

simulation studies, researchers focused on the estimation of the association between

latent classes and external variables and found that the three-step approaches were

similar to or more biased than the one-step approach (Asparouhov & Muthén, 2014;

Bakk et al., 2013; Gudicha & Vermunt, 2013; Vermunt, 2010). In addition, the LTB

approach was found to be less biased than an uncorrected three-step approach (Lanza

et al., 2013). More recent simulation studies compared the approaches in latent class

modeling with distal outcomes under various conditions (e.g., heteroscedasticity of

variances of distal outcomes, bimodal distal outcome distribution) and recommended

the three-step ML or the three-step BCH approaches (Asparouhov & Muthén, 2015;

Bakk & Vermunt, 2016).

However, it is necessary to expand on the previous simulation results because

those studies were conducted under limited conditions. In fact, simulation studies

(e.g., Asparouhov & Muthén, 2014, 2015; Bakk et al., 2013; Bakk, Oberski, &

Vermunt, 2016; Bakk & Vermunt, 2016; Bolck et al., 2004; Gudicha & Vermunt,

2013; Lanza et al., 2013; Vermunt, 2010) were conducted in mixture models with a

sample size of 500 or more. In reality, empirical studies with mixture models (e.g.,

Aldridge & Roesch, 2008; Castle, Sham, Wessely, & Murray, 1994; Feingold et al.,

2014; Galatzer-Levy et al., 2013; Rosen et al., 2009) often include multiple external

variables with sample sizes smaller than 500. Therefore, simulation studies need to

be based on more realistic sample size conditions reflecting empirical studies.

Because of the gap in the current research, it is necessary to incorporate more rea-

listic conditions for comparing the approaches in a simulation study. Hence, this

study was performed under small sample size conditions by using a simulation study

to compare the mixture modeling approaches.

As such, this study aims to compare the one-step approach, the three-step ML

approach, the three-step BCH approach, and the LTB approach in their estimation of

the relationship between latent classes and external variables. This study is equivalent

to previous studies (e.g., Asparouhov & Muthén, 2014, 2015; Bakk et al., 2013; Bakk

et al., 2016; Bakk & Vermunt, 2016; Bolck et al., 2004; Gudicha & Vermunt, 2013;

Lanza et al., 2013; Vermunt, 2010) in conducting simulations based on estimating the

association between latent classes and external variables, but the difference is that this
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study includes smaller sample size conditions than those in previous studies.

Therefore, in this research, two simulation models with more realistic conditions of

sample size and quality of classification were used. The two models are (1) latent

class models with three predictor variables and (2) latent class models with a distal

outcome variable. The sample size conditions were manipulated from 100 to 1,000,

and for the quality of classification, which is referred to as entropy, values from 0.6

to 0.9 were used. This range of values reflects more realistic guidelines for a mixture

model. Specific reasons for the conditions are presented in the ‘‘Manipulated

Conditions’’ section.

The research questions of this study are the following:

Research Question 1: When a latent class model is analyzed with three pre-

dictor variables under various sample sizes and entropy conditions, how dif-

ferent are the approaches in the accuracy and efficiency of parameter

estimation?

Research Question 2: When a latent class model is analyzed with a distal out-

come variable under various conditions including sample size, entropy, and

homoscedasticity/heteroscedasticity of variances, how different are the

approaches in the accuracy and efficiency of parameter estimation?

In summary, two studies were conducted using the two simulation models: (1)

Study 1, based on a simulation model, which is a latent class model with three pre-

dictor variables, comparing the estimation of the one-step approach to that of the

three-step ML approach and (2) Study 2, based on a simulation model, which is a

latent class model with a distal outcome variable, comparing the one-step approach,

the three-step ML approach, the three-step BCH approach, and the LTB approach in

estimating the relationship between latent classes and distal outcome variables.

Approaches of the Latent Class Model With External
Variables

The One-Step Approach

The one-step approach is a method that simultaneously analyzes all variables in the

final model as in general structural equation modeling (Vermunt, 2010). As the one-

step approach can analyze a measurement model and structural model at the same

time, this approach can classify latent classes and estimate the relationship with exter-

nal variables simultaneously.

The advantage of the one-step approach is that all variables in the model can be

analyzed at the same time. Several simulation studies (e.g., Bolck et al., 2004;

Gudicha & Vermunt, 2013; Vermunt, 2010) found that the one-step approach is less

biased than the three-step approach in estimating the association between latent

classes and external variables. Nevertheless, there are some disadvantages as the

one-step approach is not suitable for applied researchers as previously described, and
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latent class classifications are affected by external variables (Vermunt, 2010). Thus,

if the combination of explanatory variables is varied or different distal outcome vari-

ables are included, classifications will sometimes be altered when a different model

is analyzed. Then, the risk of misspecification or distortion of classifications is high

(Bakk et al., 2013).

The Three-Step Approaches: ML and BCH

Unlike the one-step approach, the three-step approach divides latent class classifica-

tion and association analysis of latent classes and external variables into three steps:

The first step identifies latent classes using observed indicators, the second step

assigns individuals into latent classes and corrects classification error probability,

and last, the third step analyzes the relationship between latent classes and external

variables (Vermunt, 2010). In this section, the recently developed bias-correction

method and the consistency of the three-step approach following Vermunt’s terms

are described (Bakk et al., 2013; Gudicha & Vermunt, 2013; Vermunt, 2010).

Specifically, in the first step, the probability of an individual belonging to a latent

class is estimated without external variables. In the second step, each individual is

assigned to a particular latent class classified in the first step and the classification

error probability is calculated. Consideration of the classification error is critical in

the three-step approach because class membership is not observed but estimated

(Bakk et al., 2013; Goodman, 1974). There are two representative rules of assigning

individuals to posterior classes by using the probability: modal assignment referred to

as hard partitioning and proportional assignment referred to as soft partitioning (Bakk

et al., 2013; Vermunt, 2010). Modal assignment entails each individual assigned to a

latent class with the largest posterior membership probability. Meanwhile, propor-

tional assignment involves weight equal to posterior membership probability given to

each individual. Compared with proportional assignment, modal assignment is the

most common rule (Gudicha & Vermunt, 2013), and the misspecification is smaller

(Bakk et al., 2013). In latent class analysis software programs including Mplus and

Latent GOLD, modal assignment is the default. For these reasons, the modal assign-

ment rule was used in this study. Since classification cannot be perfect because of the

unknown true latent class, the probability of classification error is measured in Step

2. In the third step, the relationship between latent classes and external variables are

estimated using the predicted latent class and probability of classification error from

the second step.

The advantage of the three-step approach is that class solution is not changed even

when a combination of explanatory variables or distal outcome variables differ.

Therefore, this approach is suitable for applied researchers (Vermunt, 2010). On the

other hand, the disadvantage of the three-step approach is that the relationship

between latent classes and external variables are biased downward (Bolck et al.,

2004; Vermunt, 2010). This underestimation occurs within the classification error,

that is the larger the classification error, the larger the downward bias in the estimates
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(Vermunt, 2010). To correct the bias, two bias-correction methods have been devel-

oped, which are the three-step ML and the three-step BCH. The three-step ML

approach from Vermunt (2010) estimates the latent class model with external vari-

ables using ML estimation. The three-step BCH approach by Bolck et al. (2004) and

further developed by Vermunt (2010) estimates the latent class model using weighted

analysis. While the three-step ML approach deals with equal and unequal variances

of distal outcomes across latent variables (e.g., DE3STEP and DU3STEP in Mplus,

respectively), the three-step BCH assumes homoscedasticity of variances. For more

detailed information, readers should refer to Vermunt (2010), Gudicha and Vermunt

(2013), Bakk et al. (2013), and Bakk and Vermunt (2016). According to the previous

simulation studies, while the three-step ML approach is recommended when the

external variables are predictors or categorical outcomes (Bakk et al., 2013; Vermunt,

2010), the three-step BCH approach is preferred when the external variables are con-

tinuous or count outcome variables (Bakk & Vermunt, 2016). These two methods are

now incorporated into Mplus (Muthén & Muthén, 1998-2017) and Latent GOLD

(Vermunt & Magidson, 2016).

The LTB Approach

The LTB approach, proposed by Lanza et al. (2013), can be used only in a latent

class model with distal outcome variables as external variables. Therefore, when

using this approach, estimating the relationship between a latent class variable and

distal outcome variable is focused. Although the latent class variable is unobservable,

researchers can estimate the conditional distribution of the distal outcome variable

for each latent class. To estimate the conditional distribution of the distal outcome

variable given the latent class, Lanza et al. (2013) proposed a conditional indepen-

dence assumption. This is similar to the local independence assumption of the latent

class model (Collins & Lanza, 2010). Since the LTB approach estimates the distribu-

tion of the outcome variable empirically, it is not necessary to follow a specific form

of distribution such as normal or Gaussian distribution. Therefore, Lanza’s approach

can be called a flexible, semiparametric model-based approach.

In addition, Lanza et al. (2013) found that the LTB approach was less biased than

the three-step approach. Their study, however, used an uncorrected three-step

approach. Later, Asparouhov and Muthén’s (2014) simulation study illustrated that

the LTB approach appeared to be slightly worse than the bias-correction method of

the three-step approach in terms of coverage. Since the performance of the LTB

approach was limited, Bakk et al. (2016) suggest improved LTB approaches, but

these new approaches have to date not been developed.

Previous Simulation Studies

To compare performances of the approaches in estimating the association between

latent classes and external variables, several recent simulation studies have been
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conducted. Previous simulation studies can be categorized according to their simula-

tion models: latent class models including external variables as predictor variables

(Bolck et al., 2004; Gudicha & Vermunt, 2013; Vermunt, 2010), as distal outcome

variables (Asparouhov & Muthén, 2015; Bakk et al., 2013; Bakk et al., 2016; Bakk

& Vermunt, 2016; Lanza et al., 2013), and as both predictor and outcome variables

(Asparouhov & Muthén, 2014). A brief summary of previous simulation studies is

presented in Table 1.

Bolck et al. (2004) compared a one-step approach and a three-step approach for

estimating the effect of a predictor variable to latent classes. In their study, the one-

step approach was less biased in parameter estimation than the three-step approach.

They also demonstrated that modal assignment had more accurate estimation than

random assignment in correcting the downward bias of the three-step approach.

Vermunt (2010) extended the study of Bolck et al. (2004) and suggested two bias-

correction methods of the three-step approach based on an ML and BCH in conjunc-

tion with the three-step approach. He compared the one-step approach and the two

three-step approaches with modal assignment and proportional assignment of the

three-step approach. As a result, Vermunt (2010) reported that the two three-step

approaches performed very well except for conditions with poor quality of classifica-

tion and showed better performance than the one-step approach.

To build on the performance of the two three-step approaches, Gudicha and

Vermunt (2013) used continuous indicators for latent class classification. In their

results, the three-step BCH approach was more accurate but less efficient than the

three-step ML and the one-step approach, but the three-step ML provided similar

estimates to the one-step approach, except for the combination of a small sample size

(n = 500) and poor quality of classification (.43). Bakk et al. (2013) generalized

Vermunt’s (2010) correction methods of the three-step approach in a different direc-

tion than Gudicha and Vermunt (2013). In their study, outcome variables consisted

of several types of variables such as nominal, ordinal, and continuous variables.

They found that the three-step ML approach was the most efficient and recom-

mended the one-step approach and the three-step ML approach in latent class models

with nominal outcomes under low separation between classes because the three-step

BCH approach failed with the occurrence of negative cell frequencies.

Lanza et al. (2013) conducted a simulation study to evaluate performances of a

flexible model-based approach of a latent class model with outcome variables.

Lanza’s flexible model-based approach produced less biased estimation than the

three-step approach except when the outcome variable was a count variable.

Recently, Asparouhov and Muthén (2014) conducted a simulation study to com-

pare the one-step and the three-step ML approaches with both predictor and distal

outcome variables in latent class models. Moreover, they also considered the LTB

approach for a latent class model with an outcome variable. They found that the per-

formances of the one-step and the three-step ML approaches were similar when the

simulation model was a latent class model with a predictor variable. In addition, the

three-step ML approach had better coverage than the LTB approach while the LTB
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approach had slightly lower bias and mean squared error. In their study, there was no

sample size effect in the range of 500 to 2,000. They suggested that much smaller or

much larger sample sizes should be considered for future simulation studies.

Asparouhov and Muthén (2015) then broadened the previous simulation study. They

added the three-step BCH approach to estimate a distal outcome model. They found

that the three-step ML and BCH approaches showed similarly good performance for

continuous distal outcomes when the variances of the distal outcome variable were

unequal across latent classes. Therefore, they recommended these two approaches.

To investigate the robustness of approaches in latent class modeling with continu-

ous distal outcomes, Bakk and Vermunt (2016) conducted a simulation study with

violations of assumptions such as bimodality and heteroscedasticity of distal outcome

variables. Comparing the three-step ML, the three-step BCH, and the LTB approach,

the results revealed that the three-step BCH approach is the most robust under all

conditions. To overcome the inefficiency of the original LTB approach, Bakk et al.

(2016) proposed various improved LTB approaches (e.g., using a linear or quadratic

model, bootstrap or jackknife SEs, etc.), and these approaches were more efficient

than the original LTB approach and the three-step BCH approach.

Most simulation studies focused on the estimation of the relationships between

latent classes and external variables to identify effective latent class classification

methods. Therefore, the criteria of evaluating the approaches were targeting the accu-

racy and efficiency of estimation. Previous simulation studies derived slightly differ-

ent results and were conducted under manipulated conditions of sample sizes more

than 500. However, considering that sample sizes smaller than 500 were used for

mixture models in many empirical studies (e.g., Aldridge & Roesch, 2008; Castle et

al., 1994; Feingold et al., 2014; Galatzer-Levy et al., 2013; Rosen et al., 2009), it is

necessary to conduct simulation studies under realistic conditions with smaller sam-

ple sizes.

Simulation Study

Design

The present simulation studies were conducted to compare estimation of the one-step,

the three-step ML, the three-step BCH, and the LTB approaches. Data sets were gen-

erated from two simulation models (i.e., a latent class model with three predictor vari-

ables and a latent class model with a distal outcome variable). Each simulation model

was specified to have four latent classes with six dichotomous indicators. External

variables were all continuous variables. In Figures 1 and 2, predictor variables and an

outcome variable are represented by X1 to X3 and Y, respectively. Latent classes are

represented by latent variable C, and indicators are represented by measured variables

u1 to u6.

Class 1 was specified so that all six indicators have high threshold values, but

Class 4 was specified so that all have low threshold values. Class 2 was specified for

the first three indicators to have high values and the last three indicators to have low
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values, but Class 3 was specified for the first three indicators to have low values and

the last three indicators to have high values. The proportion of individuals in each

latent class was specified to be 25%, respectively.

Manipulated Conditions

There are two major conditions in the current research, the sample size and the qual-

ity of classification (i.e., entropy). Both factors are hypothesized to be related to per-

formances of the approaches in the latent class model with external variables (Bakk

et al., 2013; Vermunt, 2010). For sample sizes, four levels were set as 100, 200, 300,

500, and 1,000. In previous simulation studies, the sample size conditions were 500

or larger (Asparouhov & Muthén, 2014, 2015; Bakk et al., 2013; Bakk et al., 2016;

Bakk & Vermunt, 2016; Bolck et al., 2004; Gudicha & Vermunt, 2013; Lanza et al.,

2013; Vermunt, 2010). However, in reality, many empirical studies used sample sizes

smaller than 500 for mixture models. These studies include Aldridge and Roesch

Figure 1. Research model of Study 1.
Note. C = Latent class; X = predictor variable; u = indicator.

Figure 2. Research model of Study 2.
Note. C = Latent class; Y = outcome variable; u = indicator.
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(2008) with a sample size of 354, Castle et al. (1994) with 447, Feingold et al. (2014)

with 206, Galatzer-Levy et al. (2013) with 409, and Rosen et al. (2009) with 153.

Therefore, including small sample sizes, 100, 200, 300, 500, and 1,000 was consid-

ered important in this study. The reason for focusing on smaller sample size is that a

small sample size can be more sensitive to various conditions.

For the quality of classification, four levels were set as 0.6, 0.7, 0.8, and 0.9.

According to Clark (2010), 0.8 is high level, 0.6 is medium level, and 0.4 is low

level. Nagin (2005) also provided a rule of thumb that probability of correct class

membership assignment be more than 0.7. Based on these guidelines, 0.6 was con-

sidered a minimum level of entropy in this study.

In addition, equal and unequal variance across latent classes were simulated for a

distal outcome. Generally, there is an assumption of homoscedasticity of variance

across latent classes, but this assumption often does not hold in reality. Moreover,

each approach has a different degree of robustness and violations of this assumption.

Therefore, we tried to explore the performance of the approaches by including this

assumption in the simulation analysis. In the homoscedasticity condition of variances,

the variances of each class were set to 1, and in the heteroscedasticity, the variances

of each class were 1, 4, 9, and 25.

While the one-step approach and the three-step ML approach were used for a

latent class model with predictor variables, the one-step, the three-step ML, the three-

step BCH, and LTB approaches were used for a latent class model with a distal out-

come. The reason for this arrangement is because the three-step BCH approach and

the LTB approach are mainly used when the external variables are distal outcome

variables.

For each analysis, 500 replications were used; 40 conditions (5 sample size 3 4

entropy 3 2 approaches) for Study 1 and 160 conditions (5 sample size 3 4 entropy

3 4 approaches 3 2 variance) for Study 2 were manipulated. Thus, 100,000 data sets

(200 conditions 3 500 replications) were generated.

Data Generation and Analysis

Data generation and analysis was conducted using Mplus 7.4 (Muthén & Muthén,

1998-2017) estimating with robust standard error for mixture models. While the one-

step and the three-step ML approaches were ML-based methods, the three-step BCH

approach was a weighted method, and the LTB approach was a flexible model-based

method. Our study did not use the improved LTB approach (Bakk et al., 2016) but

the original LTB approach (Lanza et al., 2013) because new LTB approaches cannot

be analyzed using Mplus yet. In the case of the two 3-step approaches, a modal

assignment method was applied in Step 2. The modal assignment was accurate and

efficient in comparison with random or proportional assignment methods to estimate

parameters (Asparouhov & Muthén, 2014; Bolck et al., 2004). For the three-step ML

approach, we used DE3STEP under the equal variances conditions and DU3STEP

under the unequal variances conditions in Mplus.
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Criteria of Evaluation

To evaluate the estimation, there are three criteria: bias, mean squared error, and

coverage. The first criterion is bias, which provides information about the difference

between the estimated value and true value of the parameter. That is, this criterion

indicates the accuracy of the estimation of coefficients. In this simulation study, there

are two types of bias that are about parameter and standard error. Biases of parameter

and standard error are derived by Equations (1) and (2), respectively (Bandalos,

2006; Muthén & Muthén, 2002). In these equations, ûr means rth parameter estima-

tors and r means the number of replications. In this study, R equals 500. Parameter

bias means the average of the differences between the estimated value and true value

across 500 replications. Standard error bias indicates the extent to which a method

overstates or understates the estimate of its own sampling variability.

Bias û
� �

=
XR

r = 1

ûr � u

u

 !
=R ð1Þ

Bias cSE û
� �� �

=
XR

r = 1

cSE û
� �

r
� SE û

� �
SE û
� � !

=R ð2Þ

These criteria are considered satisfactory when the bias of parameter does not

exceed the absolute value of 0.10 and the bias of standard error for the parameter

does not exceed the absolute value of 0.05 (Bandalos, 2006; Muthén & Muthén,

2002).

The second criterion is mean squared error, which includes both the bias of para-

meter estimates and variance simultaneously. It provides information about how

accurately and consistently it estimates parameters. Mean squared error is derived by

Equation (3) (Muthén & Muthén, 2002). An estimate that has good mean squared

error properties has small combined bias and variance. Therefore, the higher mean

squared error value means the less the accuracy and efficiency of the estimated

values.

MSEû = Bias û
� �� �2

+ Var û
� �

ð3Þ

The third criterion is coverage that gives information about the proportion of

replications where a 95% confidence interval includes the true parameter value. The

standard of coverage is between 0.91 and 0.98 (Bandalos, 2006; Muthén & Muthén,

2002).

Three-Way Analysis of Variance

After the simulation studies, the criteria of evaluation were treated as the dependent

variables in a three-way analysis of variance (ANOVA) using sample size conditions,

entropy conditions, and analysis approaches as the independent variables. Coverage
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was excluded because the criterion of coverage involves a range of 0.91 to 0.98, and

this value is not increasing or decreasing according to the manipulated conditions.

Therefore, three-way ANOVAs according to the approaches were conducted for para-

meter estimates bias, standard error bias, and mean squared error. For effect size, eta-

square (h2) was measured. The eta-square measure is defined as the ratio of variance

accounted for by the sum of squares for the effect and the total sum of squares.

Results

Study 1

Table 2 provides the simulation results of bias, mean squared error, and coverage in

Study 1 comparing the one-step approach and three-step ML approach. Biases of

parameter estimates and standard error were presented in absolute values. According

to the results, the parameter estimates bias and standard error bias were very high

under the conditions of small sample size and low entropy. Between the two

approaches, the one-step approach was less accurate under the poor conditions than

the three-step ML approach. Under the smallest sample size condition, the one-step

approach was highly biased when the entropy was 0.6 and 0.7 while the three-step

ML approach was highly biased only when the entropy was 0.6.

The mean squared error is useful to determine the performance of the approaches

at one time because the mean squared error is defined as a combination of parameter

estimates bias and standard error bias. The mean squared error was low in combina-

tion with large sample size and high entropy but high in combination with small

sample size and low entropy. In this study, the mean squared error of the one-step

approach was extremely high with a small sample size (i.e., 100) and low entropies

(i.e., 0.6, 0.7). Meanwhile, the three-step ML approach was relatively stable even in

bad conditions (see Figure 3). That is, in terms of biases and mean squared error, the

three-step ML approach is better than the one-step approach.

Finally, in terms of coverage, the three-step ML approach demonstrated a better

level of performance than the one-step approach under poor conditions. The two

methods showed a range of 0.91 to 0.98 except for the condition with the smallest

sample size and lowest entropy in the one-step approach.

Table 3 contains the results of a three-way ANOVA for the criterion of evalua-

tion. According to the results for parameter estimates bias, the main effect and inter-

action effects including sample size (i.e., sample size, sample size 3 entropy, sample

size 3 approach, sample size 3 entropy 3 approach) were statistically significant.

The largest effect was the interaction between sample size and entropy (h2 = .17)

followed by the three-way interaction (h2 = .16). For standard error bias, all main

effects and interactions were statistically significant. The largest effect was the inter-

action of sample size and entropy (h2 = .21), followed by the main effect of sample

size (h2 = .16), and last followed by the main effect of entropy (h2 = .14). For mean

squared error, all main effects except for the main effect of approach and all interac-

tions were statistically significant. The largest effect was the interaction of sample
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size and entropy (h2 = .20) followed by the three-way interaction (h2 = .19). In para-

meter estimates bias, standard error bias, and mean squared error, the patterns were

the same. The largest effect was the interaction of sample size and entropy, and the

smallest effect was the main effect of approach.

Study 2

Tables 4 and 5 provide the simulation results of biases, mean squared error, and cov-

erage in Study 2 comparing the one-step approach, the three-step ML approach, the

Table 2. Biases, Mean Squared Error, and Coverage in Study 1 (One-Step Approach and
Three-Step ML Approach).

Sample size

Criterion Method Entropy 100 200 300 500 1,000

Parameter estimates bias One-step 0.6 41.634 0.305 0.080 0.041 0.018
0.7 1.639 0.114 0.052 0.021 0.009
0.8 0.124 0.074 0.031 0.008 0.011
0.9 0.058 0.039 0.011 0.011 0.014

Three-step ML 0.6 0.791 0.242 0.244 0.150 0.085
0.7 0.189 0.134 0.081 0.042 0.012
0.8 0.022 0.062 0.031 0.006 0.008
0.9 0.053 0.048 0.033 0.009 0.009

Standard error bias One-step 0.6 0.990 0.454 0.126 0.054 0.036
0.7 0.431 0.019 0.050 0.030 0.012
0.8 0.039 0.057 0.019 0.030 0.018
0.9 0.030 0.014 0.042 0.031 0.016

Three-step ML 0.6 0.313 0.057 0.049 0.052 0.035
0.7 0.044 0.029 0.028 0.050 0.030
0.8 0.053 0.030 0.046 0.035 0.031
0.9 0.060 0.042 0.048 0.036 0.021

Mean squared error One-step 0.6 13050.584 1.373 0.099 0.042 0.016
0.7 723.296 0.077 0.044 0.023 0.011
0.8 0.103 0.043 0.028 0.016 0.007
0.9 0.081 0.035 0.023 0.014 0.006

Three-step ML 0.6 5.810 0.125 0.085 0.053 0.026
0.7 0.184 0.085 0.058 0.036 0.017
0.8 0.146 0.062 0.043 0.025 0.012
0.9 0.123 0.054 0.036 0.021 0.010

Coverage One-step 0.6 0.887 0.930 0.941 0.953 0.957
0.7 0.915 0.956 0.947 0.954 0.944
0.8 0.945 0.956 0.946 0.949 0.941
0.9 0.940 0.953 0.947 0.947 0.939

Three-step ML 0.6 0.931 0.925 0.920 0.937 0.947
0.7 0.943 0.941 0.937 0.928 0.941
0.8 0.947 0.947 0.938 0.943 0.942
0.9 0.941 0.945 0.942 0.945 0.941

Note. ML = maximum likelihood.
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Table 3. ANOVA Results for Criteria According to Approaches in Study 1.

Criterion Source Sum of squares df Mean square F h2

Parameter bias Sample size (n) 581.02 4 145.26 2.72* .06
Entropy (e) 409.20 3 136.40 2.56 .04
Approach (a) 132.59 1 132.59 2.48 .01
n 3 e 1553.07 12 129.42 2.42* .17
n 3 a 541.61 4 135.40 2.54* .06
e 3 a 361.65 3 120.55 2.26 .04
n 3 e 3 a 1469.58 12 122.47 2.29* .16

Standard error bias Sample size (n) 0.78 4 0.19 12.14*** .16
Entropy (e) 0.67 3 0.22 14.05*** .14
Approach (a) 0.15 1 0.15 9.33** .03
n 3 e 1.04 12 0.09 5.42*** .21
n 3 a 0.30 4 0.07 4.70** .06
e 3 a 0.29 3 0.10 6.09*** .06
n 3 e 3 a 0.43 12 0.04 2.22* .09

Mean squared error Sample size (n) 54251290.15 4 13562823.00 3.29* .08
Entropy (e) 35728661.73 3 11909554.00 2.89* .05
Approach (a) 14043182.34 1 14043182.00 3.41 .02
n 3 e 128935600.90 12 10744633.00 2.61** .20
n 3 a 54155631.52 4 13538908.00 3.28* .08
e 3 a 35664207.33 3 11888069.00 2.88* .05
n 3 e 3 a 128709977.40 12 10725831.00 2.60** .19

Note. ANOVA = analysis of variance. df = degrees of freedom.

*p \ .05. **p \ .01. ***p \ .001.

Figure 3. Mean squared error in Study 1.
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Table 4. Biases, Mean Squared Error, and Coverage Under Equal Variances in Study 2 (One-
Step Approach, Three-Step ML Approach, Three-Step BCH Approach, and LTB Approach).

Sample size

Criterion Method Entropy 100 200 300 500 1,000

Parameter
estimates bias

One-step 0.6 0.115 0.062 0.015 0.014 0.007
0.7 0.075 0.039 0.018 0.011 0.007
0.8 0.053 0.029 0.017 0.013 0.005
0.9 0.048 0.027 0.017 0.012 0.005

Three-step ML 0.6 0.216 0.192 0.150 0.108 0.041
0.7 0.172 0.125 0.078 0.039 0.012
0.8 0.101 0.052 0.031 0.015 0.005
0.9 0.063 0.033 0.019 0.011 0.005

Three-step BCH 0.6 0.212 0.194 0.147 0.101 0.043
0.7 0.173 0.127 0.079 0.039 0.012
0.8 0.100 0.052 0.030 0.014 0.005
0.9 0.062 0.033 0.019 0.011 0.006

LTB 0.6 0.169 0.093 0.061 0.029 0.007
0.7 0.109 0.094 0.017 0.012 0.007
0.8 0.062 0.033 0.018 0.014 0.005
0.9 0.051 0.028 0.017 0.011 0.005

Standard error bias One-step 0.6 0.289 0.133 0.076 0.178 0.064
0.7 0.160 0.035 0.068 0.080 0.024
0.8 0.028 0.039 0.044 0.034 0.028
0.9 0.020 0.023 0.022 0.027 0.025

Three-step ML 0.6 0.091 0.070 0.070 0.078 0.108
0.7 0.023 0.054 0.021 0.044 0.029
0.8 0.021 0.019 0.021 0.040 0.029
0.9 0.011 0.017 0.018 0.031 0.022

Three-step BCH 0.6 0.092 0.076 0.071 0.078 0.101
0.7 0.028 0.054 0.024 0.042 0.026
0.8 0.026 0.020 0.021 0.040 0.029
0.9 0.013 0.017 0.018 0.031 0.022

LTB 0.6 0.329 0.367 0.398 0.385 0.380
0.7 0.248 0.279 0.259 0.227 0.209
0.8 0.137 0.134 0.088 0.091 0.092
0.9 0.062 0.061 0.039 0.048 0.037

Mean squared error One-step 0.6 0.174 0.088 0.052 0.026 0.011
0.7 0.104 0.047 0.027 0.014 0.007
0.8 0.056 0.028 0.017 0.010 0.005
0.9 0.045 0.023 0.014 0.009 0.004

Three-step ML 0.6 0.073 0.041 0.030 0.020 0.011
0.7 0.054 0.033 0.021 0.013 0.007
0.8 0.046 0.024 0.016 0.010 0.005
0.9 0.041 0.022 0.014 0.009 0.004

Three-step BCH 0.6 0.072 0.042 0.030 0.020 0.011
0.7 0.055 0.033 0.022 0.013 0.007
0.8 0.046 0.024 0.016 0.010 0.005
0.9 0.041 0.022 0.015 0.009 0.004

(continued)
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Table 4. (continued)

Sample size

Criterion Method Entropy 100 200 300 500 1,000

LTB 0.6 0.098 0.056 0.042 0.023 0.011
0.7 0.074 0.041 0.025 0.014 0.007
0.8 0.053 0.027 0.017 0.010 0.005
0.9 0.045 0.023 0.014 0.009 0.004

Coverage One-step 0.6 0.837 0.899 0.925 0.946 0.954
0.7 0.889 0.933 0.947 0.961 0.953
0.8 0.930 0.950 0.955 0.951 0.950
0.9 0.938 0.945 0.950 0.952 0.952

Three-step ML 0.6 0.914 0.914 0.922 0.913 0.916
0.7 0.935 0.933 0.941 0.944 0.940
0.8 0.934 0.945 0.950 0.952 0.944
0.9 0.940 0.943 0.945 0.954 0.950

Three-step BCH 0.6 0.916 0.921 0.924 0.918 0.919
0.7 0.936 0.933 0.944 0.946 0.941
0.8 0.936 0.945 0.948 0.951 0.946
0.9 0.939 0.942 0.946 0.953 0.950

LTB 0.6 0.849 0.805 0.808 0.782 0.784
0.7 0.869 0.856 0.863 0.880 0.881
0.8 0.913 0.914 0.927 0.923 0.925
0.9 0.931 0.932 0.940 0.941 0.945

Note. ML = maximum likelihood; LTB = Lanza, Tan, and Bray (2013) approach; BCH = Bolck, Croon, and

Hagenaars (2004) approach.

Table 5. Biases, Mean Squared Error, and Coverage Under Unequal Variances in Study 2
(One-Step Approach, Three-Step ML Approach, Three-Step BCH Approach, and LTB
Approach).

Sample size

Criterion Method Entropy 100 200 300 500 1,000

Parameter
estimates bias

One-step 0.6 7.401 7.054 7.137 7.098 8.427
0.7 3.439 2.366 2.357 1.696 1.573
0.8 0.594 0.300 0.209 0.156 0.127
0.9 0.175 0.099 0.055 0.049 0.051

Three-step ML 0.6 0.146 0.159 0.101 0.042 0.035
0.7 0.182 0.123 0.035 0.020 0.018
0.8 0.176 0.075 0.039 0.016 0.020
0.9 0.145 0.070 0.043 0.027 0.018

Three-step BCH 0.6 0.166 0.206 0.156 0.089 0.050
0.7 0.275 0.199 0.149 0.065 0.031
0.8 0.210 0.091 0.060 0.047 0.028
0.9 0.147 0.087 0.043 0.033 0.014

LTB 0.6 0.166 0.268 0.410 1.538 2.957
0.7 0.213 0.260 0.446 0.737 0.951
0.8 0.197 0.106 0.137 0.140 0.122
0.9 0.125 0.089 0.051 0.046 0.049

(continued)
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Table 5. (continued)

Sample size

Criterion Method Entropy 100 200 300 500 1,000

Standard error bias One-step 0.6 0.551 0.535 0.545 0.530 0.552
0.7 0.444 0.437 0.465 0.484 0.433
0.8 0.158 0.140 0.083 0.059 0.016
0.9 0.075 0.030 0.024 0.027 0.027

Three-step ML 0.6 0.072 0.044 0.032 0.034 0.028
0.7 0.016 0.024 0.029 0.043 0.012
0.8 0.018 0.026 0.033 0.037 0.017
0.9 0.017 0.016 0.020 0.025 0.023

Three-step BCH 0.6 0.086 0.060 0.050 0.028 0.046
0.7 0.031 0.042 0.026 0.038 0.019
0.8 0.032 0.026 0.007 0.026 0.018
0.9 0.019 0.021 0.014 0.026 0.022

LTB 0.6 0.393 0.513 0.568 0.643 0.729
0.7 0.482 0.598 0.674 0.743 0.816
0.8 0.528 0.578 0.636 0.664 0.632
0.9 0.629 0.644 0.701 0.729 0.712

Mean squared error One-step 0.6 10.069 10.825 10.593 9.919 9.839
0.7 6.422 5.534 4.523 3.409 1.875
0.8 1.556 0.837 0.374 0.160 0.058
0.9 0.654 0.272 0.158 0.096 0.044

Three-step ML 0.6 0.642 0.331 0.234 0.136 0.066
0.7 0.491 0.281 0.178 0.108 0.050
0.8 0.424 0.219 0.149 0.091 0.044
0.9 0.389 0.204 0.139 0.085 0.041

Three-step BCH 0.6 0.649 0.365 0.262 0.162 0.092
0.7 0.502 0.306 0.195 0.126 0.061
0.8 0.443 0.227 0.157 0.098 0.048
0.9 0.396 0.208 0.141 0.088 0.042

LTB 0.6 2.021 2.559 2.890 3.307 3.780
0.7 1.344 1.743 1.832 1.830 0.830
0.8 0.818 0.504 0.262 0.146 0.058
0.9 0.528 0.254 0.156 0.095 0.044

Coverage One-step 0.6 0.689 0.682 0.664 0.635 0.574
0.7 0.773 0.786 0.806 0.817 0.867
0.8 0.914 0.930 0.952 0.954 0.952
0.9 0.938 0.947 0.958 0.954 0.952

Three-step ML 0.6 0.927 0.938 0.942 0.952 0.942
0.7 0.941 0.946 0.945 0.941 0.950
0.8 0.940 0.947 0.947 0.949 0.946
0.9 0.941 0.945 0.950 0.952 0.951

Three-step BCH 0.6 0.931 0.941 0.940 0.940 0.942
0.7 0.942 0.940 0.955 0.946 0.951
0.8 0.936 0.945 0.952 0.948 0.943
0.9 0.943 0.942 0.946 0.952 0.949

LTB 0.6 0.790 0.701 0.654 0.575 0.515
0.7 0.838 0.758 0.737 0.721 0.755
0.8 0.883 0.872 0.890 0.891 0.896
0.9 0.923 0.920 0.924 0.920 0.931

Note. ML = maximum likelihood; LTB = Lanza, Tan, and Bray (2013) approach; BCH = Bolck, Croon, and

Hagenaars (2004) approach.
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three-step BCH approach, and the LTB approach under the condition of equal and

unequal variances for the distal outcome variable across latent classes. Under the

condition of equal variances, the parameter estimates bias of the one-step approach

was generally smaller than those of the other approaches. However, standard error

bias of the three-step ML and BCH approaches was generally smaller than those of

the others. The mean squared error was low under conditions of large sample size

and high entropy but high under conditions of small sample size and low entropy.

The one-step approach showed the largest mean squared error, followed by the LTB

approach, and then followed by the three-step ML and BCH approaches. That is, in

terms of mean squared error, the three-step ML and BCH approaches were similar

and better than the other approaches (see Figure 4). Last, in terms of coverage, both

the three-step ML and BCH approaches seemed acceptable. On the other hand, when

the entropy was 0.6 or 0.7, coverage of the LTB approach and the one-step approach

seemed totally and partially unacceptable, respectively.

Under the condition of unequal variances, the level of difference was larger than

under the condition of equal variances. The one-step approach showed the largest

parameter estimates bias, and the LTB approach showed the largest standard error

bias. The three-step ML and BCH approaches showed similar results and were more

accurate than the other approaches. The one-step approach showed the largest mean

squared error, followed by the LTB approach, and then followed by three-step ML

and BCH approaches. Similar to the homogeneity condition of variance, the three-

step ML and BCH approaches were better than the other approaches (see Figure 5).

Last, in terms of coverage, the three-step ML and BCH approaches were acceptable

under all conditions, the one-step approach was unacceptable when the entropy was

0.6 or 0.7, and the LTB approach was acceptable only when the entropy was 0.9.

Figure 4. Mean squared error under equal variances condition in Study 2.
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Tables 6 and 7 contain the results of the three-way ANOVA for the three criteria

for evaluation. Under the homogeneity condition of variance, according to the results

of the parameter estimates bias, all main effects were statistically significant (0.16

for the sample size, 0.12 for the entropy, and 0.04 for the approach), but all interac-

tions were not statistically significant. For standard error bias, all main effects and

interactions were statistically significant. The largest effect size was the main effect

of approach (h2 = .45), followed by the main effect of entropy (h2 = .28), and then

the interaction of entropy and approach (h2 = .17). For mean squared error, all effects

were significant. The largest effect was the main effect of sample size (h2 = .60) fol-

lowed by that of entropy (h2 = .15). For the interactions, the effect sizes were signifi-

cant but small (h2 = .05). In sum, when the latent class model included a distal

outcome variable and the variances of the distal outcome variable were equal across

latent classes, accuracy and efficiency of estimation were strongly affected by sample

size, entropy, and approach.

Under the heterogeneity condition of variance, in terms of biases and mean

squared error, the main effects and interactions including entropy and approach were

statistically significant, but the main effects of sample size were not significant. For

mean squared error, the largest effect was the interaction of entropy and approach

(h2 = .24), followed by the main effect of approach (h2 = .20), and then followed by

that of entropy (h2 = .12). In conclusion, when the latent class model included a dis-

tal outcome variable and the variances of the distal outcome variable were unequal

across latent classes, accuracy and efficiency of estimation were strongly affected by

entropy and approach but not affected by sample size.

Figure 5. Mean squared error under unequal variances condition in Study 2.
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Conclusions and Discussion

The purpose of this study was to compare the performance of the one-step

approach, the three-step ML approach, the three-step BCH approach, and the LTB

approach in a mixture model with external variables. To carry out this objective,

two simulation studies were conducted. The two simulation models are (1) a latent

class model with three predictor variables and (2) a latent class model with a distal

outcome variable. The sample size conditions were manipulated from 100 to

1,000, and for the quality of classification, which is referred to as entropy, values

from 0.6 to 0.9 were used.

As a result, in Study 1, when the entropy value was 0.6 and the sample size was

100 or 200, estimation of the one-step approach showed a large discrepancy with

the true value while the three-step ML approach resulted in relatively stable esti-

mations. In Study 2, the three-step approaches appeared to be better than the other

approaches in terms of all criteria. In the LTB approach, the coverage met the cri-

teria only when the entropy level was very high. Thus, the three-step ML and BCH

approaches showed relatively stable results even when the manipulated conditions

were bad.

Table 6. ANOVA Results for Criteria According to Approaches Under Equal Variances in
Study 2.

Criterion Source Sum of squares df Mean square F h2

Parameter bias Sample size (n) 0.40 4 0.10 13.29*** .16
Entropy (e) 0.31 3 0.10 13.54*** .12
Approach (a) 0.10 4 0.03 3.42** .04
n 3 e 0.07 12 0.01 0.80 .03
n 3 a 0.02 16 0.00 0.18 .01
e 3 a 0.07 12 0.01 0.77 .03
n 3 e 3 a 0.02 48 0.00 0.05 .01

Standard error bias Sample size (n) 0.01 4 0.00 5.17** .00
Entropy (e) 0.73 3 0.24 558.55*** .28
Approach (a) 1.17 4 0.29 668.04*** .45
n 3 e 0.02 12 0.00 2.99** .01
n 3 a 0.07 16 0.00 9.65*** .03
e 3 a 0.44 12 0.04 84.92 *** .17
n 3 e 3 a 0.10 48 0.00 4.54*** .04

Mean squared error Sample size (n) 0.12 4 0.03 4525.18*** .60
Entropy (e) 0.03 3 0.01 1471.59*** .15
Approach (a) 0.01 4 0.00 289.94*** .05
n 3 e 0.01 12 0.00 140.01*** .05
n 3 a 0.01 16 0.00 93.58*** .05
e 3 a 0.01 12 0.00 95.62*** .05
n 3 e 3 a 0.01 48 0.00 25.93*** .05

Note. ANOVA = analysis of variance; df = degrees of freedom.

*p \ .05. **p \ .01. ***p \ .001.
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In summary, to estimate the relationship between latent classes and an external

variable in a latent class model, the three-step approaches have the advantages of

accuracy and efficiency of estimation even when the sample size is small and the

entropy is low. This outcome is a major discovery, which can be helpful for applied

researchers with small sample sizes because of practical limitations. In other words,

researchers can use the three-step approaches in a latent class model with external

variables even when the sample size is small such as 100 or 200. Until now, because

previous simulation studies are based on sample sizes more than 500, there was no

simulation evidence for smaller sample sizes. In this sense, this simulation result pro-

vides useful practical implications.

Furthermore, there are several implications of this study. First, this study manipu-

lated more realistic simulation conditions than previous studies. For example, in sam-

ple size conditions, much smaller samples were tested than previous simulation

studies, given that many empirical studies use samples of 100 to 300 because of lim-

itations associated with collecting large samples. As several simulation studies pro-

vided guidelines on sample size and other complex conditions (MacCallum,

Widaman, Preacher, & Hong, 2001; MacCallum, Widaman, Zhang, & Hong, 1999),

Table 7. ANOVA Results for Criteria According to Approaches Under Unequal Variances in
Study 2.

Criterion Source Sum of squares df Mean square F h2

Parameter bias Sample size (n) 1.96 4 0.49 0.86 .00
Entropy (e) 144.06 3 48.02 84.02*** .15
Approach (a) 261.63 4 65.41 114.44*** .28
n 3 e 8.10 12 0.68 1.18 .01
n 3 a 8.32 16 0.52 0.91 .01
e 3 a 391.62 12 32.64 57.10*** .42
n 3 e 3 a 13.02 48 0.27 0.47 .01

Standard error bias Sample size (n) 0.04 4 0.01 1.17 .00
Entropy (e) 3.19 3 1.06 127.23*** .16
Approach (a) 10.94 4 2.73 327.50*** .55
n 3 e 0.12 12 0.01 1.19 .01
n 3 a 0.31 16 0.02 2.29** .02
e 3 a 3.46 12 0.29 34.55*** .17
n 3 e 3 a 0.25 48 0.01 0.61 .01

Mean squared error Sample size (n) 22.09 4 5.52 0.50 .00
Entropy (e) 601.74 3 200.58 18.17*** .12
Approach (a) 1030.78 4 257.69 23.34*** .20
n 3 e 15.16 12 1.26 0.11 .00
n 3 a 25.74 16 1.61 0.15 .00
e 3 a 1238.78 12 103.23 9.35*** .24
n 3 e 3 a 42.54 48 0.89 0.08 .01

Note. ANOVA = analysis of variance; df = degrees of freedom.

*p \ .05. **p \ .01. ***p \ .001.
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this study also established guidelines for sample size according to the quality of clas-

sification in the context of a latent class model with external variables. Specifically,

for good estimation in a latent class model with a distal outcome variable and

unequal variances of the distal outcome variable across latent classes, the sample size

should be more than 200 and the entropy value should be more than 0.8 to use the

three-step approaches. Even in poorly manipulated conditions (i.e., n = 100, entropy

= 0.6), according to the mean squared error results, the three-step approaches provide

better estimates than the others.

Second, this study found that the three-step approach is best suited for small sam-

ple sizes and other poor conditions. Several simulation studies (e.g., Asparouhov &

Muthén, 2014; Gudicha & Vermunt, 2013) found that the three-step approach and

one-step approach are similar in parameter estimation, but they did not find the super-

iority of the three-step approach in terms of accuracy and efficiency of estimation

under small sample size conditions. However, this study illustrates that the three-step

ML and BCH approaches are more accurate and efficient in estimating parameters

than the other approaches even if the sample size is 100.

Third, the aforementioned benefits of the three-step approach are recommended

for applied researchers. The stability of latent class classification under a diverse

combination of external variables and the corresponding research methods of applied

researchers are major advantages of the three-step approaches (Vermunt, 2010).

Moreover, the three-step approach overcomes the underestimation problem using the

bias-correction method such as ML or BCH (Asparouhov & Muthén, 2014; Bakk et

al., 2013; Gudicha & Vermunt, 2013; Lanza et al., 2013; Vermunt, 2010). Therefore,

the three-step approaches are superior to the one-step approach in terms of latent

class classification and parameter estimation. Moreover, applied researchers can eas-

ily use the three-step approaches in latent class models with external variables since

the three-step approach can be used with Mplus (Muthén & Muthén, 1998-2017) and

Latent Gold program (Vermunt & Magidson, 2016).

Fourth, this study compared not only the one-step approach and the three-step

approaches but also the LTB approach, which estimates a model with an external

variable as a distal outcome variable. In a previous simulation study by Asparouhov

and Muthén (2014), the LTB approach performed worse than the three-step approach

in terms of coverage. In the current study, the LTB approach performed the worst in

terms of standard error bias and coverage as well. This approach met acceptable cri-

teria only when entropy level was high. Since the LTB approach was found to per-

form at an unsatisfactory level when the entropy value was low, it can be used in

limited situations when the quality of classification is almost perfect such as entropy

values of 0.9 or higher.

Overall, these findings will be helpful to applied researchers, in diverse fields in

behavioral sciences such as education, psychology, and sociology, to test latent class

models with external variables using small sample sizes. This study tested cross-

sectional latent class models with latent class membership with the same proportions.

For future research, different proportions of latent class membership can be
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suggested, and growth mixture models with external variables can be simulated to

compare the estimation of the approaches under various sample size conditions.

Future studies will help generalize the usefulness of the three-step approach under

various conditions.
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