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Abstract

This article discusses the theoretical and practical contributions of Zumbo,
Gadermann, and Zeisser’s family of ordinal reliability statistics. Implications, interpre-
tation, recommendations, and practical applications regarding their ordinal measures,
particularly ordinal alpha, are discussed. General misconceptions relating to this fam-
ily of ordinal reliability statistics are highlighted, and arguments for interpreting ordi-
nal alpha as a measure of hypothetical reliability, as opposed to observed reliability,
are presented. It is concluded that ordinal alpha should not be used in routine relia-
bility analyses and reports, and instead should be understood as hypothetical tool,
similar to the Spearman–Brown prophecy formula, for theoretically increasing the
number of ordinal categorical response options in future applied testing applications.
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This article discusses the theoretical contributions offered by Zumbo, Gadermann,

and Zeisser’s (2007) family of statistics for quantifying test reliability. At the time of

writing, Zumbo et al.’s article, as well as the follow-up articles by Oliden and Zumbo

(2008; written in Spanish) and Gadermann, Guhn, and Zumbo (2012), have jointly

received more than 1,100 citations, according to Google Scholar. To put this into per-

spective with regard to influential bodies of work in psychometrics, according to

Google Scholar, Lord and Novick’s (1968) seminal book on psychometric test theory

has been cited just over 8,000 times, and the classical psychometrics textbook written
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by Crocker and Algina (1986) has received around 5,500 citations. Given that the

ordinal reliability articles are much newer than these classical psychometric texts, the

total citation count is only expected to rise as researchers continue to adopt ordinal

reliability in their applied work.

Evidently, the impact of the ordinal reliability statistics in the research community is

nontrivial. As well, researchers are generally citing the authors of ordinal reliability for

their theoretical and practical contributions to the area of reliability theory (e.g., McNeish,

2018). However, the implications regarding what the ordinal measures of reliability mean

to applied researchers, as well as when they should be used in practice, have yet to be

meaningfully discussed. Therefore, the purpose of this article is to explain what ordinal a

is, why and when it might be useful, and to clarify several misconceptions regarding this

family of reliability statistics that appeared in the original articles.

The following presentation focuses exclusively on coefficient a and ordinal a for

simplicity; however, the arguments generalize to other forms of ordinal reliability dis-

cussed by Zumbo et al. (2007), Oliden and Zumbo (2008), and Gadermann et al.

(2012). The article begins by reviewing the concepts from classical test theory so that

coefficient a, as well as the newer ordinal a, can be understood. Next, four important

misconceptions regarding ordinal a that appeared in the aforementioned authors’ arti-

cles are presented and discussed at length. The article closes with one potentially useful

application for ordinal a, based on a hypothetical mental exercise, that tests analysts

may find interesting in their measurement applications.

Classical Test Theory and Reliability

Classical test theory (CTT) is centered on decomposing observed scores into two

unobserved components based on observable summary statistics (Lord & Novick,

1968; Traub, 1997). In particular, CTT focuses on the unweighted sum-score statistic

as the observed composite variable with which test analysts wish to understand and

draw inferences. Let Xi1, Xi2, . . . , Xin represent the observed item-level scores for

individual i given n distinct items in a given measurement instrument, and let

Xi =
Pn

j = 1 Xij represent the unweighted total score for person i. The relationship

Xi = Ti + Ei ð1Þ

is then conceptualized, where the random variable Xi is decomposed into a fixed

variable Ti, known as the true score, and random error component Ei, known as the

error or residual. By construction, the expected value of E is 0, while the relationship

COV T , Eð Þ= 0 is assumed. This simple expression and assumptions represents the

cornerstone of nearly all ancillary developments in CTT research (Traub, 1997). Of

particular importance in this article is how these ideas can be used to express the

reliability of the observed test scores X :
Reliability, as a theory of measurement precision, is a methodology relating to

how unobserved (or latent) variables can be measured using only observed data com-

ponents. The question to be answered is, ‘‘Given the observed information provided
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by a test, what can be said about the unobserved reality?’’ In the case of ability mea-

surement, for example, we might be interested in an individual’s unobserved ‘‘profi-

ciency in mathematics’’ given their observed score on a valid test. Reliability is then

used to quantify how effectively the test information reflects the precision of the

unobserved true scores, thereby providing statistical mechanisms for creating esti-

mates of precision (e.g., the standard error of measurement and large-sample confi-

dence intervals; Lord & Novick, 1968). Note that the field of factor analysis

(McDonald, 1985) and latent variable modeling more generally (Bartholomew,

Knott, & Moustaki, 2011) have precisely the same purpose, whereby observed data

components are studied so that inferences can be drawn about the structure and prop-

erties of unobserved variables (commonly referred to as factors or latent traits).

More technically, reliability for the observed composite variable X , in the form of

internal consistency (Crocker & Algina, 1986), is formally expressed as

r Xð Þ= VAR Tð Þ=VAR Xð Þ = 1� VAR Eð Þ=VAR Xð Þ: ð2Þ

This reliability coefficient is bounded within 0, 1½ �, where values closer to 1 indicate

better measurement precision (i.e., less sampling and measurement error). In practice,

reliability is estimated using one of several possible estimators, such as coefficient a

(Cronbach, 1951; Guttman, 1945), McDonald’s v (McDonald, 1999), Revelle’s b

(Revelle, 1979), and so on. Here we will focus on coefficient a because of its popu-

larity and its connection to the ordinal measures proposed by Zumbo et al. (2007),

both of which are presented below.

Coefficient a

Perhaps the most popular measure of the internal reliability, which was introduced by

Guttman (1945) and popularized by Cronbach (1951), is coefficient a: Coefficient a

can be expressed using matrix notation as

a =
n

n� 1
1� tr Sð Þ

10S1

� �
, ð3Þ

where S is the n3n variance–covariance matrix among the test items, and tr Sð Þ is

the trace of the matrix. In practice, a sample estimate of the covariance matrix Ŝ is

used in place of S to obtain the sample estimate of a. This measure assumes that the

items are tau-equivalent, meaning that all items are of equal importance when mea-

suring the unobserved construct, but that the respective error variances for each item

are allowed to differ (Lord & Novick, 1968). When S is replaced by the correlation

matrix R, or alternatively every test item is first standardized to have a mean of zero

and variance of 1 before computing Ŝ, then the standardized a estimate will be

obtained. Standardized a further assumes that the variance of each item are equal,

resulting in the more stringent, and less realistic, assumption that the items are paral-

lel (Lord & Novick, 1968; McDonald, 1985).
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An alternative definition for coefficient a based on a factor analytic model with

uncorrelated residuals was realized by McDonald (1985), which is expressed as

a =
n

n� 1
1� n � (�f )

2 � �f
2

n � (�f )
2

+ �u2

 !
: ð4Þ

In this expression, �f represents the average of the n factor loadings, �f 2 is the average

of the squared factor loadings, and �u2 is the average of the associated uniqueness

terms. Equation 4 is interesting in that it also only requires the items to be tau-equiva-

lent, and because it can be computed using either the covariance or correlation matrix

with factor analysis or structural equation modeling software (e.g., Rosseel, 2012).

Note that if there is interest in the respective sampling variability of these factor load-

ings then the covariance matrix should be supplied to the software package instead of

the correlation matrix to avoid estimation issues relating to the bounded nature of

correlations (Cudeck, 1989).

Zumbo et al.’s Ordinal a

Zumbo et al. (2007) proposed a new reliability statistic, which they termed ‘‘ordinal

a,’’ that was created to allegedly account for the categorical nature of the item

response stimuli commonly found in educational tests, psychological surveys, clini-

cal measurement instruments, rating scales, and so on. In their statistic, the authors

suggested replacing the Pearson (or more appropriately, Spearman) correlations in

the off-diagonal elements of R̂ with polychoric correlation estimates (or tetrachoric,

if the response variables are dichotomous; Olsson, 1979) when computing reliability

with Equation 4. The justification for this substitution was that traditional reliability

estimates, which rely on Spearman correlations for the categorical response data,

underestimate the true population reliability because observed correlations between

categorical variables are typically lower than the correlations between the underlying

continuous latent variables from which the categorical variables were manifested

(see Flora & Curran, 2004, for details). As well, the authors argue that, because

Pearson and Spearman correlations (allegedly) require continuous data, the correla-

tion estimates should be replaced by estimates that are not based solely on observed

categorical data relationships.

In a small simulation study, Zumbo et al. (2007) demonstrated that, after generat-

ing continuous response data using Equation 1 and applying a categorization transfor-

mation to create suitable response data (see their associated appendix for the exact

coefficients), ordinal a was better at reproducing the population a implied by the

continuous underlying variables before the categorization transformation than coeffi-

cient a. Based on these results, the authors concluded that ordinal a is more optimal

than coefficient a when the response data are categorical, and recommended using

ordinal a instead of coefficient a in practice whenever categorical response data are

collected. Similar results and interpretations of ordinal a were discussed by Oliden
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and Zumbo (2008) and Gadermann et al. (2012), and walk-through material using the

R environment (R Core Team, 2016), as well as Mplus (Muthén & Muthén, 2008)

and LISREL (Jörsekog & Sörbom, 2006), were presented for applied researchers to

use in their analyses.

Misconceptions About Ordinal a

This section presents important misconceptions about ordinal a, as well as coeffi-

cient a, borne in the work by Zumbo et al. (2007), Oliden and Zumbo (2008), and

Gadermann et al. (2012). These misconceptions are broken into four distinct areas:

(1) data requirements to compute coefficient a, (2) the validity of utilizing ordinal a

as a measure of reliability with ancillary CTT formulae, (3) the claim that ordinal a

provides a better measure of reliability than coefficient a, and (4) the understanding

of how ordinal a is situated within modern latent variable theory for psychological

measurement.

Misconception 1: Coefficient a Requires Continuous Item Response Data

This misunderstanding likely has multiple sources,1 but the most notable source rele-

vant to this article can be found in Zumbo et al. (2007). In their article, the authors

state that ‘‘coefficient alpha (and KR-20) are correlation-based statistics and hence

assume continuous data’’ (p. 27). This statement appears again in Gadermann et al.

(2012) in multiple locations throughout their article, and also appears in the English

abstract in Oliden and Zumbo (2008).

As is clear from the expressions in the previous section, however, all components

of CTT, reliability, and coefficient a make no assumptions regarding the distribution

or required form of X , Xi, T , or E. All that is required to derive coefficient a, as well

as many other concepts related to CTT, is an understanding of covariance algebra

with observed variables. Stated differently, any of the aforementioned variables may

be discrete or continuous, and can take on any distributional shape within each item

and at the composite level. Hence, dichotomous and polytomous item response data

are typically valid for computing coefficient a to estimate the test’s reliability.

Inspecting this statement again, but this time at a more superficial level, illustrates

that Zumbo et al.’s (2007) claim appears to have little coherent meaning. For exam-

ple, computing Pearson’s or Spearman’s correlation for dichotomous data results in

the f coefficient (Agresti, 2002). Computing the unstandardized correlation (i.e., cov-

ariance) between two dichotomous coefficients is no different (see, e.g., McDonald,

1999). Moreover, computing Pearson’s correlation between a dichotomous and con-

tinuous (or, rather, an interval or ratio scaled) variable is also frequently obtained in

practice and is commonly known as the point–biserial correlation (Crocker & Algina,

1986; McDonald, 1999). Most peculiar in the authors’ statement above though is the

fact that they were obviously aware of the KR-20 formula (Kuder & Richardson,

1937)—a classical reliability statistic that is explicitly intended for dichotomous

1060 Educational and Psychological Measurement 78(6)



response data—and yet still claimed that the observed response data must be continu-

ous at the item level.

To avoid any confusion, and to directly reply to the above claim, we state the fol-

lowing with strong emphasis: Coefficient a, as well as the KR-20 as a special case,

has never required continuous item-level data. These reliability estimates only

require that the observed bivariate relationships among each test item have linear

functional forms, and that the observations are coded in interval (or possibly ratio)

formats (Stevens, 1946). For dichotomous variables, both of these requirements are

true by construction, regardless of the coding scheme.

Additionally, interval data do not inherently require an infinite number of subdivi-

sions in the measured variables (i.e., do not need to be coded with decimal places or

fractions). This measurement scale only requires that the distances between commen-

surate values represent the same quantity (e.g., the difference between 10�C and

20�C is the same as the difference between 70�C and 80�C). This property may have

been where the confusions regarding the data requirements for coefficient a occurred

in that Zumbo et al. (2007) imply that, because the coding of ordinal variables do not

include decimal or fraction values, Pearson or Spearman covariance estimates are

invalid. Unfortunately, this is simply not correct, and casts much doubt into the justi-

fication for using ordinal a in place of coefficient a for categorical response data.

Covariance Statistics for Ordinal Data. Interest for ordinal a appears in situations where

there are three or more ordinal response categories, but the correlation between the

ordinal variables may not be optimally captured by a Pearson- or Spearman-based

covariance estimate due to the restricted ranges (Olsson, 1979; Rhemtulla,

Brousseau-Laid, & Savalei, 2012). Specifically, the observed correlation between

ordinal variables (coded as equally spaced intervals) is often slightly lower than the

correlation between commensurate interval or ratio variables with a larger number of

unique values mainly because Pearson covariance estimates are highly influenced by

observations in the tails of the distributions (Fox, 2008). In categorical response data,

the range of the observed variables are limited by definition, thus creating difficulty

in obtaining higher Pearson correlation estimates. This is also the reason why

Spearman’s correlation is often lower in magnitude than the Pearson correlation.

Note that the relationship between ordered item response data coded as intervals and

rank-ordered data is also obvious here, because obtaining Pearson’s correlation for

ordinal response data that have been rank ordered is equivalent to computing

Spearman’s correlation for these types of response data.

Rather than assuming that the ordinal variables are on an interval scale, so that a

Spearman correlation estimate can be computed, alternative descriptive statistics

could be obtained. For example, correlations based on rescaling Pearson’s x2 test of

independence from a two-way contingency table is one suitable correlation alterna-

tive. One common statistic for this purpose is known as Cramer’s V (Agresti, 2002;

Cramér, 1946). Cramer’s V is particularly interesting in this respect because when

both observed variables are dichotomous the correlation is equivalent to the f
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correlation; hence, its use when computing coefficient a from Equation 3 would be

equivalent to the classical KR-20 formula. Therefore, using Cramer’s V may be a

better representation of the observed correlation between two ordinal variables than

Pearson’s or Spearman’s correlation, particularly when the number of response cate-

gories is small, and is still in reference to the observed data characteristics.

Unfortunately, however, Zumbo et al. (2007) chose to use an unobserved bivariate

relationship as a basis for calculating reliability for ordinal variables (i.e., polychoric

and polyserial correlations) rather than statistics based on observed covariation (e.g.,

Pearson correlations, Spearman correlations, f, Cramer’s V, etc.). Therefore, these

authors do not base their reliability estimates on the overt relationship among the test

items to describe the composite score X , but rather on the unobserved relationship

between the test items for an unobserved composite variable that is unavailable to

the test analyst. This has important theoretical and practical consequences, which are

further discussed in the three remaining misconceptions and subsequent exploration

section.

Misconception 2: Ordinal a Is Equivalent to Other CTT Reliability Estimates

Gadermann et al. (2012) stated the following in their introduction explaining what

ordinal a represents:

Ordinal alpha is conceptually equivalent to Cronbach’s alpha. The critical difference

between the two is that ordinal alpha is based on the polychoric correlation matrix,

described in detail below, rather than the Pearson covariance matrix, and thus more accu-

rately estimates alpha for measurements involving ordinal data. (p. 2)

The above quotation is incorrect on multiple levels; therefore, these statements are

broken into Misconception 2 and 3, respectively. Beginning with the first misconcep-

tion, the conceptual equivalence of ordinal a with coefficient a is obviously incor-

rect. Simply substituting polychoric correlations into the required matrix to compute

coefficient a with Equation 4 fundamentally distorts the meaning of what test relia-

bility is being measured. This is because the supplied correlations are no longer about

the observed data, but rather the relationship between two unobserved continuous

variables (typically assumed to have a bivariate normal distribution). Therefore, any

important summary statistics, such as the variability of the total score sX , cannot be

used in concert with any ordinal a estimate because they are in reference to different

sets of variables.

To demonstrate, if ordinal a were to be used in the computation of the standard

error of measurement (Lord & Novick, 1968) formula

sE = sX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r Xð Þ

p
,

where r Xð Þ is replaced with ordinal a, then sE may be considerably smaller than it

should be for the overt X scores. Using ordinal a would provide unacceptably liberal
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sampling error estimates because the reliability estimate would be too high given the

observed information provided by X , as well as generate liberal confidence intervals

for the test taker’s true score given their observed Xi. This will be particularly severe

when all of the item response formats contain dichotomous response options, in

which case the required tetrachoric correlation coefficients may be notably larger

than the related f coefficients (Gadermann et al., 2012). Ostensibly, ordinal a is not

conceptually or practically equivalent to coefficient a, and cannot be used as though

it were a standard estimate of reliability.

Misconception 3: Ordinal a Provides a Better Estimate of the Population
Reliability Than Coefficient a

This misconception appears in both Zumbo et al. (2007) and Gadermann et al.

(2012), and generally forms the basis for recommending the use of ordinal a in prac-

tice due to its performance in their Monte Carlo simulation. Both sets of authors

make this claim within their respective abstract summaries, where Zumbo et al.

(2007) concluded that, based on their simulations, ‘‘coefficient alpha is in general a

negatively biased estimate of reliability’’ (p. 1), while based on the same simulation

results Gadermann et al. conclude that ‘‘ordinal alpha more accurately estimates

reliability than Cronbach’s alpha when data come from items with few response

options’’ (p. 1). Note that Gadermann et al.’s statement is directly related to the sec-

ond half of their quotation regarding polychoric correlations in the previous section.

Importantly, however, in their simulation study, Zumbo et al. (2007) either ignored

or were simply not aware of a fundamental concept regarding the effects of applying

data transformations; namely, that statistical properties prior to the transformation

(e.g., variability, covariances, reliability) are not guaranteed (or in most cases even

expected) to be invariant posttransformation. As we shall see momentarily, the sum-

mary statements in the previous paragraph are in fact invalid because the population

reliability coefficient which ordinal and coefficient a were compared to was not with

regard to the posttransformed data, but rather to the pretransformed data, and there-

fore is not a reflection of the test’s overt measurement properties. While it is true that

coefficient a is a limited estimate of reliability, in that it is understood to be only a

lower-bound estimate (Sijtsma, 2009), its limitations are not inherently related to the

issue of transforming continuous response data into discrete categories.

In their simulation study, Zumbo et al.’s (2007) final data-generation step was to

introduce a data transformation in order to construct the required categorical

responses under investigation. However, applying data transformations to the contin-

uous X distribution implied by the relationship X = T + E will necessarily change the

distribution of the true scores and errors. Let f Xð Þ = X � represent the transformation

function that discretizes the continuous variable X . For example, to construct dichot-

omous data one could apply the function
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f Xið Þ=
1 if Xi . t,

0 otherwise,

�

where t is some predefined cutoff value. This is one of the transformation functions

utilized in Zumbo et al.’s (2007) simulation study, and is easily generalized to poly-

tomous item response formats.

Applying f �ð Þ to both sides of Equation 1 implies that f Xð Þ= f T + Eð Þ !
X � = T � + E�, where the variables T � and E� represent the respective transformed

variables that equal f Xð Þ. Unfortunately, however, because T� 6¼ f Tð Þ and

E� 6¼ f Eð Þ in general, due to the additive relationship between the true score and

error variables, the required transformation functions for T � and E� are typically

impossible to obtain.2 This property also makes it very difficult to determine what

the new population a is after applying the data transformation to X . Moreover, there

is no guarantee that the select transformation applied will retain the assumption that

COV T�, E�ð Þ= 0, which is precisely what occurs in categorical response data due to

the dependence of the model-implied expected values and their variances (Lord &

Novick, 1968). For example, the sampling variability of a Bernoulli distribution for

dichotomous data, relevant to the transformation above, is contingent upon the

expected value pi, where the variance pi 1� pið Þ is entirely determined by the

expected value; hence, the mean and variance are not independent. The same rela-

tionship does not necessarily occur in the canonical continuous variable case because

the mean and variance can be constructed to be independent.

Based on the above reasoning, it is clear that Zumbo et al. (2007) inappropriately

defined what the reliability is at the population level. These authors used the popula-

tion reliability found in Equation 2 using the continuous data prior to applying the

data transformation, where the authors should have used the equation

r f Xð Þð Þ = r X �ð Þ = VAR T�ð Þ=VAR X �ð Þ ð5Þ

due to the transformation function f �ð Þ. Again, this particular reliability value is often

impossible to obtain, even in Monte Carlo simulations, and is only applicable when

COV T�, E�ð Þ= 0. This is unfortunate because while Zumbo et al. (2007) suggest that

the ‘‘measurement model used in [their] simulation involves all of the assumptions

of coefficient alpha’’ (p. 27) this claim is obviously incorrect after considering the

effects of the data transformations. Hence, Zumbo et al. (2007) and Gadermann et al.

(2012) were focusing on the wrong population reliability in their simulation study,

and therefore many of their conclusions about the performance of ordinal and coeffi-

cient a are not only erroneous but also misleading.

One potential saving feature of Zumbo et al.’s (2007) simulation study is that ordi-

nal a is not measuring a test’s reliability per se, but rather is measuring theoretical

reliability—a term that the authors created specifically for their article. Presumably,

this term was created to distinguish between a test’s observed reliability and its relia-

bility prior to the data transformation required to construct the categorical response

data. In this case, ordinal a does recover the so-called theoretical reliability well, as
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should be expected given the data generation and estimation approach, while it esti-

mates the observed reliability of the test poorly when the number of response cate-

gories is small (see Liu, Wu, & Zumbo, 2010, for similar conclusions with respect to

recovering theoretical instead of observed reliability).

Regardless of these result though, the justification as to why tests analysts and

applied researchers should prefer theoretical reliability over observed reliability has

never been discussed. Currently, the author cannot think of any reasonable rationale

for preferring theoretical reliability over observed reliability when expressing a test’s

observed measurement properties.

Misconception 4: Ordinal a Is Supported by Modern Latent Variable Theory

In their discussion section, Gadermann et al. (2012) allude to the fact that ordinal a

‘‘is in line with general current thinking in the psychometric literature about using

polychoric correlations for ordinal data’’ (p. 7). While this thinking about ordinal data

is mainly true from a model-fitting perspective with the normal ogive (i.e., probit) or

logistic regression models typically found in item response theory (e.g., Chalmers,

2012; Embretson & Reise, 2000), the computation of a reliability coefficient with a

polychoric correlation matrix is not in line with this research field in general.

Despite the removal of statistical information borne from categorizing item

response data, ordinal a implicitly assumes that dichotomous test items provide the

same amount of statistical information as similar test items that use polytomous or

continuous item response formats. This can be seen from the fact that the correlation

estimates between dichotomous and polytomously scored items are approximately of

the same magnitude as the untransformed continuous variables from which the vari-

ables were constructed. On first inspection this property is peculiar because it is well

known that truncating continuous variables frequently results in attenuated bivariate

correlations due to the loss of statistical information (MacCallum, Zhang, Preacher,

& Rucker, 2002). CTT reliability statistics reflect this loss of information in that the

reliability estimates for tests constructed from dichotomous items, for example, will

systematically be lower than a commensurate test scored using polytomous or even

continuous response formats. Ordinal a, on the other hand, provides approximately

the same reliability estimate regardless of the item response stimuli, generally indi-

cating that the item’s method of data collection is of little to no consequence when

computing a test’s reliability.

With respect to modern statistical measurement theory, ordinal a’s implicit

assumption that dichotomous, polytomous, and continuous response data provide

equivalent forms of measurement information is fundamentally at odds with the con-

cept of statistical information found in more rigorous model-based methods

(Embretson & Reise, 2000; Lord, 1980; Samejima, 1969). In item response theory,

for example, it is well known that a test item with multiple response options will

have more information than dichotomous models with equivalent slope coefficients,

and therefore will provide more accurate composite score estimates with smaller
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sampling variability (hence, result in more reliable and accurate tests; Baker & Kim,

2004). Clearly, this property is not shared by ordinal a, which currently suggests

paradoxical properties of the observed reliability estimates. Note that the paradox

generated by ordinal a can, however, be resolved when realizing that the statistic is

actually drawing inferences about a hypothetical reality rather than the actual relia-

bility of the test (more on this in the next section).

Finally, it is noteworthy to mention that Gadermann et al. (2012) inappropriately

cite Green and Yang (2009) for their modern use of the polychoric matrix in comput-

ing their reliability estimates. Gadermann et al. (2012) imply that, because this corre-

lation matrix is used by other authors studying reliability, this gives auxiliary support

for using ordinal a in practice. However, after inspecting Green and Yang’s (2009)

article it is clear that these authors explicitly avoid using a reliability definition based

on theoretical scores, primarily because this reliability estimate is not useful to the

test analyst, and instead resort to an alternative definition based on parallel-forms,

which does not suffer from the same conceptual issues. Hence, Green and Yang in

no way advertise the use of theoretical reliability estimates such as ordinal a.

Gadermann et al. (2012) also cite Bentler (2009) in this regard, though again no for-

mal justification or support can be found for using ordinal a or any reliability esti-

mate based on latent variable scores. In his article, Bentler only stated in passing that

drawing inferences about a theoretical reliability estimate was possible using his

equations, not that this practice is at all recommended in empirical measurement

applications that require reliability estimates.

What Is Ordinal a and When Should It Be Used?

Hitherto, the conceptual definition of what ordinal a represents has been lacking due

in part to the four aforementioned misconceptions. In this section, we explain what

ordinal a truly represents for test analysts, and present an application where ordinal

a may be of (limited) interest.

Ordinal a as a Type of Spearman–Brown Prophesy Estimate

The key idea for determining the usefulness of ordinal a lies in understanding the

implications of replacing bivariate Pearson and Spearman correlation estimates with

polychoric and polyserial correlations. Specifically, replacing the correlation esti-

mates with polychoric estimates results in an R matrix (call it R�) that looks and

behaves as though all the data were obtained from continuous, bivariate normally

distributed data. Indeed, this is the intended purpose of ordinal a, because the covar-

iation between two continuous variables will typically be as high or higher than a

Pearson or Spearman correlation between ordinal categorical variables.3

Utilizing R� to compute coefficient a highlights at least one potentially interesting

phenomenon with which ordinal a may be useful. Specifically, ordinal a represents
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an estimate of the expected reliability in an alternative reality whereby categorical

responses have been replaced by continuous responses. This is interesting because it

relates to the idea that more than, say, 7 Likert-type response options are not needed

for factor analysis applications because the bivariate correlations in R (and subse-

quently, coefficient a) change very little when replaced with polychoric or polyserial

estimates (Rhemtulla et al., 2012). In this application, for instance, the Pearson corre-

lation between two 7-point Likert-scale items is likely very similar to the polychoric

estimate, and therefore little would be gained by adding more categories in future

applications (Flora, LaBrish, & Chalmers, 2012). Hence, the common consensus that

more than 7 response categories can generally be considered as continuous data is

related to this thought experiment, whereby Pearson correlations may be applied

without much loss of generality because the correlation estimates are not meaning-

fully attenuated (Rhemtulla et al., 2012).

The aforementioned thought experiment also raises a potentially interesting appli-

cation with respect to ordinal a. In particular, a test analyst may ask: ‘‘If I were to

replace [all/some/one] of the categorical items with a continuous response format,

how much would I expect coefficient a to increase in future applications?’’ This

property highlights whether it is fruitful to extend the number of Likert-type response

options due to the magnitude of the expected increase from coefficient a to ordinal

a. Hence, the question asks about a hypothetical reality where the data collected

were ideally continuous for [all/most/some] of the items, and what the expected

reliability would be if the categorical item responses were changed to continuous

responses in this reality. In essence, this is a type of Spearman–Brown prophecy pre-

diction (Crocker & Algina, 1986), but relates to infinitely increasing the number of

response categories within select test items.

As noted by an anonymous reviewer, the above application of ordinal a is only a

theoretical approximation. In real-world applications, the skewness of the categorical

responses plays an important role in computing the polychoric correlation. For exam-

ple, an item with three categories and a highly skewed observed distribution could

have a lower ordinal a estimate than an item with two categories that has a symmetric

distribution (Flora & Curran, 2004). Increasing the number of response categories

will only increase coefficient a insomuch as the added response categories do not dis-

tort the original categorical distribution of the item response data. Hence, even within

this hypothetical Spearman–Brown based thought experiment, the limited usefulness

of ordinal a is apparent.

Types of Items Where Ordinal a May Be Justified

The question we are faced with now is whether this hypothetical reality exercise is

justifiably applicable to the response data at hand. For some items, such as rating

scale or Likert-type response formats, this methodological thought experiment for

ordinal a may be reasonable. Consider the following item and response stimuli:
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Do you agree that legalization of marijuana is good for the economy?

1. Strongly Disagree

2. Disagree

3. Neutral

4. Agree

5. Strongly Agree

This particular item could theoretically be modified to include more response options,

such as ‘‘Somewhat Agree’’, ‘‘Mildly Agree’’, ‘‘Possibly Agree’’, and so on, thereby

increasing the number of possible response options that ordinal a implicitly assumes

exist.

However, for other item types, particularly in the field of aptitude testing, this

mental exercise becomes more difficult to justify. For example,

What is the square root of 100?

1. 100

2. 10

3. 50

4. Cannot be computed

For this item, which is typically scored as correct-incorrect (1-0), increasing the num-

ber of response options to mimic a continuous response variable is less clear, and

may be inappropriate given the dichotomous scoring scheme. Therefore, applying

ordinal a to an item such as this may be less meaningful or justifiable to test practi-

tioners. Although we could add numerous other distractor options to the item (e.g.,

90, 10,000, 42, etc.), ordinal a will not reflect this particular modification because it

does not pertain to adding more distractor options.

These two examples showcase when ordinal a could, as well as should not, be

applied. Other types of items that differ from these two examples will obviously

appear in practice, and it is up to the test analyst to determine whether applying ordi-

nal a is justified for each item in the test through careful inspection of each respective

item’s stimuli. If the response stimuli follow a natural order, as Likert and rating scale

items often do, then applying the hypothetical properties implied by ordinal a may be

reasonable. However, if the response stimuli cannot be expanded in a simple ordinal

fashion then it is likely that ordinal a is inappropriate and should not be investigated

or reported.

Discussion

The purpose of this article was to clarify various misconceptions about ordinal a,

with hopes of deterring future erroneous claims about a test’s overt reliability in prac-

tice. Four misconceptions were discussed, and one potentially useful application for

ordinal a was presented. Overall, the usefulness of ordinal a appears to be limited to
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determining whether more response options for select items with ordinal response sti-

muli should be included in future data collection samples. However, even in this spe-

cial application, the potential usefulness of this statistical estimate appears to be

minimal in that it is largely limited as an approximate statistical thought experiment.

The general conclusion, therefore, is that ordinal a should not be reported as a mea-

sure of a tests reliability, but instead should be understood as a distinct theoretical

concept.

The results presented herein should not be overly surprising to the reader familiar

with reliability theory and statistics in general, particularly if the reader is familiar

with the cost of dichotomizing continuous variables or the assumptions required for

computing covariance and correlation estimates. Specifically, it is well known that

truncating interval or ratio variables decreases the amount of statistical information

(MacCallum et al., 2002). Hence, when quantifying scale reliability, we would expect

a test which contains categorical response formats to have less information—and

therefore lower reliability—than a test in which the same items were expressed as the

interval or ratio variables from which the categorizations occurred. Clearly, ordinal a

does not reflect this fundamental statistical property when it is considered as an esti-

mate of the test’s reliability, and instead only reflects a hypothetical reality regarding

how the test may have behaved if the categorical response options were replaced by

continuous response formats.

To highlight the issues discussed herein, and to help avoid future confusion among

practitioners, the author recommends renaming the current ‘‘ordinal a’’ statistic to

something more representative of its purpose, such as ‘‘hypothetical a.’’ This name

not only better represents the underlying meaning of the statistic, but also highlights

that the reliability estimate should be interpreted only as a hypothetical estimate of

an alternative reality, whereby a test’s ordinal categorical response options have been

modified to include an infinite number of ordinal response options. This more appro-

priate name also emphasizes that the ordinal reliability methodology is largely of lit-

tle use to the majority of practitioners, and may in fact be highly misleading to the

intended audience when reported as a measure of a test’s overt reliability.
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Notes

1. See McNeish (2018) for a recent presentation of this erroneous claim.

2. Two special transformation are however easy to determine. The first is trivial, where f �ð Þ
is simply the identity transformation, denoted fI �ð Þ, which returns the exact values of X , T ,

and E. The second is the transformation X � = f X + cð Þ, where c is some constant. This

transformation represents a systematic increase in the true scores, which results in higher

observed scores, and can be understood by applying the functions T� = f T + cð Þ for the

true score component and the identity function for E� = fI Eð Þ:
3. This is not always true as spurious bivariate correlations can occur in practice; see

MacCallum et al. (2002).
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