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Abstract

Background: The transcriptional profiles of mammals during brain development and ageing have been characterized.
However the global expression patterns of transcriptome in the chicken brain have not been explored. Here, we
systematically investigated the temporal expression profiles of lncRNAs and mRNAs across 8 stages (including 3
embryonic stages, 2 growth stages and 3 adult stages) in the female chicken cerebrum.

Results: We identified 39,907 putative lncRNAs and 14,558 mRNAs, investigated the temporal expression patterns
by tracking a set of age-dependent genes and predicted potential biological functions of lncRNAs based on co-
expression network. The results showed that genes with functions in development, synapses and axons exhibited
a progressive decay; genes related to immune response were up-regulated with age.

Conclusions: These results may reflect changes in the regulation of transcriptional networks and provide non-
coding RNA gene candidates for further studies and would contribute to a comprehensive understanding of
the molecular mechanisms of chicken development and may provide insights or deeper understanding regarding
the regulatory mechanisms of age-dependent protein coding and non-protein coding genes in chicken. In
addition, as the chicken is an important model organism bridging the evolutionary gap between mammals
and other vertebrates, these high resolution data may provide a novel evidence to improve our comprehensive
understanding of the brain transcriptome during vertebrate evolution.
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Background
Large-scale genomic studies have revealed that the ma-
jority of cellular RNAs are transcribed as non-protein
coding RNAs (ncRNAs) [1–4]. Long non-coding RNAs
(lncRNAs) are a subgroup of RNAs longer than 200 nu-
cleotides (nt); many of them are 5′ capped, alternatively
spliced and polyadenylated as mRNAs are [5]. LncRNAs
are newly recognized regulating molecules and can be clas-
sified as intergenic lncRNAs (lincRNAs), intronic lncRNAs,
antisense lncRNAs or sense-overlapping lncRNAs based
on their genomic location [6]. Albeit mRNA-like lncRNAs
have limited protein-coding potential, they function in

many biological processes and play roles as signaling mole-
cules, scaffolds, guides and decoys [7]. Transcriptional dy-
namics has been suggested to be a major contributor for
brain structure development, as well as to the ageing [8].
Most lncRNAs are less conserved and expressed at signifi-
cantly lower levels, as well as in more restricted temporal
expression patterns, than mRNAs are, indicating that
lncRNAs are of considerable importance in modulating
various biological functions, especially development and
cellular differentiation [9–11].
A broad range of transcriptional profiles in fish [9, 12],

mouse [10, 13–16], monkeys [17–19] and humans [1,
20–26] during brain development and ageing have been
reported in recent years. It has been demonstrated that
the encoded information underlying development lies in
regulatory elements that define different gene expression
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programs, which means the regulatory factors scale qua-
dratically with genome size, the untranslated regions
(UTRs) in mRNAs increase with the developmental com-
plexity of organisms, and the non-protein coding intronic
and intergenic transcripts also contain an expanded regu-
latory framework to control gene expression during differ-
entiation and development [20]. Although remarkable
achievements have been made in characterizing the tran-
scriptional underpinnings of brain development and age-
ing in vertebrates, the precise mechanisms of lncRNAs in
defining the complexity of brain functions remain unclear,
particularly in birds. Although the chicken is now one of
the most versatile experimental systems available, as an
established model organism for the study of vertebrate de-
velopment, the chicken is under evaluated in the study of
developmental transcriptomics [27].
To systematically investigate the expression profiles of

lncRNA and mRNA transcriptome in different stages,
we performed high-throughput RNA sequencing to in-
terrogate their temporal expression patterns in the
chicken cerebrum. The present study provided an initial
lncRNA catalogue of the chicken cerebrum, which im-
proves our understanding of the temporal expression
profile during development and ageing, and may provide
insights or deeper understanding regarding the regula-
tory mechanisms of age-dependent genes in chicken. In
addition, this lncRNA catalogue helps bridge the evolu-
tionary gap between mammals and other vertebrates.

Results
Global identification of lncRNAs in the chicken cerebrum
To systematically investigate lncRNAs and their tem-
poral expression profiles during development and ageing
in the chicken cerebrum, a total of 21 cDNA libraries
from 21 female Tibetan chickens at 8 life stages were
constructed. The sampling times broadly spanned the
life of the farm-raised chicken, representing 3 embryonic
periods (embryonic days 12, 16, and 20: E12, E16 and
E20), 2 growth periods (100 and 300 days of age: D100
and D300), and 3 adult periods (from young adults to
ageing adults--1, 3, and 5 years of age: Y1, Y3 and Y5).
Illumina sequencing yielded a total of 2,675,315,228 raw
reads and 406.56 Gb of raw data with 150-bp paired-end
RNA-Seq, 2,615,649,932 clean reads were obtained after
quality control, corresponding to an average of 18.91 Gb
of high-quality data per sample. Among them, 91.87–
94.61% were mapped to the chicken genome (Gallus_-
gallus-5.0) through HISAT2 2.1.0 [28] (Additional file 1
Table S1).

Genomic characterization and classification of lncRNAs
To compare the genomic characteristics of lncRNAs and
mRNAs, we identified a total of 39,907 putative lncRNAs
and 14,558 mRNAs that were expressed in more than one

biological replicate (FPKM > 0). Subsequently, the gen-
ome distribution of lncRNAs and mRNAs was investi-
gated, of which there were 36,427 (86.04%) transcripts
and 12,254 (93.02%) mRNAs were assembled on chro-
mosomes (Fig. 1a and Additional file 1 Table S2). Most
of the lncRNAs and mRNAs of chicken tended to distrib-
ute in large chromosomes (No. 1–10 and Z chromosome),
while a small proportion of transcripts distributed in mi-
cro chromosomes. In addition, the number of lncRNAs
and mRNAs were highly correlated with chromosome size
(r = 0.9850, 0.9677, respectively). Illustrating that the num-
ber of transcripts distributed on chromosomes was pro-
portional to the size of chromosome. Based on further
comparisons, we found that chicken lncRNAs are ap-
proximately 1/2 the length of mRNAs (mean length of
1122 nt for lncRNAs and 2029 nt for mRNAs); moreover,
lncRNAs have fewer exons and are expressed at lower
levels than mRNAs (Fig. 1b-d).
We identified 36,663 lncRNAs and classified them by

genomic location; 54.24% of them were classified as inter-
genic lncRNAs not overlapping with any genes, 16.27% as
sense exon overlapping lncRNAs, 8.62% as antisense exon
overlapping lncRNAs, 6.80% as sense intron overlapping
lncRNAs and 14.08% as antisense intron overlapping
lncRNAs (Fig. 1e and Additional file 1 Figure S1). Simi-
larly, the subgroups of lncRNAs (intergenic, exonic and
intronic lncRNA) distributed on chromosomes in propor-
tion to the chromosome size (Additional file 1 Table S2
and Figure S2). Furthermore, we performed functional en-
richment analysis on both exon overlapping lncRNAs and
intron overlapping lncRNAs, terms related to neuron,
axon and synapse were found to be enriched in these
genes (Additional file 2). For instance, GO: 0043524
(negative regulation of neuron apoptotic process), GO:
0048666 (neuron development) and GO: 0007269 (neuro-
transmitter secretion). Axon activities including GO:
0007411 (axon guidance), GO: 0008089 (anterograde
axonal transport), GO: 0031290 (retinal ganglion cell axon
guidance), GO: 0019896 (axonal transport of mitochon-
drion), GO: 1904115 (axon cytoplasm) and GO: 0071679
(commissural neuron axon guidance). Terms involved in
synaptic regulation contained GO: 0045211 (postsynaptic
membrane), GO: 0051965 (positive regulation of synapse
assembly), GO: 0007416 (synapse assembly), GO: 0048813
(dendrite morphogenesis). KEGG pathways were primarily
involved in cell proliferation and differentiation, devel-
opment such as “Insulin signaling pathway”, “MAPK
signaling pathway”, “ErbB signaling pathway”, “Hedge-
hog signaling pathway”; “Neuroactive ligand-receptor
interaction” and “Calcium signaling pathway” were re-
lated to neuron. These results indicated that the intron
and exon overlapping lncRNA functions were consist-
ent with the biological functional activities of the genes
enriched in the cerebrum.
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Expression profiles of mRNAs and lncRNAs
Our RNA-Seq experiments included a broad time series
of sampling which allowed us to follow the expression
dynamics of mRNAs and lncRNAs as development pro-
ceeded. Based on the expression dynamics of mRNAs
and lncRNAs, the Pearson correlation between each pair
of samples was calculated. The results showed that 21
samples were grouped into three broad clusters of
mRNA expression profiles (Fig. 2a): the first cluster
(green) represented the embryonic stages (E12, E16 and
E20), the second cluster (blue) meant the growth stages
(D100 and D300) and the last cluster (red) was the
adult stages (Y1, Y3 and Y5). Chickens included in the
red cluster had reached a growth plateau and even
begun the ageing process. While the expression profile
of lncRNAs was not as markedly varied as that of
mRNAs, the embryonic and growth stages were clus-
tered, and the adult stages were congregated (Fig. 2c).
In addition, the correlation power of mRNAs at con-
secutive time points exhibited strong time-dependent
clustering. Meanwhile, the correlation power of lncRNAs

between stages of lncRNAs was much weaker (Fig. 2b, d).
Subsequently, we calculated the Shannon entropy (H)
value [29] to further test the hypothesis; this parameter
can be used to measure the specificity of gene expression
during developmental stages. Compared with mRNAs,
namely, lincRNAs, intron overlapping and exon overlap-
ping lncRNAs, exhibited increased temporal specificity
(Fig. 2e).

Age-dependent transcriptome and gene expression
analysis
To evaluate differentially expressed lncRNAs and mRNAs
(DE lncRNAs and DEGs) at irregularly spaced sampling
times, we compared the expression levels at adjacent time
points with the threshold of FC(Fold Change) ≥ 2 (or ≤
0.5) plus a Bonferroni-adjusted P-value ≤ 0.05. Overall, we
compared 7 pairs and identified 1892 unique lncRNAs
and 4499 unique mRNAs as significantly differentially
expressed during development and ageing. In the
lncRNAs comparison libraries, 1122 and 1059 lncRNAs
were found to be up- and down-regulated, respectively; a

Fig. 1 Genomic characterization of lncRNAs. a Chromosome distribution of mRNA and lncRNA transcripts identified in chicken cerebrum. The
blue line represents the size of chromosome (the ratio of each chromosomal size to the total genomic size). b The distribution of transcript
length of lncRNAs and mRNAs. c Exon number distribution of lncRNAs and mRNAs. d Comparison of the expression levels of lncRNAs and
mRNAs. The lines of the whiskers in the box represent median lines. e The classification of lncRNAs
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total of 2985 up-regulated and 2993 down-regulated
DEGs were identified in mRNAs comparison groups dur-
ing chicken cerebrum development and ageing. The great-
est number of DE lncRNAs between adjacent time points
was observed at Y5 vs Y3, followed by Y1 vs D300 and
E16 vs E12, while the most DEGs were detected at Y1 vs
D300, followed by E20 vs E16 and E16 vs E12 (Additional
file 1 Figure S3).
To further investigate the biological functional varia-

tions of these DEGs in development and ageing, we used
4499 DEGs to perform hierarchical clustering analysis.
The sample tree was clustered into 3 subgroups by age,
and the gene tree was partitioned into 7 clusters, which
were labeled with different colors (Fig. 2f ). Subsequently,
we performed functional enrichment analysis based on
the DEGs of the 7 clusters. Generally, DEGs expressed
highly in embryonic periods were enriched in the terms
“cell division”, “insulin secretion” and “axon guidance”;
the most relevant KEGG pathways were “glutathione
metabolism”, “Notch signaling pathway” and “cell cycle”

(the first three clusters). DEGs in growth periods were
enriched in the terms “MAPK signaling pathway”,
“GnRH signaling pathway” and “Calcium signaling
pathway” (the two middle clusters). Adult periods
were mainly enriched in immune response, phago-
some and defense response to virus (the last 2 clus-
ters) (Additional file 3).

Temporal profiles of gene expression
We used STEM to group DEGs with similar temporal
profiles and found that 4340 mRNAs and 1218 lncRNAs
were classified into time-series expressed patterns. For
mRNAs, a total of 1922 (44.29%) genes were partitioned
into 9 significantly enriched temporal profiles (P ≤ 0.05).
Two models exhibited monotonic trajectories: the pink
and blue-violet models showed a gradual increase and
decrease with age, respectively. Meanwhile, a portion of
genes were assigned to models that reversed their trajec-
tory over time: the yellow model presented a U-shaped
trajectory with a minimum at D100 to D300 and the

Fig. 2 The expression profiles of mRNAs and lncRNAs. a, c The expression profiles of mRNAs (upper panel) and lncRNAs (lower panel). The heat
map shows the expression profile of mRNAs and lncRNAs. The top and left panel is the sample and gene tree constructed by Pearson Correlation; the
value represents the log2 transformed values of (FPKM+ 1). b, d Dynamic changes in expression profile of mRNAs and lncRNAs. The value represents
the pairwise Pearson Correlation. The correlation between every two samples was calculated by log2-transformed (FPKM+ 1) gene expression values. e
The distributions of Shannon entropy-based temporal specificity scores that were calculated for distinct classes of mRNAs and lncRNAs. f Age-
dependent clusters with significantly enriched GO terms and pathways map. Hierarchical clustering analysis grouped the age-dependent genes into 7
clusters. g Temporal profiles of age-dependent DEGs (upper panel) and DE lncRNAs (lower panel). Modules in different colors represent different
temporal expression patterns which were significantly enriched by STEM analysis (non-significant modules were not shown). Numbers in the top
indicates the module number and the lower numbers indicate numbers of DEGs and DE lncRNAs in each module
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orange model showed a Bell-shaped trajectory with a
peak at D300. The remaining models had more complex
temporal profiles, some with an initial increase (green,
light purple and jade models) and some with an initial
decrease in their expression (mauve and light brown
models) (Fig. 2g). As for lncRNAs, 206 (16.91%) tran-
scripts were assigned to significantly enriched model
profiles (P ≤ 0.05) (Fig. 2g). To investigate the biological
functions of these significantly enriched mRNAs, we
performed functional enrichment analysis on aforemen-
tioned genes in 9 models. Interestingly, the terms “cyto-
kine receptor activity” (GO: 0004896), “phagosome” and
“ECM-receptor interaction” were enriched in increasing
genes; “cell cycle”, “MAPK signaling pathway”, “p53 sig-
naling pathway”, “mitotic nuclear division” (GO: 000
7067), “axon guidance” (GO: 0007411), “axon hillock”
(GO: 0043203) and “cell proliferation” (GO: 0008283)
were enriched in decreasing genes. In addition, “activa-
tion of GTPase activity” (GO: 0090630) and “regulation
of axonogenesis” (GO: 0060070) were enriched in DEGs
from Bell-shaped temporal profiles; “canonical Wnt sig-
naling pathway” (GO: 0060070) and “growth” (GO:
0040007) were enriched in DEGs from U-shaped tem-
poral profiles (Additional file 4).

Construction of a co-expression network
Predicting the putative function of lncRNAs through se-
quence characteristics is still a challenge because of the
lack of annotated features. WGCNA can be applied to
associate lncRNAs with functionally annotated mRNAs
because genes and transcripts with similar expression
patterns are often related in biological functions and can
be attributed to the same module. We first used DESeq2
to screen out mRNAs and lncRNAs; secondly, we con-
ducted WGCNA to explore the function of lncRNAs, a
total of 11,200 mRNAs and 955 lncRNAs were selected
by screening to construct the co-expression network. Ul-
timately, 12 modules were identified; the top 2 modules
accounted for 74.02 and 70.26% of the total mRNAs and
lncRNAs, respectively. We therefore considered a total
of 8323 mRNAs were targeting genes to 671 lncRNAs.
Furthermore, the co-expressed genes of the top 2 mod-
ules (8323 mRNAs) were submitted to DAVID; the func-
tional categories showed that these co-expressed genes
were significantly enriched in the terms “myelin sheath”
(GO: 0043209), “dendrite morphogenesis” (GO: 00488
13) and “axonogenesis” (GO: 0007409); as well as nu-
clear components such as “nucleolus” (GO: 0005730),
“nucleoplasm” (GO: 0005654), “chromatin organization”
(GO: 0006325). Consistently, KEGG analysis showed an
extensive enrichment of co-expressed genes involved in
pathways such as “spliceosome”, “ribosome”, “cell cycle”,
“insulin signaling pathway” and “mTOR signaling path-
way”. It is worth noting that, pathways related to defense,

detoxication and antiageing were significantly enriched in
adult stages: “positive regulation of telomere mainten-
ance via telomerase” (GO: 0032212). “Toxin transport”
(GO: 1901998), “damaged DNA binding” (GO: 0003684),
“wound healing” (GO: 0042060), “glutathione metabolic
process” (GO: 0006749) and “response to UV” (GO:
0009411) (Additional file 5).

Validation of the gene expression by qPCR
To validate the sequencing data, we selected 10 mRNAs
and lncRNAs representing different temporal profiles to
examine the expression patterns at each developmental
stage. Three DEGs (TMSB15B, BASP1, GAP43) were de-
creasing pattern, 2 DEGs were increasing (FGF13, CAC-
NA2D1), Bell-shaped (CAMK2A, GRIN1) and U-shaped
(TTR, TMSB15B) patterns, respectively, and 1 DEG
(PLP1) came from the initial-up expressing pattern. Cor-
respondingly, 3 DE lncRNAs in pink module (TU56811,
TU178751, TU167089), 3 in green module (TU99158,
TU26292, TU50759), and 4 in blue module (TU38242,
TU45029, TU166039, TU6367) were selected from the
temporal expression profiles of lncRNAs in Fig. 2g. The
relative expression of 10 mRNAs and lncRNAs detected
by qPCR were compared with the transformed log2
(FPKM+ 1) values of RNA-Seq. The results showed that
the altered expression patterns of 10 mRNAs and
lncRNAs at each stage were consistent with the RNA-
Seq data (Fig. 3), illustrating the reliability of our RNA-
Seq data and guaranteed the accuracy of stringent pipe-
line was used to identify the transcripts.

Discussion
Genomic characterization of lncRNAs in chicken cerebrum
Although the brain lncRNA profile of human, macaque,
mice and fish have been well characterized in recent
years, the function of lncRNAs in chicken brain develop-
ment and ageing remained unclear. Here, we systematic-
ally investigated the lncRNA profile of the cerebrum in
female Tibetan chicken by RNA-Seq spanning 8 stages
from embryonic (E12) to ageing (Y5) individuals. We
obtained 406.56 Gb of raw data from 21 libraries in
total; the chromosomal distribution of transcripts illus-
trated that the number of transcripts distributed on
chromosomes was proportional to the size of chromo-
some; not surprisingly, several key genomic characteris-
tics of the chicken cerebrum that lncRNAs were shorter,
less conserved and expressed at lower levels than
mRNAs were consistent with results in zebrafish and
mammals [2, 8, 9, 17, 18]. Furthermore, we identified ap-
proximate 2000 (54.24%) lincRNAs (long intergenic
lncRNAs) in our study, accounting for more than half of
the total chicken lncRNAs, which were consistent with
previous studies [30, 31]. Functional enrichment analysis
indicated that the functions of intron and exon
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overlapping lncRNAs were consistent with the biological
functional activity of the genes that were enriched in the
cerebrum, and that brain transcriptomes are conserved
across vertebrates.

Atlas of gene expression in chicken cerebrum
The expression profile of mRNAs of the chicken cere-
brum was age-dependent and lncRNA has a more re-
stricted temporal expression than mRNA, suggesting
that there might be distinctive patterns of age-related
functional changes across cerebrum developmental stages.
Further findings on age-dependent transcripts showed
that DEGs were grouped into 7 sub clusters. The first 3
clusters mainly highly expressed in embryonic stages,
involving in the formation of neuronal network and de-
velopment. For example, HDAC2 encodes histone dea-
cetylase which can form transcriptional repressor
complexes by associating with many different proteins,
and play an important role in transcriptional regulation,
cell cycle progression and developmental events. Previ-
ous reports have indicated that HDAC2 is critical for
oocyte development and reciprocally, it also can main-
tain normal chromatin structures and has a unique role
by controlling the fate of neural progenitors during
normal brain development [32, 33]. Activity of protein
product encoded by PAX6 is essential in the

development of neural tissues, particularly the eye.
Pax6 can establish distinct ventral progenitor cell pop-
ulations and control the identity of motor neurons and
ventral interneurons [34, 35]. The 2 middle clusters
were up-regulated at growth stages. It was noted that,
GnRH signaling pathway were enriched in this stage
alone, the GnRH secreted from the hypothalamus acts
upon its receptor in the anterior pituitary to regulate
the production and release of the gonadotropins, LH
and FSH [36, 37], which stimulated the hormones se-
cretion and egg formation in ovary. This result was in
accordance with the egg laying traits in Tibetan chicken
that they began to lay eggs at the age of 240 to 270 days
and reached egg laying peak at the age of 300 days [38].
Besides, GnRH could activate the signaling of PCK
(protein kinase C) and lead to transactivation of the
epidermal growth factor (EGF) receptor and activation
of mitogen-activated protein kinases (MAPKs), result-
ing in activation of transcription factors and rapid in-
duction of early genes [37]. This coincided with the
fact that MAPK signaling pathway was significantly
enriched in growth stage. Mainly up-regulating genes in
the last 2 clusters of adult stages exerted functions in
defense mechanisms and immune responses. CX3CL1
is broadly expressed in brain, it plays a role in a wide
range of diseases, including cancer, vasculitis,

Fig. 3 Validation of 10 expressed DEGs and DE lncRNAs by qPCR. The X-axis represented 8 developmental stages. The Y-axis indicated the relative
expression of each gene; blue lines were log2 (FPKM+ 1) values of RNA-Seq and the red lines were relative expression of qPCR
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neuropathies, atherosclerosis, inflammatory diseases,
and in human immunodeficiency virus infections [39,
40]. The protein encoded by MARCO is part of the in-
nate antimicrobial immune system [41], and modulates
inflammatory responses against virus infection [42]. All
these findings elucidated that biological functions of
highly expressed genes in different clusters accorded
with the development and growth rules.

Monotonic temporal expression patterns
The progressively increasing gene expression profile in-
volved in phagosome and binding, which meant that
organisms were undergoing neurodegeneration, anti-in-
flammation and innate immune mechanisms were acti-
vated as the neurons aged [12, 43, 44]. Meanwhile, the
temporal profile decreased with time, of particular
interest, were the down-regulation of cell proliferation
and mitotic nuclear division and the degeneration of
neuronal projections and axonal activity. In addition,
chromatin and extracellular matrix remodeling oc-
curred in this gene cluster. Similarly, neuronal func-
tional deterioration and synaptic down-regulation were
differentially represented in the ageing primate brain
[45]. All the information indicated that a progressive
accumulation of immune function and neuronal deteri-
oration were conserved hallmarks of brain ageing.

Temporal inversions
Interestingly, a substantial proportion of DEGs reversed
their expression trends at D300 and exhibited U-shaped
or Bell-shaped temporal profiles. The U-shaped model
applied to the “canonical Wnt signaling pathway” and
“glutathione metabolism”; Wnt signaling is involved in
organogenesis, and the inhibition of Wnt signaling is an
essential factor in the late stage of body profile forma-
tion in vertebrates [46]. Glutathione is helpful in main-
taining a normal immune system and has an antioxidant
effect [2], hinting that the Wnt signaling pathway might
be mapped to genes down-regulated from E12 to D100,
while glutathione metabolism probably corresponds to
genes up-regulated from D300 to Y5. The Bell-shaped
expression model exhibited a peak at D300 and a sub-
peak at E16; this gene cluster was enriched for “GTPase
activity”, “regulation of axonogenesis” and “neuronal
synaptic plasticity”. GTPase participated in protein bio-
synthesis and translocation, cell cycle control and cell
differentiation [47]. Axonogenesis is a subfield of neural
development concerning the process by which neurons
send out axons to reach the correct targets [48]. In
neuroscience, synaptic plasticity is the ability of synapses
to strengthen or weaken over time, in response to in-
creases or decreases in their activity; this phenomenon is
one of the important neurochemical foundations of
learning and memory [49]. Our results suggest that genes

in this model were initially involved in development, while
the oldest group exhibited a reduction of brain function;
in other words, chicken cerebrum senescence was accom-
panied by impairment of neural plasticity, increases in in-
flammatory response and neurological disorders, and
decrease of learning and memory abilities. Generally, hens
at the age of 300 days are high egg productive, subse-
quently, their physiological features change substantially
with age, leading to a reproductive decline and a drop in
egg laying. Therefore, we can detect the biological varia-
tions in RNA levels.

Different complex temporal expression patterns
Genes in the green model entered periods of up-regu-
lation during embryonic development (E12 to E16) and
adulthood (D300 to Y1). On embryonic days 12 to 16,
when histological differentiation is gradually completed,
these up-regulated genes were enriched for the terms
“myelin sheath” and “synaptic vesicle endocytosis”, indi-
cating neural functions were important in this stage. Even
so, the immune response was fully activated; for instance,
the terms “lysosome”, “phagosome”, “complement activa-
tion”, “response to oxidative stress” and “T cell receptor
signaling pathway” were enriched. It is well known that
300-day-old hens are adults, but we additionally de-
tected signs of ageing at D300 to Y1, implying that the
gene expression changes preceded physical ageing.

Functional prediction of lncRNAs
It is well known that lncRNAs are important regulatory
factors exerted their roles by targeting corresponding
mRNAs [50]. To gain insight into how putative lncRNAs
performed the biological functions to regulate the cere-
brum development and ageing, co-expression networks
between DE lncRNAs and DEGs were constructed.
Functional enrichment analysis of co-expressed genes
showed similar results, except for pathways involved in
the formation of neuron network, cell division and de-
velopment, genes such as SYT1, CDH1, PAX6, NEFL,
and ATXN, which are typical neuronal markers in brain
development [2] were discovered in this study. Besides,
GO terms and KEGG pathways related to defense mech-
anisms and immune responses were enriched, implying
the biological function of DE lncRNAs in chicken cere-
brum in regulating the brain developmental and im-
munological mechanisms.

Conclusions
In summary, we have identified a set of age-dependent
lncRNAs and mRNAs, determined their temporal ex-
pression patterns and clarified the dynamic changes in
the chicken cerebrum transcriptome over the course of
time. Although some important genes and pathways
were reported in this study, no work has been conducted
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on the functions of lncRNAs in chicken cerebrum, the
molecular genetic mechanisms regulating chicken brain
development and ageing are still poorly known. There-
fore, to validate studies based on these hypothetical re-
sults deduced by bioinformatics methods were needed.
Collectively, these findings may contribute to further
studies on the molecular mechanisms of chicken devel-
opment. In addition, as the chicken is an important
model organism bridging the evolutionary gap between
mammals and other vertebrates [51], our results may
help to improve our comparative understanding of the
cerebrum during vertebrate evolution.

Materials and methods
Ethics statement
The experimental procedures in this study were ap-
proved by the Committee on the Care and Use of La-
boratory Animals of the State-level Animal Experimental
Teaching Demonstration Center of Sichuan Agricultural
University (Approval ID: B20160403). Anesthetization
was performed in accordance with the Regulations for
the Administration of Affairs Concerning Experimental
Animals (China, revised 2004), phenobarbital sodium so-
lution with the concentration of 30 mg/kg was intraperi-
toneally injected and all efforts were made to minimize
the suffering of the chickens. Finally, chickens were eu-
thanized with overdose of phenobarbital sodium.

Chick embryo incubation and sample collection
Fertile eggs (Tibetan chicken) were bought from Mao
County Jiuding Original Ecological Livestock and Poultry
Breeding Co., Ltd., Aba Autonomous Prefecture, Sichuan
Province. Fertile eggs were incubated at 37.8 °C (incuba-
tion days of 1–19) and 37.2 °C (incubation days of 20–21)
with 70–80% humidity; a 24 h lighting schedule and inter-
mittent rotations were employed. Ten chick embryos were
randomly obtained on embryonic days 12, 16, and 20
(E12, E16 and E20). We sampled cerebrums for further
high-throughput sequencing and skeletal muscle for sex
determination. All chicks were housed in the same room
from hatching to 6 weeks of age at a density of 12 chicks
/m2 under uniform environmental conditions at Ya’an
Poultry Farm, which belongs to Sichuan Agricultural
University. After that, chicks were housed in cages, the
uniformed poultry integration cage systems were estab-
lished with 2 storeys, the size of each unit was set as
2.5 m length × 1.8m width × 0.8m height, and the density
of stock was controlled to be 10 chicks /m2. All food,
water, temperature, and light condition were monitored
digitally. Healthy female hens were sacrificed at the age of
100 and 300 days (D100 and D300), together with hens
aged 1, 3 and 5 years, cerebrum tissues were collected
from 3 biological replicates at each time point except for
E20, Y3 and Y5 (2 replicates). It was noted that, we

collected 21 samples across 8 developmental stages in
total, only 2 female embryos were identified among
samples collected at the embryonic day 20, in order to
collect samples in aging (Y5) as many as possible, the
left hens were divided into 2 groups at Y3 and Y5 with
2 replicates, respectively. All the samples were snap fro-
zen in liquid nitrogen immediately after collection and
then stored at − 80 °C until RNA extraction.

Embryonic sex determination by PCR
The embryos were sexed by PCR, which was performed
to amplify the CDH1-Z/W sequence. We designed CHD1-
based primers because some introns of CHD1 differ be-
tween the Z and W chromosomes [52]. The sequence of
the forward primer was 5′-GTTACTGATTCGTCTACGA
GA-3′ and that of the reverse primer was 5′-ATTGAA
ATGATCCAGTGCTTG-3′. The PCR program was as
follows: 5 min at 94 °C; 35 s at 94 °C, 30 s at 54 °C, and 30 s
at 72 °C for 40 cycles; 5 min at 72 °C for final extension.
Electrophoresis was performed on 1.5% agarose gel to
identify the PCR products; males were identified by the
presence of one band (CHD1-Z band), while females were
identified by the presence of 2 bands (CHD1-Z and
CHD1-W bands); female chicks were selected from
every stage to use for high-throughput sequencing.

RNA isolation, library construction and Illumina deep
sequencing
We used TRIzol Reagent (Invitrogen, Carlsbad, CA,
USA) to isolate total RNA following the manufacturer’s
instructions; genomic DNA was removed by DNaseI
(Qiagen, Beijing, China). The RNA purity was deter-
mined by measuring absorbance at 260 nm and 280 nm
on an ND-1000 spectrophotometer (NanoDrop 2000,
Thermo Fisher Scientific, Waltham, MA, USA) to calcu-
late the A260/280 ratio; the integrity and concentration
were estimated using Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, Calif.) with the Agilent RNA
Nano Kit. In addition, RNA integrity was examined by
1% agarose gel electrophoresis. Samples with RIN (RNA
integrity number) values above 7.5 and 28S/18S ≥ 1.0
were used for library construction and sequencing. The
Ribo-Zero™ Gold Kit (Illumina, San Diego, CA, USA)
was used to remove rRNA from the total RNA. Subse-
quently, the sequencing libraries were generated follow-
ing manufacturer recommendations with varied index
label by NEBNext® Ultra™ Directional RNA Library Prep
Kit for Illumina (NEB, Ispawich, USA). The details of li-
brary construction showed as follow: Firstly, rRNA was
removed by kits, RNA fragmentation and short RNA
strands were carried out by NEBNext First Strand Syn-
thesis Reaction Buffer under elevated temperature. Sub-
sequently,first cDNA strand was synthesized using
random hexamer primers and RNA fragments as
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template. Second strand cDNA synthesis was subse-
quently performed using buffer, dNTPs, DNA polymer-
ase I and RNase H. The library fragments were purified
with QiaQuick PCR kits and elution with EB buffer, then
terminal repair, poly (A)-tailing and adapter ligation
were implemented. In order to select cDNA fragments
of preferentially 300 bp in length, the library fragments
were purified and the UNG enzyme was used to digest
second strand of cDNA. PCR was performed by aiming
expected size of amplicons, and the library was com-
pleted. The resulting 21 libraries were sequenced using
the Illumina HiSeq platform with a paired-end sequen-
cing length of 150 bp (PE150) at Annoroad Gene Tech-
nology Corporation (Beijing, PR China).
The clean data have been submitted to the NCBI Gene

Expression Omnibus (GEO) with the accession number
GSE114129.

Read mapping, quantification and transcriptome
annotation
The quality control of raw data was completed by re-
moving low-quality reads, adaptor sequences, empty
reads and rRNA reads. Processed reads from each sam-
ple were mapped to the chicken reference genome (Gal-
lus_gallus-5.0) using HISAT2 2.1.0 followed the previous
described protocol [28, 53]. The mapped reads were as-
sembled with StringTie v1.3.3 [54]; assembled transcripts
were then merged into consensus transcripts using cus-
tom Python scripts [55] after filtering reads with length
less than 200 nt. Finally, transcripts annotated as “c” and
“=” were removed by Cuffcompare v2.2.1, noted that, “c”
for partial match, “=” for full match [56]. Then, we ob-
tained a set of putative coding and non-coding tran-
scripts, and the known transcripts were removed by
blastx and Hmmscan [57].

Identification and classification of lncRNAs
The Coding Potential Calculator (CPC) was applied to
estimate the coding ability of the remaining transcripts,
and transcripts with CPC score > 0 were filtered [58].
Subsequently, transcripts with FPKM > 0 at least in one
biological replicate were identified as lncRNAs (Noted
that FPKM is abbreviation of fragments per kilobase of
transcript per million mapped reads). LncRNAs were
initially classified into 2 major categories by FEELnc [59]
according to their location with respect to mRNA: (1)
intergenic lncRNAs, which do not intersect with any
gene annotations; (2) intragenic lncRNAs, which overlap
with gene annotations and can be further classified into
4 subcategories: (a) lncRNAs that overlap with sense in-
trons, (b) lncRNAs that overlap with antisense introns,
(c) lncRNAs that overlap with sense exons, and (d)
lncRNAs that overlap with antisense exons. The intra-
genic lncRNAs occurred in two situations: either the

lncRNA contained the intron or exon, or the lncRNA
was contained in the intron or exon.

Transcriptomic gene expression analysis
The expression levels of the transcripts were expressed
as FPKM values of mRNA and lncRNA using Cufflinks
v2.2.1 [56] and StringTie v1.3.3 [54], where a value of 1
was added to the FPKM value of each gene before log2
transformation to avoid infinite values. FPKM > 0.1 was
used to filter the expressed mRNA [60]. Pearson correla-
tions were estimated across 8 developmental stages, and
hierarchical clustering was performed using MultiExper-
imentViewer (MeV version 4.9.0) [61].

Age-dependent transcriptome and temporal expression
pattern analysis
To test age-dependent differential gene expression at 8
time points, we identified differentially expressed mRNAs
and lncRNAs using DESeq2 [62] based on the read counts
produced from the FPKM calculated by StringTie v1.3.3
[54]. We conducted pairwise comparisons between adja-
cent time points. Genes and transcripts with FC ≥ 2 or ≤
0.5 plus P-value ≤ 0.05 were identified as age-dependent
genes. For instance, in the E16 vs. E12 comparison (the
latter time point was defined as the numerator), a gene
with the FC ≥ 2 would be grouped into the increased pat-
tern and considered to be up-regulated during this stage, a
gene with FC ≤ 0.5 would be grouped into the “decreased
pattern”, and considered to be down-regulated. To evalu-
ate the time course of age-dependent transcriptomic vari-
ations across the life cycle of the chicken, we performed
STEM analysis (Short Time-series Expression Miner)
based on differentially expressed genes and transcripts
by comparing 2 adjacent time points [63]. Different
colors were used to represent the significantly
enriched model profiles (Bonferroni-adjusted P-values
≤ 0.05).

LncRNA-mRNA co-expression network analysis
We constructed a co-expression network using WGCNA
(Weighted Gene Co-expression Network Analysis) in the
R package [64] based on the differentially expressed
mRNAs and lncRNAs that were identified by DESeq2
screening. Genes with coordinated expression patterns
were termed “co-expression modules” and were detected
by the dynamic tree cut method [65]. Functional annota-
tion enrichment analyses of Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
terms were conducted with the DAVID (Database for An-
notation, Visualization, and Integrated Discovery) dataset
(https://david.ncifcrf.gov) [66]. GO terms and KEGG path-
ways with P-values ≤ 0.05 were considered significantly
enriched.
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Validation of the gene expression by qPCR
We selected 10 DEGs and DE lncRNAs to validate the
expression profiles of RNA-Seq by relative quantifica-
tion/Real-Time PCR (q-PCR). The expression levels of
the selected genes were normalized to β-actin, primers
for the mRNAs/lncRNAs were designed using Primer-
BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/)
(Additional file 1 Table S3). Total RNA was converted
to cDNA using the EasyScript One-Step gDNA Re-
moval and cDNA Synthesis SuperMix (Transgen Bio-
tech, China). The qPCR was performed on the Bio-Rad
iQ5 Real-Time PCR Detection system to detect the
RNA expression using TransStart Top Green qPCR
SuperMix (Transgen Biotech, China). The reaction vol-
ume contained 5 μl TransStart Top Green qPCR Super-
Mix, 1 μl template cDNA, 0.4 μl forward and reverse
primers, and added ddH2O to the final volume of 10 μl.
Each sample was conducted with three technique repli-
cates followed the qPCR system: 94 °C for 30 s, followed
by 40 cycles of 94 °C for 5 s and 30s at the Tm indicated
in Additional file 1 Table S3. The melting curve analysis
was performed from 65 °C to 95 °C with increments of 0.5
°C for 5 s. The relative expression levels were calculated
using the 2-△△Ct method, and the data were expressed as
mean ± SD (standard deviation).

Additional files

Additional file 1: Table S1. Data statistics of samples for RNA sequencing.
Table S2. Number of mRNA and lncRNA (including exonic, intronic and
intergenic lncRNA) transcripts distributed on chromosome identified in
chicken cerebrum. Table S3. Primer sequences for qPCR. Figure S1.
Pipeline of lncRNAs identification. Figure S2. Chromosome distribution
of 3 subgroups of lncRNAs. The blue line represents the size of chromosome
(the ratio of each chromosomal size to the total genomic size). The Pearson
correlation of chromosomal size and exonic lncRNA, intronic lncRNA and
intergenic lncRNA were 0.0960, 0.9789 and 0.9874, respectively. Figure S3.
Age-dependent mRNAs (A) and lncRNAs (B). Age-dependent genes in each
stage were identified through comparing 2 adjacent time points, genes and
transcripts with the FC≥ 2 or≤ 0.5 plus the P-value ≤ 0.05 were identified as
age-dependent genes. (DOC 295 kb)

Additional file 2: Functional categories of genes overlapping with intronic
and exonic lncRNAs. (XLSX 27 kb)

Additional file 3: Top 10 significantly enriched categories of age-
dependent genes in 7 clusters. (XLSX 21 kb)

Additional file 4: Functional categories of genes based on significantly
enriched models in STEM analysis. (XLSX 23 kb)

Additional file 5: Functional categories of co-expressed genes in the
top 2 modules. (XLSX 41 kb)
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