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Abstract

Background: The effects of tobacco smoking on epigenome-wide methylation signatures in white blood cells
(WBCs) collected from persons living with HIV may have important implications for their immune-related outcomes,
including frailty and mortality. The application of a machine learning approach to the analysis of CpG methylation
in the epigenome enables the selection of phenotypically relevant features from high-dimensional data. Using this
approach, we now report that a set of smoking-associated DNA-methylated CpGs predicts HIV prognosis and
mortality in an HIV-positive veteran population.

Results: We first identified 137 epigenome-wide significant CpGs for smoking in WBCs from 1137 HIV-positive
individuals (p < 1.70E—=07). To examine whether smoking-associated CpGs were predictive of HIV frailty and
mortality, we applied ensemble-based machine learning to build a model in a training sample employing 408,583
CpGs. A set of 698 CpGs was selected and predictive of high HIV frailty in a testing sample [(area under curve
(AUQ) =0.73, 95%Cl 0.63~0.83)] and was replicated in an independent sample [(AUC =0.78, 95%Cl 0.73~0.83)]. We
further found an association of a DNA methylation index constructed from the 698 CpGs that were associated with
a 5-year survival rate [HR = 1.46; 95%C| 1.06~2.02, p = 0.02]. Interestingly, the 698 CpGs located on 445 genes were
enriched on the integrin signaling pathway (p = 9.55E—-05, false discovery rate = 0.036), which is responsible for the
regulation of the cell cycle, differentiation, and adhesion.

Conclusion: We demonstrated that smoking-associated DNA methylation features in white blood cells predict HIV

infection-related clinical outcomes in a population living with HIV.
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Background

Smoking is a common and underappreciated contributor to
poor outcomes in HIV-infected individuals. The prevalence
of smoking among HIV-infected people exceeds 60% [1],
and it is an independent risk factor for mortality in treated
HIV-infected individuals [2]. Smoking increases the mortal-
ity risk among HIV-infected individuals with an odds ratio
between 2 and 3 [2, 3]. However, we have little insight into
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the mechanisms through which smoking contributes to
poorer HIV outcomes.

Smoking-associated effects on DNA methylation in
white blood cells (WBCs) have been demonstrated
through epigenome-wide association studies (EWAS).
DNA methylation is an epigenetic mechanism regulating
gene expression independent of variation in the DNA
sequence. To date, hundreds of CpG sites (i.e., cytosine-
guanine dinucleotides), where cytosines can be methyl-
ated to form 5-methylcytosine, in WBCs have been
associated with smoking status [4], quantity [5], smoking
cessation [6], and smoking-related traits or diseases (e.g.,
oxidative stress level [7], lung cancer [8], chronic inflam-
matory disease [9]) in the HIV-uninfected population.
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Fig. 1 Study design for the epigenome-wide association study for smoking and machine learning prediction

Indices of DNA methylation constructed from smoking-
associated CpG sites have predicted smoking-related
lung cancer incidence [10] and oral cancer incidence
[11]. A recent study using a smoking DNA methylation
index derived from six CpG sites was associated with
frailty in aging populations [12]. And finally, smoking-
associated CpGs in the blood were reported to predict
all-cause mortality [13, 14] and cardiovascular-related
mortality [15]. However, smoking-related DNA methyla-
tion associations have not been described in HIV-in-
fected populations to date.

The host epigenome is also impacted by HIV infec-
tion. We and others recently showed that DNA
methylation is associated with HIV infection and
HIV-related aging [16-19]. We reported that CpG
sites in the promoter of NLRCS5, a transcriptional acti-
vator of major histocompatibility complex class I,
were less methylated in samples from HIV-infected
persons as compared to samples from HIV-uninfected
persons [19]. Epigenetic marks were also associated
with cognitive impairment in the HIV-infected popu-
lation, and the epigenetic clock relates to biological
aging in HIV-infected individuals [20]. Taken together,
it is reasonable to hypothesize that both smoking and
HIV infection have effects on the epigenome that
contribute to poor HIV outcomes and an increased
risk of mortality.

To select high-dimensional epigenetic data for pre-
dicting clinical outcomes is challenging. For this pur-
pose, machine learning has emerged as a powerful
tool that enables the discovery of unknown features

in the epigenome to predict phenotypes of interest
[21]. Machine learning has been successfully applied
to select DNA methylation features to identify bio-
markers for complex diseases and to predict treat-
ment outcomes [16, 21, 22]. Recently, a kernel
machine learning method improved the prediction of
cancer prognosis by integrating molecular profiles and
clinical predictors [23]. A panel of DNA methylation
markers was able to diagnose common cancers with
95% accuracy and identified 29 out of 30 colorectal
cancer metastases [24]. In another study, DNA
methylation-based learning selected immune response
features improved the prediction of better treatment
outcomes of chemotherapy and survival for breast
cancer patients [25]. Such an approach can be useful
to identify biological signatures of HIV-related out-
comes influenced by smoking.

In this study, using an ensemble-based machine
learning approach, our goal was to select smoking-asso-
ciated DNA methylation CpGs in the HIV-infected host
epigenome and link the selected CpGs to the HIV dis-
ease outcomes. The motivation to use ensemble-based
learning is that an ensemble approach has advantages
to reduce the bias from individual machine learning
methods and to improve the stability of prediction per-
formance in an imbalanced sample [26, 27]. We were also
interested in understanding the biological significance of the
selected features. This study demonstrates that the applica-
tion of advanced machine learning on methylation features
provides evidence of a link between the mechanisms of
smoking and smoking-associated adverse HIV outcomes.
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Results

The study design and the framework are presented in
Fig. 1. Briefly, all DNA samples were extracted from
WBCs collected from people who live with HIV from the
Veteran Aging Cohort Study (VACS) (N =1137). All sam-
ples were randomly divided into a discovery (cohort 1)
sample and a replication (cohort 2) sample. Demographic
and clinical variables are presented in Table 1. We first
conducted a meta-analysis of the EWAS for smoking in
two separate HIV-infected samples. We then selected
smoking-associated CpGs that predicted HIV outcomes
by using an ensemble-based learning approach.

DNA methylation in WBCs associated with tobacco
smoking

Discovery

We profiled CpGs using the Ilumina Infinium Human-
Methylation 450 Beadchip (450K) (San Diego, CA, USA) in
HIV-infected samples (cohort 1, N = 608; current smokers =
361; non-smokers = 247) from the VACS. After adjustment
for potential confounders (i.e., age, immune cell types, adher-
ence of antiretroviral therapy, the top principal components
to limit global confounding effects), we identified 41 CpGs
differentially methylated (ie, 33 hypomethylated CpGs, 8
hypermethylated CpGs) between smokers and non-smokers
(Fig. 28, Promina < 1.0E-7) (Additional file 1: Table S1). Of
note, 40 out of 41 CpQ sites were previously reported to be
associated with smoking [4, 9, 10, 28-35]. The most signifi-
cant sites included the established smoking biomarkers on
AHRR (cg05575921, cg23576855, cg26703534, cg21161138)
and on F2RL3 (cg03636183). One CpG site, ¢gl15212292
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located in the body of PRKCA, was previously reported sig-
nificant association for smoking in a large meta-analysis from
combined European-American (EA) and African-American
(AA) populations but showed no association with smoking
in AA [35]. We found this CpG site highly significant in our
sample of predominantly AA (¢=-8911; p=>5.074E-19).
Consistent with previous reports, the majority of smoking-
associated CpGs were hypomethylated in smokers as com-
pared to non-smokers.

Replication

We conducted a second EWAS for smoking in a sam-
ple that was independent of the discovery sample
(VACS cohort 2, N=529; current smokers = 309;
non-smokers = 220). DNA methylation in the replica-
tion sample was profiled using the Illumina Methyla-
tion EPIC platform (San Diego, CA, USA) that included
870K CpGs, with 408,583 CpGs shared between the
[lumina 450K and EPIC arrays. To ensure consistency
in comparisons across the samples, only CpGs shared
across both arrays were assessed. The methylation state
probes common to both platforms were highly corre-
lated (r ~ 0.91 to 0.99).

Applying the same analytical protocol, we adjusted for
the same confounders in the discovery and replication
samples. A total of 49 CpG sites reached epigenome-wide
significance in the replication sample including the 41
CpGs identified in the discovery EWAS and 8 significant
CpGs that were only seen in the replication sample
(Fig. 2b) (Additional file 1: Table S2). The 8 additional
CpGs were all hypomethylated in smokers compared to

Table 1 Demographics and clinical variables in the study population

Cohort 1 (Illumina 450K)

Cohort 2 (lllumina Epic)

Smokers (N =361) Non-smokers (N = 247) p Smokers (N =309) Non-smokers (N = 220) p
HIV-positive (%) 100 100 N/A 100 100 N/A
Age 4920674 49.7+870 044 480+ 6.55 483+9.20 0.62
Sex (male, %) 100 100 N/A 100 100 N/A
Race (AA, %) 87.5 834 0.01 79 82.7 032
AUDIT-C 4.00+3.32 3.72+-348 0.31 367 £3.05 299 +£2.89 0.01
ART (%) 76.5 76.1 0.87 69.6 832 0.0004
WBC 535+2.09 534+181 0.95 527+196 527+155 0.99
CD4 408 £ 290 457 £272 0.04 415+ 200 493 + 280 0.002
VL (log10) 275+€1.24 252+1.15 0.03 282+1.26 255+£1.20 0.02
cDg* 0.18+0.08 0.17+£0.08 040 0.16+0.08 0.17£0.08 038
CD4* 0.05+0.05 0.05£0.05 0.33 0.07 £0.05 0.08 £0.06 0.19
Nature killer cells* 0.06 £ 0.05 0.09 £0.07 < 0.0005 0.08 £ 0.05 0.09+0.06 < 0.005
B cell* 0.09+ 0.05 0.08 +£0.05 047 0.11+£0.05 0.11£0.04 044
Monocytes* 0.12+£0.04 0.12 £0.04 0.83 0.11+0.04 0.10+0.04 0.002
Granulocytes* 0.53+£0.13 051£0.12 0.07 051£0.11 049+0.11 0.02

AA African-American, AUDIT Alcohol Use Disorder Identification Test, ART antiretroviral therapy, VL viral load

*Methylation-based cell type deconvolution by Housman et al. algorithm
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Fig. 2 Epigenome-wide association analysis in blood identified multiple CpG sites for tobacco smoking. a Discovery sample. b Replication sample
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non-smokers. The high concordance in findings between
the two samples suggests that smoking-associated CpG
sites are highly reproducible.

Meta-analysis

Combining the discovery and replication samples, a
meta-EWAS revealed a total of 137 CpGs that were sig-
nificantly associated with smoking (p < 1.0E-7) (Table 2,
Additional file 2: Figure S1). A test for heterogeneity
across the two samples for these 137 CpG sites was not
significant after Bonferroni correction(p,gjusted > 0.05) for
any of the sites, suggesting that their association with
smoking is not due to the confound of sample heterogen-
eity. Of the 137 CpG sites, 122 sites were hypomethylated,
and only 15 CpG sites were hypermethylated in smokers
compared to non-smokers. As expected, the most signifi-
cant CpG site was ¢g05575921 at AHRR. An additional 15
CpG sites on AHRR were also significantly associated with
smoking status. Consistent with the findings from more
than 30 previous studies in HIV-uninfected samples, these
results demonstrate that alteration of DNA methylation is
associated with smoking exposure regardless of HIV status.

Ensemble-based feature selection of DNA methylation for
HIV frailty

The VACS index was used as an indicator of HIV out-
come [36]. High HIV frailty and poor prognosis was de-
fined as a VACS index of greater than 50. Ensemble
learning was applied to classify the samples with a VACS

index score of greater than 50 as having a poor progno-
sis, and samples with a VACS index of less than 50 as
having a good prognosis. All samples were divided into a
training set (80% of the samples in cohort 1), a testing
set (20% of the samples in cohort 1), and a validating set
(cohort 2).

We first filtered CpGs based on p values (false discov-
ery rate, FDR <0.5) from the EWAS analysis. A total of
997 candidate CpGs from the discovery EWAS were
used for feature selection. The goal of the feature selec-
tion was to eliminate redundant and irrelevant CpGs
without losing informative loci that were associated with
high frailty and poor prognosis. In our sample, the num-
bers of high and low VACS index samples were unequal
(high VACS index = 237, low VACS index = 900).
Individual machine learning approaches favor the classi-
fication of samples into the larger class (e.g., low VACS
index samples). To reduce this potential bias without de-
creasing the sample employed in the training set, we ap-
plied a greedy ensemble-based feature selection to build
a classifier less likely to be biased towards the larger
class from the four machine learning methods(i.e., lasso
and elastic-net regularized generalized linear model
(GLMNET), support vector method (SVM), random for-
est (RF), and XGBoot).

In the training sample from cohort 1, we applied a boot-
strap aggregating (Bagging) approach, in which GLMNET
was used with 100 bootstraps using 70% of the training
sample, to weigh the importance of each CpG (Fig. 3a).
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Table 2 Epigenome-wide significant CpG sites for tobacco smoking in a veteran HIV-positive population: a meta-analysis

Probe Chr  Position Nearest gene  pgis Effect (SE)gis Prep Effect (SE)ep ZsCore Preta Direction Hat p
€g05575921 5 373378 AHRR 3.64E-40 —0.134 (0009) 136E-40 -—0.164 (0.011) —18800 756E-79 - 0480
€g21566642 2 233,284,661 135827  -0078(0.007) 264E-36 —0.096 (0.007) —16543 181E-61 - 0.076
€g01940273 2 233,284,934 153E-26  —0.056 (0.005) 6.92E-33 —0.068 (0.005) —15944 3.12E-57 - 0.144
€g23576855 5 373,299 AHRR 9.77E-31 —0.117 (0009) 367E-27 —0.127(0.011) —15791 358E-56 - 0.975
€g26703534 5 377,358 AHRR 418E-21  —0034(0003) 250E-17 —0.038(0.004) —12670 865E-37 - 0811
€g21161138 5 399,360 AHRR 582E-18  —0034(0.004) 862E-16 —0.039(0.005) —11.803 3.78E-32 - 0.994
€g09935388 1 92,947,588  GFIl 147E-13 —0.059 (0.008) 161E-18 —0.090 (0.010) —11.394 448E-30 - 0.167
cg03636183 19 17000585  F2RL3 242E-17  —0067 (0.008) 7.86E-12 —0.056(0.008) —10861 1.76E-27 - 0438
€g21322436 7 145,812,842  CNTNAP2 9.60E-14  —0024 (0.003) 6.16E-15 —0.028 (0.003) —10.766 4.98E-27 - 0532
€g03329539 2 233,283,329 1.29E-15 —0.029 (0.003) 322E-12 —0.030(0.004) -10600 3.00E-26 - 0.720
€g25648203 5 395,444 AHRR 714E-13  —0.025(0.003) 229E-13 —0033(0.004) -10248 1.20E-24 - 0.642
cg11660018 11 86510915  PRSS23 889E-11  —0024 (0.004) 1.02E-15 -0.036(0.004) —10215 169E-24 - 0.148
€g23771366 11 86,510,998  PRSS23 421E-07 —0.020 (0.004) 497E-20 —0.042 (0.004) —9.951 250E-23 - 0.001
cg05284742 14 93,552,128  [TPK1 1.24E-13 —0018(0.002) 322E-11 —-0.020(0003) —9947 260E-23 - 0.839
cg19572487 17 38476024  RARA 1.82E-08  —0.024 (0.004) 3.79E-17 —0.040 (0.005) —9.858 630E-23 - 0.020
cg01901332 11 75,031,054  ARRBI 1.16E-14 —0.031(0.004) 850E-10 —0.030(0.005) —9830 832E-23 - 0436
€g24859433 6 30,720,203 4.20E-11 —0.024 (0.004) 364E-13 —0.032(0.004) -9.782 135E-22 - 0415
€g15342087 6 30,720,209 485E-11  —0023(0003) 6.14E-13 —0027 (0.004) —9718  254E-22 - 0437
cg03450842 10 80834947  ZMIZ1 6.08E-11 —0018(0003) 502E-13 —-0.026 (0.003) —9.712  269E-22 - 0412
cg04551776 5 393,366 AHRR 7.00E-10 —0017 (0.003) 134E-13 -0.029 (0.004) —-9558 120E-21 - 0227
€g12803068 7 45002919  MYOIG 863E-10  0.047 (0.008) 540E-12  0.064 (0.009) 9.188 402E-20 ++ 0.391
€g15212295 17 64,710687  PRKCA 6.36E-10 —0014 (0002) 1.22E-10 —0.021(0.003) —-8911 507E-19 - 0.624
€g14753356 6 30,720,108 455E-09  —0.018(0.003) 642E-11 —0028 (0.004) -8744 225E-18 - 0436
€g25189904 1 68299493  GNGI2 3.14E-06  —0.035(0.008) 7.95E-15 —0066 (0.008) —8708 3.11E-18 - 0012
€g02657160 3 98,311,063  CPOX 8.20E-10 —0014 (0.002) 7.79E-10 —-0.015(0002) -8685 379E-18 - 0.758
€g13193840 2 233,285,289 162E-08  —0.013(0.002) 455E-11 -0021(0.003) -8622 658E-18 - 0336
cg07986378 12 11,898284  ETV6 154E-06  —0.024 (0.005) 541E-13 —0040 (0.005) —8435 330E-17 - 0.046
€g22851561 14 74214183  (Cl4orf43 5.28E-10 —0019(0.003) 1.17E-08 —0.026 (0.004) —-8432  339E-17 - 0.948
€g27537125 1 25,349,681 145E-09  —-0.009 (0.002) 248E-08 —0.010(0.002) —-8226 193E-16 - 0.960
cg06644428 2 233,284,112 207E-06  —0016 (0.003) 858E-12 —0.029 (0.004) —-8.129 434E-16 - 0.079
cg14624207 11 68,142,198  LRP5 4.95E-09 —0015(0003) 213E-08 —-0.019(0.003) —8098 561E-16 - 0915
€g26271591 2 178,125956  NFE2L2 549E-06 —0.025 (0.005) 390E-12 —-0.052(0007) —-8058 7.76E-16 - 0.048
cg11902777 5 368,843 AHRR 387E-10  —0012(0.002) 552E-07 -0008(0.002) —-7993 132E-15 - 0543
€g19859270 3 98,251,294  GPRI15 246E-10 —-0013(0002) 121E-06 -0.007 (0.001) —-7939  203E-15 - 0443
cg08709672 1 206,224,334  AVPRIB 9.81E-09 —0.021(0.004) 812E-08 —0.019(0.004) -7852 409E-15 - 0.991
€g2391689%6 5 368,804 AHRR 1.14E-11  —0.040 (0.006) 2.89E-05 —0.019(0.004) —-7816  545E-15 - 0.116
€g19089201 7 45,002,287  MYOIG 7.39E-08 0.027 (0.005) 2.09E-08 0.042 (0.007) 7.758 863E-15 ++ 0.669
cg02583484 12 54,677,008  HNRNPAT 2.94E-06 —0013(0.003) 350E-10 —-0.023(0.004) -7699 137E-14 - 0.162
€g09022230 7 5457,225 TNRC18 145E-07  —-0019 (0.004) 2.52E-08 —0.027 (0.005) —-7646 207E-14 - 0626
cg07178945 12 4,488,800 FGF23 1.87E-07 0.020 (0.004) 2.08E-08 0.028 (0.005) 7635 227E-14  ++ 0.587
€g04885881 1 11,123,118 146E-06  —0.025(0.005) 1.79E-09 —0.034 (0.006) —7.626 243E-14 - 0.265
€g25949550 7 145,814,306 CNTNAP2 121E-08  —0011(0.002) 4.80E-07 —0013(0.002) —-7601 294E-14 - 0.837
cg00073090 19 1,265,879 1.20E-05 —0011(0.002) 197E-10 —-0017(0003) -7542 463E-14 - 0.095
€g27241845 2 233,250,370 253E-06  —0019 (0.004) 1.98E-08 —0.034(0.006) —7270 359E-13 - 0371
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Table 2 Epigenome-wide significant CpG sites for tobacco smoking in a veteran HIV-positive population: a meta-analysis (Continued)

Probe Position Nearest gene  pgis Prep Pmeta Hat p
€g18900812 36,646,127  CDKNTA 4.74E-06 9.22E-09 3.74E-13 0.280
cg15159987 17,003,890  CPAMD8 8.33E-10 1.11E-04 1.04E-12 0.174
cg19254163 60,623,782  GPR44 6.38E-07 1.02E-06 3.06E-12 0.859
cg08149865 21914600  EPB49 1.23E-06 945E-07 553E-12 0.782
€g20295214 206,226,794  AVPRIB 1.47E-06 9.65E-07 6.76E-12 0.766
€g23219570 4,488,893 FGF23 1.30E-05 8.52E-08 7.83E-12 0.346
€g26529655 424,371 AHRR 2.39E-06 7.37E-07 8.68E—12 0.687
cg11554391 321,320 AHRR 6.57E-06 2.79E-07 1.05E-11 0495
€g25305703 128378218 1.26E-04 6.37E-09 1.34E-11 0.103
€g09099830 30485485  [TGAL 142E-06 2.15E-06 1.39E-11 0.860
cg10750182 73497514 CDH23 1.238-07 2.98E-05 1.88E-11 0.579
cg14580211 150,161,299  Chorf62 1.05E-05 3.19E-07 1.96E-11 0.464
cg04180046 45,002,736 MYOIG 2.39E-05 1.35E-07 2.30E-11 0330
cg17287155 393,347 AHRR 143E-05 3.74E-07 3.15E-11 0450
cg14316231 41,895,100  MYST3 2.32E-05 2.87E-07 4.26E-11 0.386
€g03604011 400,201 AHRR 1.38E-07 7.92E-05 5.98E-11 0479
€g09662411 92,946,132 GFHI1 3.82E-05 3.56E-07 8.93E-11 0361
€g24996979 74223355  Cl4orf43 1.17E-04 1.20E-07 1.29E-10 0214
cg13751113 118085214  AMICAT 8.66E-06 5.27E-06 2.03E-10 0.767
€g00310412 74,724918  SEMA7A 3.66E-04 4.49E-08 2.34E-10 0.117
cg18642234 49,394,622  GPX1 1.24E-06 444E-05 243E-10 0.748
€g26361535 144,576,604 ZC3H3 9.58E-04 1.10E-08 2.74E-10 0.054
€g00295485 106,755,721 UXSI1 5.86E-05 7.63E-07 2.77E-10 0.382
cg03440944 45023329  C/orf40 8.68E-08 4.66E-04 2.96E-10 0.275
cg12075928 141,801,307 PTK2 4.90E-06 1.60E-05 330E-10 0.969
cg01481251 32912,719 5.67E-05 1.05E-06 351E-10 0410
cg03707168 49,379,127 PPPIRI5A 1.16E-05 6.89E-06 352E-10 0.766
cg11436113 19,191,145 1.29E-05 6.14E-06 353E-10 0.741
cg00706683 233,251,030  ECEL1P2 7.54E-08 6.22E-04 3.69E-10 0.244
€g10062919 38503802  RARA 321E-05 2.37E-06 3.86E-10 0.539
906394460 28130393  LNX2 8.32E-07 1.36E-04 544E-10 0.568
cg04517079 41,546,161  FOXP4 1.28E-04 6.03E-07 548E-10 0.300
cg16547579 4,954,333 SLC23A2 3.74E-04 1.39E-07 5.87E-10 0.154
€g21446172 223,745,234 CAPN8 1.76E-04 4.68E-07 6.40E-10 0.260
cg07251887 73,641,809  RECQLS 1.03E-07 8.91E-04 738E-10 0.230
cg15474579 36,645812  CDKNIA 1.01E-05 2.32E-05 9.66E-10 0934
cg16398761 74220238  Cl4orf43 1.58E-05 2.13E-05 1.39E-09 0.870
€g13039251 32018601  PDZD2 4.03E-03 8.21E-09 1.59E-09 0.024
€g23110422 40,182,073  ETS2 5.94E-05 5.59E-06 1.60E-09 0.560
€g02275418 15,372,726 SH3BP5 5.16E-05 761E-06 1.82E-09 0.609
cg03188382 233,245,886 ALPP 3.42E-08 3.83E-03 1.88E-09 0.099
cg14712058 16,988,083  SIN3B 1.93E-07 1.37E-03 2.09E-09 0.226
cg03109660 37,684,505  RELLI 491E-06 1.05E-04 2.14E-09 0.780
cg08035323 9,843,525 1.19E-03 1.31E-07 2.37E-09 0.099
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Table 2 Epigenome-wide significant CpG sites for tobacco smoking in a veteran HIV-positive population: a meta-analysis (Continued)

Probe Position Nearest gene  pgis Effect (SE)gis Prep Drmeta Direction Hatp
cg13038618 77,467,391 1.08E-03  —0.011(0.003) 1.54E-07 238E-09 - 0.108
cg03234777 118,095,544  AMICAT 497E-05  —0.009 (0.002) 1.34E-05 292E-09 - 0677
cg13422817 4,550,927 FGF6 1.02E-05  0.011 (0.003) 7.28E-05 298E-09  ++ 0913
€g15657641 47,939,769 1.73E-06  0.008 (0.002) 3.77E-04 317E-09  ++ 0.508
€g24851513 3 52099522 C3orf74 144E-04  0.007 (0.002) 4.37E-06 337E-09 ++ 0444
cg17485141 2 42,566,556 857E-04  0.005 (0.002) 4.17E-07 386E-09 ++ 0.154
cg00385142 3 98235918  CLDND1 287E-07  —0.009 (0.002) 1.81E-03 409E-09 - 0.223
€g26764244 1 68299511  GNGI2 168E-03  —0.014 (0.004) 1.52E-07 414E-09 - 0.090
cg01899089 5 369,969 AHRR 409E-08  —0.016 (0.003) 6.94E-03 480E-09 - 0.077
€g25013095 2 231,809,672 375E-08  —0.008 (0.001) 7.93E-03 539E-09 - 0.070
€g25292882 39,431,467 172604 —0011(0.003) 6.24E-06 557E-09 - 0459
cg14179389 92947961  GFI 693E-03  —0013 (0.005) 1.63E-08 566E-09 - 0.022
cg09837977 110,731,201 LRRN3 8.75E-06  —0.008 (0.002) 1.92E-04 6.84E-09 - 0.760
cg16503724 17,130,667  PLCL2 295E-03  0.007 (0.002) 1.19e-07 722E-09 ++ 0.065
€g20454518 133,135463  FBRSLT 2.88E-04  0.021 (0.006) 6.45E-06 101E-08  ++ 0.409
cg16382047 231,790,037  GPR55 689E-06  —0.018 (0.004) 3.70E-04 1.08E-08 - 0.643
€g06972908 30488321  [TGAL 1.26E-05  —0.009 (0.002) 2.17E-04 1.09E-08 - 0.784
cg00605777 97533635  SEMA4C 129E-05  —0.009 (0.002) 247E-04 1.27E-08 - 0.768
cg00300637 319433 AHRR 9.94E-04  0.012 (0.004) 1.84E-06 1.50E-08 ++ 0214
cg01882991 6,677,756 500E-05  —0.010(0.002) 8.16E-05 1.58E-08 - 0.909
cg05049335 66,103,889  RINT 495E-07  —0.008 (0.002) 4.26E-03 1.84E-08 - 0.180
cg10788371 76,381,040  LRRC32 6.06E-02  —0.006 (0.003) 5.69E-10 2.14E-08 - 0.001
cg04716530 30485684  [TGAL 332E-05  —0006 (0.002) 1.78E-04 225E-08 - 0.928
€g09006487 72424982  RYBP 293E-09  —-0.023 (0.004) 6.83E-02 2.35E-08 - 0.007
cg10841124 433,274 AHRR 242E-05  0.007 (0.002) 2.63E-04 245E-08  ++ 0.833
cg01956154 94423399  ASB2 359E-05  —0009 (0.002) 1.81E-04 246E-08 - 0.936
€g26800893 67,18459  ATPGD] 539E-05  0.008 (0.002) 1.21E-04 248E-08 ++ 0.955
€g05460226 8,804,279 PIK3R5 257E-—04 —0.015(0.004) 2.13E-05 251E-08 - 0.538
cq18146737 92,946,700  GFI1 199E-04  —0.036 (0.010) 3.50E-05 297E-08 - 0.625
cg16201146 19,191,526 406E-07  —0.012(0.002) 7.10E-03 301E-08 - 0.137
cg16814719 134,114,834  TGSLA 448E-06  —0.005 (0.001) 141E-03 3.16E-08 - 0427
cg00501876 39,193251  CSRNPI 522E-04  —0.009 (0.003) 1.15E-05 322E-08 - 0400
cg08763102 3,079,751 HTT 1.73E-03 ~ —0.007 (0.002) 2.13E-06 330E-08 - 0.184
cg07381806 2,094,327 MOBKL2A 1.68E-03  —0.015(0.005) 2.62E-06 375E-08 - 0.196
cg01731783 74,211,788  Cl4orf43 841E-07  —0.008 (0.002) 540E-03 381E-08 - 0.185
cg19717773 2,847,554 GNAT2 1.86E-04  —0.033 (0.009) 5.57E-05 421E-08 - 0.691
cg17791651 38513489  POU3FI 405E-05  —0.011(0.003) 2.99E-04 455E-08 - 0.876
€g23161492 90,357,202 ANPEP 6.62E-04  —0.016 (0.005) 1.30E-05 466E-08 - 0.387
cg07465627 53,167,407  STXBP4 303E-06  —0011(0.002) 2.99E-03 536E-08 - 0311
cg16702313 74251926  Cl4orf43 4.78E-04  —0.007 (0.002) 2.64E-05 594E-08 - 0490
cg07339236 50312490  ATP9A 574E-03  —0.007 (0.003) 6.65E-07 6.27E-08 - 0.080
cg15187398 2,093,896 MOBKL2A 294E-03  —0.011(0.004) 2.10E-06 6.29E-08 - 0.150
€g02743070 80,834,309  ZMIZ1 744E-05  —0007 (0.002) 2.35E-04 645E-08 - 0.990
€g20059928 40,361,485 401E-05  —0.025 (0.006) 501E-04 757E-08 - 0.798
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Table 2 Epigenome-wide significant CpG sites for tobacco smoking in a veteran HIV-positive population: a meta-analysis (Continued)

Probe Chr  Position Nearest gene  pgis Effect (SE)gis Prep Effect (SE)ep ZsCore Preta Direction Hat p
cg14120703 9 139416,102 NOTCH1 4.33E-05 —0.008 (0.002) 480E-04 —0.008(0.002) —-5372 779E-08 - 0814
cg11816838 3 150,484,093 1338-02  -0.006 (0.002) 1.81E-07 —0.009 (0.002) —5369 790E-08 - 0.033
€g26057754 1 183,774,231  RGL1 6.85E-06  —0.004 (0.001) 2.32E-03 —0.003 (0.001) —-5367 801E-08 - 0.400
cg19713851 2 233,246,594  ALPP 5.33E-05 —0.031(0008) 4.12E-04 —-0.032(0.009) —-5364 8.13E-08 - 0.863
cg03519879 14 74,227,499  Cl4orf43 8.89E-07  —0.008 (0.002) 9.74E-03 —0.006 (0.002) —5357 846E-08 - 0.144

The CpGs were subsequently clustered into 21 CpG  taking a weighted average of the prediction from each
groups from 2 to 997 CpGs based on the importance rank  of the four machine learning methods. The perform-
with an incrementation of 50 CpGs. Four machine ance of tenfold cross-validation for each CpG group
learning methods, GLMNET, SVM, REF, and XGBoost, showed high sensitivity (> 0.9) but relatively low specificity
were applied to build prediction models using each  (<0.5) for each of the 4 machine learning methods. The
CpG group separately. Then, a set of classifiers was  models from ensemble learning and 4 individual machine
determined and used to classify new data points by learnings were evaluated in the test sample separately.
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Fig. 3 a Importance rank in 997 CpG sites using GLMNET method following 100 bootstraps. Only top-ranked 20 CpG sites are displayed. b
Performance of the selected features predicting high HIV frailty (Veteran Aging Cohort index, VACS index) in a test sample set measured by area
under curve (AUC) in receiver operating characteristic analysis. Ensemble-based machine learning from GLMNET, RF, SVM, and XGBoost was
applied. ¢ Performance of the selected features predicting high HIV frailty (Veteran Aging Cohort index, VACS index) in a test sample set
measured by balanced accuracy. Ensemble-based machine learning from four base machine learning methods, GLMNET, RF, SVM, and XGBoost,
was applied. d Venn plot showing the overlapping CpG sites between the selected 698 features and epigenome-wide significant CpG sites for
tobacco smoking
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In the testing set, the ensemble method selected a set
of 689 CpGs that discriminated poor and good prognosis
with the best performance (Fig. 3b). The prediction effi-
ciency was estimated using receiver operator characteris-
tic curves; the 698 CpG set displayed an area under
curve (AUC) of 0.73 (95%CI 0.63~0.83) for high HIV
frailty. The AUCs from RF and XGBoost at the 698
CpGs were also high (0.76). Although RF and XGBoost
had high AUCs across all CpG sets, their balanced accuracy
was not as good as ensemble method (Fig. 3c). Therefore,
the set of 698 CpGs was selected to test the prediction effi-
ciency. Importantly, the majority of EWAS-significant
CpGs (121 out of 137 EWAS-significant CpGs) were in-
cluded in the 698 CpGs (Fig. 3d), suggesting that ensemble
learning enables the selection of biologically informative
CpGs to predict HIV frailty.

Validation of prediction for HIV frailty using the selected
698 CpGs

To further validate the prediction results of the 698 CpGs
from the discovery sample, we tested the prediction effi-
ciency in the replication sample (cohort 2). Using the
same VACS index score cut point, we found that the AUC
was 0.78 (95%CI 0.73~0.83) (Fig. 4). The balanced accur-
acy of prediction was improved to 0.76. The results sug-
gest that the model built in the training set had minimal
overfitting features and can be applied to differentiate
good and poor HIV prognosis in independent samples.

Of note, to test whether an individual machine learn-
ing method alone, a penalized regression model, can se-
lect a smaller number of CpG sites than ensemble
learning from genome-wide CpG sites to predict HIV
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frailty, we conducted a feature selection from 408,583
CpG sites using GLMNET to predict the same high and
low VACS index. We found that GLMNET selected
1852 CpG sites that predicted the VACS index with
AUC of 0.76 (Additional file 3: Figure S2). Although the
performance of GLMNET was comparable to the
ensemble-based approach, the latter was able to select a
smaller number of features and linked smoking-DNA
methylation to HIV outcomes.

We tested whether ensemble learning can predict re-
silient persons that are HIV-positive. Using cutoff of the
VACS index <16 as an excellent prognosis, we found
that ensemble learning showed poor performance pre-
diction (AUC <0.7 and balanced accuracy <0.5). The
poor prediction is likely due to an insufficient number of
samples with excellent prognosis (i.e., the sample was
underpowered).

We were also interested in understanding whether the
prediction of the high and low VACS index using the
698 CpG sites performed better than smoking status
alone. We found the AUC of smoking status predicting
VACS index was 0.55 (Additional file 4: Figure S3), sug-
gesting that smoking-associated DNA methylation is a
better predictor for HIV frailty compared to smoking
status alone.

Prediction of the selected 698 CpGs for all-cause
mortality in HIV infection

To support the value of the 698-CpG set in predict-
ing HIV outcomes, the ability of the set to predict
mortality in HIV-infected individuals was evaluated.
Using the same ensemble model, we first tested the

A B

I [ [ I I I
100 80 60 40 20 O

Specificity (%)

o
O p—
—
9 0.75-
S
> 2 - §
2 AUC: 78.0% S 0.50-
2 Q (72.7%..83.3%) | 9
St
8 ~
o
(V]
0.25-
O pa—
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independent sample set. a Area under curve (AUC) from receiver operating characteristic analysis. b Sensitivity and specificity of the 698 CpGs
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prediction performance of the 698 CpGs with mortal-
ity in cohort 2, in which 84 subjects died within 5
years after the blood draw used to profile the DNA
methylome. The AUC was 0.66 (95%CI 0.60~0.73)
(Additional file 5: Figure S4), which was not as good
as the prediction of HIV frailty.

We then constructed a DNA methylation index score
based on the coefficient of each CpG site from the 698
CpGs in cohort 1. After adjusting for confounding factors
such as age, CD4 count, viral load, and antiretroviral
therapy, we found a significant association between the
methylation index and the 5-year survival rate in cohort 2
(HR=1.46; 95%CI 1.06~2.02, p=0.02) (Fig. 5). As
expected, the significant association was driven by hypo-
methylated CpG sites for smoking (HR = 1.39, p = 0.02) but
not by hypermethylated CpGs for smoking (HR =1.21,
p=0.21). The results provide further evidence that
DNA methylation-based prediction of mortality can
be applied in the HIV-infected population.

Biological significance of the selected 698 CpG sites

The selected 698 CpGs were located among 445 genes
(Additional file 1: Table S3). Pathway analysis showed a
significant enrichment on the canonical integrin signal-
ing pathway (p =9.55E-05, FDR =0.036). Fourteen out
of 445 genes were in this pathway: MAP2K4, ITGA2B,
ARHGAP26, PIK3RS5, ITGAL, PTK2, NCK2, CAPNS,
RHOG, GABI, LIMS1, ITGAI1l, CTTN, and ACTNI.
Integrin signaling determines cellular responses such as
migration, survival, differentiation, and motility and pro-
vides a context for responding to other inputs. The func-
tion of integrin signaling is critical for cell adhesion, tissue
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Fig. 5 Association of a methylation index constructed from
smoking—698 CpG sites with a 5-year survival rate in
HIV-infected samples

Page 10 of 15

maintenance and repair, host defense, and hemostasis.
Among non-canonical pathways, cancer, organismal
injury, and abnormalities were the most significant
(FDR = 1.87E-17). Other top disease-related pathways
were in the categories of gastrointestinal disease, liver
hyperproliferation, and dermatological diseases. These
results suggest that ensemble learning selected bio-
logically relevant features underlying pathological
changes in smoking-related diseases.

Discussion

Applying a DNA methylation-based machine learning ap-
proach, we report a set of smoking-associated DNA methyla-
tion sites predicting HIV prognosis and mortality in people
living with HIV. The prediction of HIV frailty by the selected
features showed an ability to accurately differentiate good
and poor HIV-related clinical outcomes in an independent
sample. The DNA methylation index constructed from the
selected CpGs was also associated with mortality in the
HIV-infected population. Interestingly, the selected smoking-
associated methylation features were enriched in the integrin
signaling pathway and related to multiple cancers and organ-
ismal injuries, which supports the hypothesis that the contri-
butions of smoking to poor disease outcome are in part due
to the changes in DNA methylation in the HIV-infected host
epigenome. The study has demonstrated that the application
of methylation-based machine learning can be useful for
linking molecular information to clinical outcomes.

One of the major challenges to building a successful
model using high dimensional data to predict disease
outcomes is how to select informative features among
redundant or irrelevant data, background noise, and
biased features [21]. We applied several approaches to
guide the machine learning process. First, epigenome
CpGs were filtered based on association analysis of DNA
methylation sites with smoking, which considerably re-
duced the number of features for model building. We ra-
tionalized using smoking-associated features because
smoking alters DNA methylation, and smokers have
higher mortality rates in the population when living with
HIV. Second, we applied ensemble learning based on the
results of multiple machine learning methods to
optimize the selected features and to limit the bias of
each method. This data processing method typically im-
proves the accuracy of the model when employing an
unbalanced sample. Our results showed that the per-
formance of the ensemble-based model is highly repro-
ducible and better than individual machine learning
method such as GLMNET. The advantage of the greedy
ensemble machine learning approach can also reduce
overfitting and improve model stability [37]. Overfitting
is another major challenge in building a predictive
model. To address this concern, we split the sample into
two cohorts: cohort 1, which was sub-divided into a
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training set and a testing set, and cohort 2, which was
used to replicate the predictive model performance.
Thus, the features selected from cohort 1 could be inde-
pendently tested in cohort 2. Therefore, the steps we
took ensured we selected features with high accuracy to
predict HIV outcomes.

Our results showed that the selected features were pre-
dictive for HIV frailty with moderate to high sensitivity and
specificity. Methylation marks for smoking were previously
applied to predict frailty in an elderly population. Gao et al.
reported that 9 smoking-associated CpG sites were signifi-
cantly associated with higher frailty. We found that our se-
lected 698 features showed better performance (AUC 0.78
versus AUC 0.55), which may be due to the inclusion of sig-
nificantly more CpG sites and different populations in our
sample compared to the Gao et al. study. The prediction of
HIV frailty using the selected 698 features also outper-
formed the use of tobacco smoking alone.

We found that the prediction of 698 sites for mortality
was not as good as the prediction for the VACS index. This
result is not unexpected as the model was built for the
VACS index, not for mortality. Second, the number of
deaths by cohort was unbalanced. In cohort 2, only 87 indi-
viduals had died at the time of this analysis, which may
have reduced the power for accurate prediction. However,
the methylation index with 698 CpGs was significantly pre-
dictive for 5-year survival rate. Individuals with a greater
methylation index were more likely to have shorter life ex-
pectancy than individuals with lower methylation index.

Importantly, the selected DNA methylation features
were not only computationally effective for classifying
good and poor outcomes and for predicting mortality but
were also biologically relevant to HIV frailty and mortality.
The selected 698 CpGs included loci in the genes involv-
ing immune activation and inflammatory processes, which
is highly associated with HIV frailty and mortality. For ex-
ample, the most significant smoking-associated gene,
AHRR, not only involves the metabolism of endogenous
toxins from smoking that result in pathological processes
but also represses other signaling pathways, including
NF-xappaB, and is capable of regulating inflammatory re-
sponses [38]. TNFRSF4 has been shown to activate
NF-kappa B and plays a role in apoptosis. In addition, a
number of CpGs in the 698 CpG sites were previously re-
ported to involve acceleration of aging, frailty, cancer
pathogenesis, and all-cause mortality. Although the major-
ity of DNA methylation differences at a single CpG site
between smokers and non-smokers are modest, the 698
features were enriched in pathways highly relevant to dis-
ease prognosis, frailty, and mortality.

While a model of 698 CpG sites may seem to be a
large number of features for the prediction of frailty,
emerging evidence has demonstrated that DNA methyla-
tion at individual CpG sites on a complex trait is small
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(less than 10%) [39]. In our EWAS analysis, the effect
size of single CpG sites on smoking was in a range of 1
to 13%. To predict a complex outcome such as frailty
with a small number of CpG sites is highly unlikely. A
recently published paper showed a panel of 200 to 1100
CpG sites predicting multiple complex traits including
alcohol, smoking, HDL cholesterol, education, and death
[40]. Thus, a panel of hundreds of CpG sites predicting
complex traits is expected. However, methods to select
more informative features and to potentially reduce the
number of features in future studies are warranted.

We acknowledge several limitations of this study. A re-
cent study suggests that mRNA and miRNA profiles
showed the best prediction for cancer prognosis [23]. Inte-
grating DNA methylation with other omic and clinical
data may improve the predictive value and clinical utility
of the predicting model. Due to methodological limita-
tions, we were unable to build a model to predict the
VACS index as a continuous variable, which may have bet-
ter clinical utility. The study was conducted in a retro-
spective cohort and smoking was defined from self-report,
which may introduce bias. Applying our predictive model
using the 698 selected features in a prospective cohort is
warranted to confirm the results. The mechanisms that
underlie the selected CpG features on HIV progression re-
main to be defined. Future studies of smoking’s effects on
DNA methylation in HIV-infected specific cell types are
warranted to better understand how the selected features
involve smoking-related HIV prognosis.

Our results demonstrate a machine learning approach
to establish methylation signatures for disease outcomes.
The identified methylation sites may be a biological surro-
gate for the VACS index to measure clinical outcomes and
to predict mortality. This first-ever methylation-based ma-
chine learning-based study sheds light on the impact of
smoking on risk for complicated clinical outcomes, esti-
mated using a molecular profile, in the setting of HIV
infection.

Conclusion

Applying DNA methylation-based ensemble learning, we
identified a set of 698 smoking-associated DNA methylation
CpG sites that predict HIV frailty and mortality. Building on
more than 30 previous studies in HIV-uninfected persons,
our findings suggest that smoking exposure changes DNA
methylation in the HIV-infected host genome that is linked
to HIV disease prognosis. Our results demonstrate that
DNA methylation-based machine learning is a robust ap-
proach for the prediction of HIV prognosis.

Methods

Study population and phenotype assessment

The VACS, a nation-wide multicenter collaborative pro-
ject designed to understand the role of co-morbid
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medical and psychiatric diseases in determining clinical
outcomes in HIV infection, was the source of specimen
and data (https://medicine.yale.edu/intmed/vacs/). The
VACS biobank cohort is comprised of 2470 participants
who were recruited for genetic studies from 2006 to
2007. Participants of the VACS biobank cohort provided
written informed consent for the genetic study and
provided blood samples. Clinical and demographic
data were collected within 90days of the blood
sample collection. A total of 1137 samples were se-
lected and randomly divided into two subsets (labeled
cohort 1 and cohort 2), and DNA methylation was
processed separately using different methylation
arrays.

Self-report was used to collect information on smok-
ing status. Current smokers were defined as smoking
cigarettes daily during the past week; non-smokers re-
ported never smoking cigarettes. The VACS created an
index score to estimate overall frailty of HIV-infected in-
dividuals by summing pre-assigned points for age, rou-
tinely monitored indicators of HIV disease (CD4 count
and HIV-1 RNA), and general indicators of organ system
injury including hemoglobin, platelets, aspartate and ala-
nine transaminase (AST and ALT), creatinine, and viral
hepatitis C infection (HCV) (https://medicine.yale.edu/
intmed/vacs/welcome/vacsindexinfo.aspx). The VACS
index has been associated with important changes in
health condition and behavior [41]. The VACS index has
been shown to predict all-cause mortality among those
undergoing treatment for HIV infection [42]. A higher
VACS index score indicated greater frailty. Mortality rate
5 years after blood draw was 16%.

Profiling DNA methylation using lllumina DNA
methylation Beadchips

Genomic DNA was extracted from whole blood sam-
ples. DNA methylation profiling was conducted at the
Yale Center for Genomic Analysis using the Illumina
(San Diego, CA, USA) Infinium HumanMethyla-
tiond50 BeadChip (HM450K) for cohort 1 and Illu-
mina Infinjum MethylationEPIC (EPIC) for cohort 2.
Two sample sets were processed at different times
but were processed by the same scientist at the Yale
Center for Genomic Analysis who was blinded to the
phenotypic information collected. All samples were
randomly placed on each array and batch-corrected
using the removeBatchEffect function in limma. Probe
normalization and batch correction were performed
as previously described by Lehne et al. [43].

Data quality control and normalization

In cohort 1, we removed 11,648 probes on sex chromo-
somes and 36,142 probes within 10 base pairs of single
nucleotide polymorphisms. A total of 437,722 probes
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remained for analysis. As described by Lehne et al. [43],
24,416 probes on Y chromosomes were applied to evalu-
ate the detection p value. A p <1E-12 was set as a de-
tection p value threshold to improve the quantification
of methylation intensities. The intensity values with de-
tection p>1E-12 were labeled missing, and samples
with a call rate <98% were excluded. We also com-
pared the predicted sex with self-reported sex. All
samples matched as male. In cohort 2, we applied the
same criteria for quality control. We removed 11
samples due to mismatched sex or low call rate. Only
the 408,583 probes that were identical with HM450
array were extracted for replication analysis. Quantile
normalization of intensity values was performed fol-
lowing the recommendations of Lehne et al. Six cell
types (CD4+ T cells, CD8+ T cells, NK T cells, B
cells, monocytes, and granulocytes) in the blood were
estimated in each sample using the method described
by Houseman et al. [44].

Data analysis
The study design and analytical approaches are summa-
rized in Fig. 1.

Epigenome-wide association analysis

Analyses of discovery and replication stages were per-
formed using the same pipeline [43]. To adjust for sig-
nificant global confounding factors, we conducted two
serial regression analyses to determine the associations
between methylome-wide CpGs and smoking. The fol-
lowing steps were performed to correct for global
co-variations that may confound specific DNA methyla-
tion in smoking.

1) The first principal component analysis (PCA)
was performed to evaluate the intensity values of
positive control probes designed in HM450.
Then, the first GLM was performed as follows:

Mehtylationfi~age + race + alcohol + ARTadherence
+log;, VL + WBC + CD8Tcell 4+ CD4Tcell
+ granulocyte + NK + Bcell + monocyte
+ PCcontrolProbe 1 -30.

The residuals for each probe and the top 30 PCs of
the first PCA were used to adjust for technical biases,
particularly batch effects.

2) The second PCA was performed on the resulting
regression residuals from the first model. The top 5
PCs of the second PCA were used to control for
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global biological confounders that cannot be
directly captured in the model.
3) Final GLM model

MethylationfS~smoking + age + race + alcohol
+ ARTadherence + log,, VL + WBC + CD8TCcell
+ CDA4Tcell + Gran + NK + Bcell + Mono
+ PCControlProbe1_30 + I)CResiduall_5

The significance threshold was set at p<1.0E-07,
which is equivalent to the Bonferroni correction.

Meta-analysis

We conducted an EWAS meta-analysis by combining
the data from the discovery (cohort 1) and replication
(cohort 2) samples. Effect size and p values for each
probe were obtained from analyses in cohort 1 and co-
hort 2 samples, respectively. We performed fixed-effects,
inverse-variance meta-analysis, with scheme parameters
of sample size and standard error by implementing the
METAL (ver: 2010-02-08) program, combining summary
statistics in two sample sets. We investigated heterogen-
eity in two sample sets using the * statistic.

Machine learning prediction HIV prognosis

Considering the samples were processed at different times
and platforms, batch effects were removed using the remo-
veBatchEffect function in /limma using R (ver. 3.32.10) be-
fore performing the machine learning prediction. To
reduce redundant DNA methylation signals and noise for
improving the prediction accuracy of HIV frailty, CpG sites
with FDR < 0.5 from EWAS in cohort 1 were selected for
machine learning. The samples in cohort 1 were randomly
divided into a training set and a test set with a ratio of 8:2.
We first built a model using the training set, in which each
sample was labeled poor (VACS index > 50) or good prog-
nosis (VACS index < 50). We then tested the model by per-
forming 10-fold cross-validation in the testing set, and the
best-performed model was tested in an independent repli-
cation set.

Prediction model and validation
Machine learning GLMNET was used to build a predic-
tion model. A total of 997 CpGs from EWAS (FDR < 0.1)
were ranked based on an importance value for each CpG
from GLMNET. The CpG sites were clustered as 21
groups from 2 to 997 sites using 50 CpG increments.
Tenfold cross-validation was performed in the training
set to identify the best performing model. Additional ma-
chine learning methods were used to predict the best out-
comes. GLMENT, SVM, RF, and XGBoost were performed
separately. The parameters were fine-tuned by using R
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package caret (ver: 6.0-78) (https://libraries.io/cran/caret/
6.0-78) for each algorithm. To avoid bias of each method,
we used the ensemble method with R package caretEnsem-
ble (ver: 2.0.0) (https://cran.r-project.org/web/packages/car-
etEnsemble/index.html) that constructed a new model by
weighing the vote of each CpG from four machine learning
methods.

The testing set was employed to evaluate the model by
ROC analysis. The best pre-formed features were used
to further validate the model in the independent testing
set (cohort 2) using an ensemble-based method. Sensi-
tivity, specificity, and AUC were used to assess model
performance.

Association of DNA methylation index with mortality

To examine whether the selected CpG site methylation
was associated with mortality, we constructed a methyla-
tion index from the 698 CpG sites following the previous
formula [45]. A separate index was constructed for
hypomethylated and hypermethylated CpG  sites,
respectively.

Sl — 12": Wcjﬂj_ﬁ-Meannon—smoker
n =1 ,B'SDnon—smoker

The association of the DNA methylation risk index
with all-cause mortality was examined by Kaplan-Meier
plots and log-rank tests in all samples. Cox regression
model was then used to adjust for age, antiretroviral
therapy adherence, HIV-1 load, and CD4 count. In the
Cox regression model, the DNA methylation index score
was a categorical variable (using the highest quartiles as
the reference category) or a continuous variable (calcu-
lating HR for a decrease in DNA methylation by one
standard deviation). Indexyy,, and indexyyper Were evalu-
ated for the prediction of mortality separately.

Gene enrichment analysis

Pathway and network analysis was conducted for the se-
lected 698 CpG sites on 455 genes by employing the In-
genuity Pathway Analysis (IPA). For genes with multiple
CpG sites, the lowest p value at the CpG site within a
gene was used to represent the gene level significance.
Significant pathways were defined at a FDR < 0.05.
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