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Summary
Background Introduction of pneumococcal conjugate vaccines (PCVs) has substantially reduced disease burden 
due to Streptococcus pneumoniae, a leading cause of childhood morbidity and mortality globally. However, PCVs 
are among the most expensive vaccines, hindering their introduction in some settings and threatening 
sustainability in others. We aimed to assess the effect and cost-effectiveness of introduction of 13-valent PCV 
(PCV13) vaccination globally.

Methods We assessed the incremental cost-effectiveness ratio of PCV13 introduction by integrating two models: 
an ecological model (a parsimonious, mechanistic model validated with data from post-seven-valent PCV introduction 
in 13 high-income settings) to predict the effect of PCV on childhood invasive pneumococcal disease, and a decision-
tree model to predict a range of clinical presentations and economic outcomes under vaccination and no-vaccination 
strategies. The models followed 30 birth cohorts up to age 5 years in 180 countries from 2015 to 2045. One-way 
scenario and probabilistic sensitivity analyses were done to explore model uncertainties.

Findings We estimate that global PCV13 use could prevent 0·399 million child deaths (95% credible interval 
0·208 million to 0·711 million) and 54·6 million disease episodes (51·8 million to 58·1 million) annually. Global 
vaccine costs (in 2015 international dollars) of $15·5 billion could be partially offset by health-care savings of 
$3·19 billion (2·62 billion to 3·92 billion) and societal cost savings of $2·64 billion (2·13 billion to 3·28 billion). 
PCV13 use is probably cost-effective in all six UN regions. The 71 countries eligible for support from Gavi, the 
Vaccine Alliance, account for 83% of PCV13-preventable deaths but only 18% of global vaccination costs. The 
expected cost of PCV vaccination globally is around $16 billion per year.

Interpretation Our findings highlight the value of Gavi’s support for PCV introduction in low-income countries and 
of efforts to improve the affordability of PCVs in countries not eligible for, or transitioning from, Gavi support.

Funding World Health Organization; Gavi, the Vaccine Alliance; and the Bill & Melinda Gates Foundation.

Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Pneumonia is the single largest global cause of mortality 
from infectious disease in children younger than 5 years.1 
In 2015, pneumonia killed an estimated 920 000 children 
(14·9% of all deaths in children younger than 5 years).2 
Streptococcus pneumoniae and Haemophilus influenzae 
type b are the leading causative organisms for pneumonia 
deaths, as well as a substantial proportion of deaths due to 
meningitis and sepsis.3,4

Immunisation is the most effective means of 
prevention, and introduction of H influenzae type b 
vaccination in almost all countries has led to sharp 
reductions in H influenzae-attributable pneumonia over 
the past decade.5 Two pneumococcal conjugate vaccines 
(PCVs), ten-valent PCV (PCV10) and 13-valent PCV 
(PCV13), are also used in children. These PCVs have 
been widely adopted in high-income countries and have 
also been introduced in low-income countries with the 
support of Gavi, the Vaccine Alliance. However, more 
than 40 countries have yet to introduce PCVs into their 
national immunisation schedules.6 These countries are 
mostly located in Asia and Africa, where disease burden 

is highest, and include several countries with large 
populations, such as China and Nigeria. In addition, 
many low-income countries that have introduced PCVs 
are transitioning from eligibility for Gavi support and 
will therefore need to fund vaccination from national 
health-care budgets and, eventually, at higher prices. 
Enumerating the potential benefits, long-term budget 
implications, and cost-effectiveness of PCVs is crucial to 
sustain funding for these vaccines in countries that have 
introduced them, and to assess their introduction in 
other countries.

However, for many countries, the cost-effectiveness of 
PCV introduction remains to be evaluated rigorously 
and in an internationally comparable manner.7,8 Existing 
studies either omit many of the effects of PCV intro
duction, such as herd protection and serotype replace
ment, or address only a subset of countries.9,10

To address this evidence gap, we evaluated the cost-
effectiveness of introducing PCV13 vaccination globally, 
accounting for regional pneumococcal epidemiology and 
using post-vaccination data from countries that have 
introduced PCVs.

http://crossmark.crossref.org/dialog/?doi=10.1016/S2214-109X(18)30422-4&domain=pdf
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Methods
Model overview and framework
The cost-effectiveness of PCV introduction was assessed 
by linking two models. The first, an ecological model, 
predicted the effect of PCVs on childhood invasive 
pneumococcal disease (IPD); the term ecological is 
used here in the epidemiological rather than biological 
sense, wherein the unit of analysis is the population 
rather than the individual. The second model, a 
decision-tree model, used outputs of the ecological 
model to predict a range of clinical presentations and 
economic outcomes. The combined model followed 
30 birth cohorts of children younger than 5 years from 
2015 to 2045 in 180 countries.

Ecological model
The ecological model was a parsimonious mechanistic 
model that has been previously validated to post-PCV7 
data from 13 high-income settings.11 The model simplified 
the long-term impact predictions, including serotype 
replacement and herd protection, from more elaborate 
susceptible-infectious-susceptible-type dynamic trans
mission models into a single predictive equation by 
making a number of assumptions: that vaccine serotypes 
will eventually be eliminated as a result of PCV use; that 
eliminated serotypes will be fully replaced in carriage by 
non-vaccine serotypes; and that the propensity of non-
vaccine serotypes to cause invasive disease if carried 
remains the same in the post-PCV era. On this basis, the 
predicted incidence risk ratio is

where c is the odds of carriage due to vaccine serotypes 
and d is the odds of IPD. Given the assumption of vaccine 

serotype elimination, model predictions should be 
treated as estimates of the maximum reduction in IPD 
that can be achieved through vaccination, rather than 
necessarily predictions of vaccine impact. In particular, 
in settings with low vaccine coverage or intense 
transmission, vaccination might not be able to completely 
eliminate vaccine serotypes. Therefore, we present a 
sensitivity analysis based on the assumption that 
reduction in carriage due to vaccine serotypes is only 65% 
(as observed in Kilifi, Kenya12), and PCV impact is thus 
only 65% of our model’s base-case prediction.

We separately parameterised the model for six UN 
regions (Africa, Asia, Europe, Latin American and the 
Caribbean, North America, and Oceania) and assumed 
PCV impact to be the same in each region. We used 
regional PCV13 serotype coverage among paediatric IPD 
isolates before routine use of PCVs, as reported in a 2010 
global meta-analysis.13 Similarly, we used the PCV13 sero
type coverage among paediatric carriage as reported in 
another, unpublished, global meta-analysis (le Polain de 
Waroux O and Flasche S, London School of Hygiene & 
Tropical Medicine, personal communication). We used 
1000 posterior samples for PCV13 serotype coverage from 
the latter study. For IPD, because no posterior distributions 
were reported, we fitted a binomial distribution to the 
reported regional PCV13 serotype coverage estimates to 
match reported means and 95% confidence intervals, and 
took 1000 bootstrap samples from those. Using the 
formula above, estimates of PCV serotype coverage in 
carriage and IPD were combined to obtain 1000 posterior 
samples of the regional effect of PCV13 on paediatric IPD, 
which were used in the economic model.

To extend the outcomes of the model, we assumed that 
the proportion of vaccine-preventable non-invasive 
pneumococcal disease (nIPD) was the same as that for 
IPD (details on model structure are shown in the 

Research in context

Evidence before this study
We searched PubMed without language or date restrictions for 
all records matching “(pneumococcal conjugate vaccine) and 
(cost-effectiveness) and (child*) and (global)” in any field. 
Our review identified 22 cost-effectiveness evaluations. We also 
examined articles identified in two reviews of pneumococcal 
conjugate vaccine (PCV) cost-effectiveness. We found three 
articles that estimated the impact of PCVs in low-income and 
middle-income countries, but no study assessing the cost-
effectiveness of PCVs globally. 

Added value of this study
Our analysis combines an ecological model, validated to 
post-vaccination data from 13 sites, with an economic model 
projecting health and economic outcomes of vaccination. It is 
the first study to integrate ecological and economic modelling 
to assess the impact and cost-effectiveness of PCVs in 

180 countries. We show that vaccination is cost effective in 
almost every country, according to both highly cited 
gross-domestic-product-based thresholds and country-specific 
cost-effectiveness thresholds derived using supply-side 
considerations. 

Implications of all the available evidence
PCV introduction is likely to be a cost-effective way to save 
children’s lives and avert disability in all UN regions and most 
countries. The benefits are particularly large in Gavi-eligible 
countries and in Africa and Asia. However, vaccine 
introduction requires an increased financial investment, 
which is partially offset by health-care cost savings from 
reduced disease. Thus, these findings underscore the 
importance of Gavi support and of mechanisms to support 
vaccine introduction at affordable prices for disadvantaged 
populations not eligible for Gavi support.

Incidence risk ratio=
c + 1

d + 1
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appendix).11,14,15 Furthermore, we assumed that use of 
PCVs would reduce all-cause acute otitis media incidence 
by 19%, as estimated in the COMPAS trial.16 It was also 
assumed that the proportionate reduction in disease 
over time after vaccination follows the same time course 
as that observed in a multi-country review of post-
vaccination data14 (ie, that 79% of the impact is achieved 
in the first year following introduction of PCV, and the 
full impact is established from year 2 onwards).

Economic model
The decision-tree model (figure 1) represented disease 
outcomes and associated health states under both 
strategies, and assessed risk of various clinical 
presentations of IPD and nIPD: meningitis, pneumonia, 
non-pneumonia non-meningitis, and acute otitis media.

In the vaccination strategy, we used national immun
isation schedules reported by WHO for 128 countries, 
with either three (2 + 1, 3 + 0) or four (3 + 1) doses, and 
assumed regional schedules for countries without 
information from WHO. Vaccine coverage was assumed 
equal to national three-dose diphtheria-tetanus-pertussis 
vaccine (DTP3) coverage.

Disease burden for the various presentations was 
informed by meta-analyses and global estimates3,17–19 
(details of model parameterisation are shown in the 
appendix). The regional values resulting from incidence 
and case-fatality risk distributions were applied to 
individual countries; for the proportion of invasive 
pneumonia and the risk of major sequelae, single values 
from global meta-analyses were used and applied to all 
regions.

Disease could lead to hospital admission, treatment at 
a health centre, or not seeking care, depending on 
condition. The resulting health outcomes were complete 
recovery, recovering with sequelae for meningitis, or 
death. Each episode was associated with a disability 
weight and cost. The disability due to each disease 
episode, as well as meningitis sequelae, was estimated 
in terms of disability-adjusted life-years (DALYs) from 
the WHO Global Burden of Disease (GBD) 2000 study.20

We included vaccination and health-care costs (health-
system costs), as well as out-of-pocket expenditures and 
productivity losses. Vaccination costs included vaccine 
purchase, incremental costs of vaccine introduction activ
ities and cold chain needs, and vaccine administration. 
For high-income countries, we used a price per dose of 
US$120·39, based on the price paid by the Vaccines for 
Children programme in the USA.21 For other non-Gavi-
eligible countries, the price per dose was assumed to be 
$15·68, based on the procurement prices of the Pan-
American Health Organization Revolving Fund.22 For low-
income and other Gavi-eligible countries, we used a price 
of $3·05 (plus 20% tail price) per dose in accordance with 
the Gavi Advance Market Commitment.23 A freight cost of 
6% of the vaccine price, a 5% wastage rate, and a buffer 
stock of 25% of the first-year vaccine needs were included. 
Vaccine administration costs included a nurse’s time to 
administer the vaccine and related injection supplies.

Health-care costs included treatment in hospital for 
all disease presentations except acute otitis media, for 
which outpatient costs were used. We accounted 
for care-seeking behaviour for pneumonia and acute 
otitis media. Any health-care costs for non-invasive 

Figure 1: Decision tree for outcomes over a single year of age, depicting vaccination with PCV13 versus no vaccination
An age-stratified decision-tree economic model was developed to represent disease outcomes and associated health states for vaccinated and unvaccinated 
populations in the model. The same structure is repeated for every year of age between 0 and 5 years. PCV13=13-valent pneumococcal conjugate vaccine.
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pneumonia that did not result in treatment in hospital 
were not included in our model. Costs in low-income 
and middle-income countries for meningitis were 
extracted from the report by Portnoy and colleagues.24 
Costs for pneumonia were modelled from data in the 
WHO-CHOICE database25 and a 2016 systematic 
review.26 Other costs were estimated from predictions 
of best-fit models, which we parameterised using 
data for individual countries extracted from 27 studies 
of the cost-effectiveness of PCVs. To reflect the 
economic burden borne by the households and society, 
we estimated out-of-pocket expenditures that families 
with sick children would have to incur and the 
productivity losses due to loss of work days for the main 
carer, assumed to be the mothers, using values from 
the WHO global health expenditure database and 
female labour force participation rates for each country 
(appendix).

All unit prices were converted to 2015 international 
dollars (I$). Models were coded in R version 3.3.1 and 
Microsoft Excel version 15.37.

Economic evaluation
We evaluated the costs and benefits of introducing the 
vaccine in countries currently without PCV programmes 
and in countries that are eligible for Gavi’s Advanced 
Market Commitment. The incremental cost-effectiveness 
ratio (ICER) of PCV introduction was defined as the 
discounted incremental cost of PCV introduction over 
30 years divided by the discounted incremental DALYs 
averted by vaccination over 30 years. To calculate ICER, 
future costs and outcomes were discounted at 3% per 
annum.

We did a budget impact analysis to identify the financial 
consequences of vaccination. We estimated the financing 
flows showing the fiscal impact of vaccines globally. The 

Global* Africa Asia Oceania Europe Latin America and 
the Caribbean 

North America

Number of children fully 
vaccinated with at least three 
doses (millions)

114 34·6 58·1 0·559 6·73 8·77 4·42

Vaccination programme costs 
(undiscounted; I$, billions) 

15·5 1·80 6·06 0·144 4·03 1·11 2·39

Health-care costs 
(undiscounted; I$, billions) 

–3·19 
(–3·92 to –2·62)

–0·364 
(–0·507 to –0·239)

–1·35 
(–1·91 to –0·857)

–0·0637 
(–0·101 to –0·0235)

–0·380 
(–0·441 to –0·329)

–0·222 
(–0·266 to –0·188)

–0·810 
(–0·960 to –0·681)

Societal costs (undiscounted; 
I$, billions) 

–2·64 
(–3·28 to –2·13)

–0·463 
(–0·619 to –0·325)

–1·46 
(–2·02 to –0·975)

–0·0297 
(–0·0419 to –0·0168)

–0·237 
(–0·261 to –0·217)

–0·182 
(–0·215 to –0·158)

–0·262 
(–0·296 to –0·233)

Invasive pneumococcal 
disease cases (millions)

–1·65 
(–2·48 to –0·986)

–0·757 
(–1·31 to –0·303)

–0·725 
(–1·26 to –0·270)

–0·00781 
(–0·0134 to –0·00234)

–0·0280 
(–0·0371 to –0·0203)

–0·0696 
(–0·0923 to –0·0518)

–0·0487 
(–0·0624 to –0·0365)

Non-invasive pneumococcal 
disease cases (millions)

–4·14 
(–6·24 to –2·48)

–1·82 
(–3·10 to –0·740)

–1·94 
(–3·39 to –0·721)

–0·0206 
(–0·0343 to –0·00629)

–0·0622 
(–0·0816 to –0·0458)

–0·151 
(–0·196 to –0·116)

–0·105 
(–0·133 to –0·0813)

Acute otitis media cases 
(millions)

–48·8 
(–49·4 to –48·3)

–24·5 
(–24·7 to –24·3)

–19·2 
(–19·5 to –18·9)

–0·266 
(–0·269 to –0·263)

–1·85 
(–1·88 to –1·83)

–1·92 
(–1·96 to –1·88)

–1·12 
(–1·13 to –1·11)

Deaths (millions) –0·399 
(–0·711 to –0·208)

–0·275 
(–0·567 to –0·114)

–0·0923 
(–0·176 to –0·0340)

–0·000611 
(–0·00123 to –0·000175)

–0·00486 
(–0·00809 to –0·00276)

–0·0108 
(–0·0157 to –0·00713)

–0·00754 
(–0·0108 to –0·00510)

DALYs averted by PCV13 
(undiscounted; millions)

13·8 
(8·08–23·0)

8·68 
(3·99–16·8)

3·88 
(1·75–6·78)

0·0328 
(0·0141–0·0556)

0·216 
(0·149–0·320)

0·429 
(0·313–0·588)

0·301 
(0·222–0·415)

DALYs averted by PCV13 
(discounted; millions)

9·13 
(5·33–15·0)

5·65 
(2·59–10·9)

2·62 
(1·18–4·58)

0·0217 
(0·00929–0·0369)

0·146 
(0·100–0·216)

0·291 
(0·212–0·399)

0·200 
(0·148–0·276)

Total incremental costs from 
PCV13 (undiscounted; I$, 
billions)

9·71 
(8·33–10·8)

0·977 
(0·677–1·24)

3·25 
(2·15–4·23)

0·0503 
(0·000356–0·103)

3·41 
(3·32–3·48)

0·707 
(0·632–0·767)

1·32 
(1·13–1·48)

Total incremental costs from 
PCV13 (discounted; I$, billions)

6·67 
(5·74–7·40)

0·663 
(0·466–0·836)

2·26 
(1·51–2·92)

0·0345 
(0·00121–0·0698)

2·34 
(2·29–2·39)

0·488 
(0·437–0·529)

0·886 
(0·763–0·992)

Total health-system costs† 
(undiscounted; I$, billions) 

12·3 
(11·6–12·9)

1·44 
(1·30–1·56)

4·71 
(4·15–5·20)

0·0800 
(0·0423–0·120)

3·65 
(3·59–3·70)

0·890 
(0·846–0·925)

1·58 
(1·43–1·71)

Total health-system costs† 
(discounted; I$, billions)

8·42 
(7·93–8·81)

0·962 
(0·868–1·04)

3·24 
(2·86–3·57)

0·0541 
(0·0289–0·0809)

2·50 
(2·46–2·54)

0·611 
(0·581–0·635)

1·06 
(0·959–1·14)

Incremental cost-effectiveness 
ratio over 30 years‡ (I$ per 
DALYs averted)

724 
(400–1360)

118 
(45·7–320)

853 
(340–2450)

1590 
(36·7–7560)

16 000 
(10800–23700)

1680 
(1120–2420)

4420 
(2880–6440)

Values are point estimate (95% credible interval) and are shown to 3 significant figures. Negative values indicate costs saved, or cases or deaths averted. PCV13=13-valent pneumococcal conjugate vaccine. 
I$=international dollars. DALYs=disability-adjusted life-years. *Because of rounding differences, global values are only approximately equal to the sum of values for individual regions. †Health-system costs 
include vaccination programme costs and health-care costs; societal costs (out-of-pocket expenses and productivity costs) are excluded. ‡Because of rounding differences, values are only approximately equal to 
total incremental costs from PCV13 (discounted) divided by DALYs averted by PCV13 (discounted).

Table: Median yearly global and regional estimated incremental outcomes of PCV13 vaccination compared with no vaccination
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projections of the budget impact analysis were intended 
to provide guidance while assessing the affordability of 
PCV introduction.

To assess whether PCV introduction was cost-effective 
in a particular setting, we compared the ICER to 
two thresholds: gross domestic product (GDP) at pur
chasing power parity per capita (the threshold suggested 
by the Commission for Macroeconomics and Health 
for an intervention to be “very cost-effective”27); and 
country-specific thresholds, published by Woods and 
colleagues, based on extrapolating the opportunity costs 
of health-care spending in the UK.28

Sensitivity analysis
One-way scenario and probabilistic sensitivity analyses 
were done to test the robustness of our model results to 
changes in key parameters over plausible ranges.

For one-way analyses, we assessed the effect of varying 
disease incidence and case fatality rates of all disease 
presentations between the lower and upper 95% 
uncertainty bounds reported in the three systematic 
reviews.3,17,29 The effects of varying cost inputs on the 
ICER were assessed by varying vaccine price and health-
care costs by ±20%. Discounts were varied between 0% 
and 6%. The ratio of IPD to nIPD was also varied 
between 0·022 and 0·509 as per the Gambia study by 
Cutts and colleagues.29

We also did scenario sensitivity analyses using 
disability values from the GBD 2015 study;30 WHO-
CHOICE costs and estimated lengths of stay for health-
care costs; excluding countries with low vaccination 
coverage (DTP3 <70%) from PCV introduction; and 
assuming that low-income and middle-income countries 
achieve only a 65% reduction of vaccine serotype carriage 

(instead of full elimination), as shown in a post-
introduction study in Kenya.12

A second-order probabilistic sensitivity analysis of the 
statistical uncertainty of parameters was done with 
Monte Carlo simulation, and the model was simulated 
1000 times with bootstrap samples, with replacement 
from probability distributions of parameters, to explore 
the effect of statistical uncertainty on study results. 
Disease incidence and case fatality rates were sampled 
from distributions. Estimates of costs, magnitude of 
ecological effects, and ICERs were obtained for each 
sample, allowing us to generate 95% credible intervals.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 
the report. The corresponding author had full access to all 
the data in the study and had final responsibility for the 
decision to submit for publication.

Results
In our global analysis of 180 countries, we project more 
than 1·18 million deaths (95% credible interval 
0·780 million to 1·76 million) and 457 million disease 
episodes (449 million to 465 million) annually before 
vaccination in children younger than 5 years. Vaccination 
could prevent 34% of global deaths (0·399 million 
[0·208 million to 0·711 million]) and 12% of disease 
episodes (54·6 million [51·8 million to 58·6 million]). The 
largest benefits would be seen in Africa (0·275 million 
deaths averted [0·114 million to 0·567 million] and 
8·68 million DALYs averted [3·99 million to 16·8 million]), 
followed by Asia (0·0923 million deaths averted 
[0·0340 million to 0·176 million] and 3·88 million DALYs 

Figure 2: Estimated deaths prevented by PCV vaccination per 100 000 children younger than 5 years in 180 countries
The map represents the number of deaths prevented by routine childhood vaccination with PCV at 2015 coverage levels compared with the no vaccination scenario. 
Countries that have implemented PCV programmes are shaded with solid colours. Countries without existing PCV programmes are shown with diagonal lines. 
Countries in grey (n=17) were excluded because of missing data. PCV=pneumococcal conjugate vaccine.

0–99
100–199
200–499
≥500

PCV-prevented deaths per 100 000 children
aged less than 5 years
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averted [1·75 million to 6·78 million]) a year. Vaccination 
in all other regions would collectively avert 0·0238 million 
deaths (0·0152 million to 0·0358 million) and 
0·979 million DALYs (0·699 million to 1·38 million) 
annually (table, appendix).

Pneumococcal disease in the absence of vaccination 
was associated with estimated global health-system costs 
of I$13·7 billion (12·9 billion to 14·7 billion) and societal 
costs of $14·3 billion (13·7 billion to 15·1 billion). We 
estimated a total global vaccination cost of $15·5 billion, 
or roughly $137 per fully vaccinated child. The cost per 
fully vaccinated child would be $541 in North America, 
$599 in Europe, $104 in Asia, and $52 in Africa. The 
higher  total cost per vaccinated child in Europe (despite 
a four-dose schedule in North America) was due to a 
higher price per dose in Europe when costs were 
converted to GDP at purchasing power parity. Global 
investment would be concentrated in Asia ($6·06 billion; 
39%), followed by Europe ($4·03 billion; 26%) and North 
America ($2·39 billion; 15%). Comparatively, Africa 
would require a smaller investment of $1·8 billion (12%) 
because of the wider availability of Gavi prices.

From the health-systems perspective, investment in 
vaccination would be partially compensated by savings of 
$3·19 billion (2·62 billion to 3·92 billion) from averted 
hospital inpatient care and health-centre visits globally. 
Societal cost savings would further offset the cost of 
vaccine introduction by an additional $2·64 billion 
(2·13 billion to 3·28 billion). These savings comprise 
productivity gains from reduced caregiving ($0·701 billion 
[0·617 billion to 0·807 billion]) and reduced out-of-pocket 
expenditures ($1·94 billion [1·49 billion to 2·49 billion]). 
Asia ($1·46 billion [0·975 billion to 2·02 billion]) and 
Africa ($0·463 billion [0·325 billion to 0·619 billion]) 
would together account for 72·9% of societal savings.

The 52 countries that do not have existing PCV 
vaccination programmes include countries that have 
high rates of PCV-preventable deaths such as Algeria, 
Egypt, Chad, and South Sudan (figure 2). We estimate 
that introduction of PCV in these 52 countries would 

Figure 3: Cost-effectiveness of routine PCV13 childhood vaccination
The graphs show ICERs of PCV13 vaccination versus no vaccination, by country, compared with cost-effectiveness 
thresholds based on average values reported by Woods and colleagues28 (A) and thresholds based on GDP (at PPP) 
per capita (B). The x-axis represents the cost-effectiveness estimate obtained from our model. Countries above 
the line (y=x) are cost-effective. Graphs are presented using a log-log scale. Credible intervals were omitted for 
clarity. DALY=disability-adjusted life-year. GDP=gross domestic product. ICER=incremental cost-effectiveness ratio. 
I$=international dollars. PCV13=13-valent pneumococcal conjugate vaccine. PPP=purchasing power parity.

Figure 4: Comparison of ICER and vaccine purchase cost per dose by income 
regions
Vaccine purchase cost per dose was converted to I$ using the World Bank and 
International Monetary Fund price level ratios of gross domestic product (at 
purchasing power parity) per capita to market exchange rate in 2015. Each point 
on the chart represents one country. Countries with higher vaccine cost had 
lower cost-effectiveness of vaccination (higher ICER). DALY=disability-adjusted 
life-year. ICER=incremental cost-effectiveness ratio. I$=international dollars.
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prevent 90 000 deaths (44 800–154 000) and 18·4 million 
disease episodes (16·9 million to 20·2 million). Although 
vaccination in these countries would be cost-effective, at 
a median ICER of I$598 (244–1420) per DALY averted, 
PCV introduction would require a considerable 
investment of $4·42 billion. This amount is almost a 
third of the global costs.

Globally, PCV vaccination would cost $724 (400 to 1360; 
discounted) per DALY averted compared with no 
vaccination. Median ICER per DALY averted was 
estimated at $118 (45·7 to 320) in Africa, $853 
(340 to 2450) in Asia, and $16 000 (10 800 to 23 700) in 
Europe. PCV introduction would be cost-saving in 
11 countries (6%) and cost-effective in 154 countries 
(86%) using the thresholds according to Woods and 
colleagues,28 and cost-effective in 166 countries (92%) 
using GDP (at purchasing power parity) per capita 
thresholds (figure 3). Figure 4 shows how ICER changed 
with vaccine purchase cost by low-income, middle-
income, and high-income regions.

Most of the effect of PCVs is from direct vaccine 
protection, although indirect effects also make an 
important contribution in Asia and Oceania (appendix). 
In North America, however, indirect effects are negative 
(ie, the total population effect is smaller than what would 
be expected based on summing the direct protection in 
each individual without herd protection or serotype 
replacement) because the predicted impact of serotype 
replacement is greater than that of herd effects.

The health and economic benefits of PCVs are 
concentrated among the 71 Gavi-eligible countries, 

because this group accounts for 83% of all lives saved 
(0·330 million [0·161 million to 0·616 million]) and only 
18% ($2·80 billion) of the global investment needed. 
However, expanding PCV introduction among the 
16 eligible countries that have not introduced it as of 
March, 2017, will require more intensive efforts than in 
the past: these countries (including India and Indonesia) 
account for 60 000 deaths (28 000–108 000), but will 
require almost half ($1·38 billion) the total investment 
required for all Gavi-eligible countries.

Vaccination remained cost-effective under all one-way 
changes to key parameters in all regions. The results 
were most sensitive to variation in disease incidence and 
mortality parameters (figure 5A). The median pooled 
cost-effectiveness ratio varied between $487 (290–887) 
and $1090 (614–1950) per DALY averted. When the 
vaccine price was varied by 20%, the ICER changed by 
31% in both directions. When WHO-CHOICE costs for 
health care were used, the ICER increased by 24%. When 
disability weights from GBD 2015 were used, the ICER 
increased by 15%, as these were lower per disease episode 
than the GBD 2000 figures. The results were least 
sensitive to discount rates and ratios of IPD to nIPD, 
with changes of less than 6%.

As a robustness check, we omitted countries without 
existing vaccine programmes or with DTP3 coverage less 
than 70%, assuming that complete elimination of 
vaccine-type S pneumoniae could not be achieved in these 
countries. PCV remained cost-effective, although the 
median ICER increased from $724 to $1090 per DALY 
averted. Similarly, in the scenario with only partial (65%) 
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reduction in serotype carriage, the mean ICER increased 
only from $388 (full elimination) to $432 per DALY 
averted (with residual carriage) in low-income and 
middle-income countries; and globally, the mean ICER 
increased only from $724 (full elimination) to $831 per 
DALY adverted (with residual carriage).

In our sensitivity analysis (figure 5b), 100% of the 
simulations resulted in a positive ICER (ie, quadrant 1), 
indicating that, on the global scale, PCV vaccination is 
associated with greater life expectancy, although it comes 
at a higher cost. PCV vaccination was cost-effective in 
84·7% of simulations when using a willingness-to-pay 
threshold of $1000 per DALY gained, and in 100% of 
simulations using a threshold of $5000 per DALY gained. 
However, using a more stringent willingness-to-pay 
threshold of $500 per DALY gained, PCV vaccination was 
cost-effective in 10·1% of simulations.

Figure 6 shows the effect of PCV vaccination on the 
health-care costs (in 2015 I$) from the provider’s 
perspective. Birth cohort size was assumed to vary based 
on UN population projection, and vaccine purchase costs 
were assumed to vary by countries’ income classification 
(appendix). In the first birth cohort, we included a buffer 
stock of 25%, assumed to remain constant with time. As 
such, the expected cost of PCV vaccination globally is 
$19 billion in the first year, and around $16 billion every 
year thereafter. The global vaccination programme is 
likely to reduce direct cost of health care by $1·95 billion 
(1·46 billion to 2·56 billion) in the first year and about 
$2·69 billion (2·08 billion to 3·46 billion) annually 
thereafter (appendix).

Discussion
We predict that the introduction of PCV13 at DTP3 
coverage levels in 180 countries could save around 
0·4 million lives and avert 13·8 million DALYs annually 

among children younger than 5 years. These values 
include more than 90 000 additional lives saved in 
countries that had yet to introduce PCV as of Dec 1, 2016. 
Globally, PCVs could reduce the burden of 
pneumococcal disease (measured in terms of deaths, 
DALYs, and economic costs) most in the poorest 
regions. In particular, 92% of lives saved and 91% of 
DALYs averted in our simulations were in Africa 
and Asia.

The ICER for PCV introduction is less than GDP per 
capita in almost all regions and countries. The GDP per 
capita threshold has been traditionally used as an indi
cation of cost-effectiveness,31 but has been criticised.32,33 
Using a more stringent threshold estimated by Woods 
and colleagues28 on the basis of the opportunity cost 
of health expenditure, PCV is cost-effective in 143 of 
180 countries. PCV introduction throughout Africa 
requires only 12% of global PCV investments but ac
counts for 69% of the lives saved and 63% of the DALYs 
averted globally. PCV introduction at Advance Market 
Commitment prices offered to Gavi has the potential to 
support elimination of more than 80% of the global 
burden of vaccine-preventable pneumococcal disease, 
with a median ICER of $51·45 per DALY averted.

Our study is the first multi-country model to capture 
the ecological effects of PCV introduction (herd pro
tection and serotype replacement) based on underlying 
serotype-specific rates of pneumococcal carriage. Previous 
economic evaluations have often ignored these effects or 
represented them using simplified assumptions, such as 
representing the indirect effects of PCV10 or PCV13 
using the experience of PCV7 introduction in the USA.7 
Therefore, our model shows the capabilities of an 
integrated ecological–economic model to evaluate the 
relative effect and cost-effectiveness of PCV on a global 
scale. To our knowledge, the only cost-effectiveness 
evaluations of PCV that consider more than a few 
countries were published in 2011 or earlier, and were 
restricted to Gavi-eligible countries alone.9,10

Our analysis made several simplifying assumptions 
because of data and knowledge limitations. The ecological 
model assumed that vaccine coverage and effectiveness 
will be high enough to achieve elimination of vaccine 
serotypes in all schedules and coverage levels. High-
income countries with serotype surveillance, such as the 
USA, the UK, and Australia, have reported near-
elimination of IPD and pneumococcal carriage due to 
vaccine serotypes in most population groups following 
PCV introduction.14 Although some residual vaccine-type 
carriage following vaccination has been observed in 
African settings despite high vaccine coverage, we 
assumed that with such low residual vaccine-type 
carriage rates, our model would still perform better than 
other methods for predicting vaccine effect.

Because public sector vaccine tender prices are 
generally not documented, unless part of pooled 
procurement schemes, we extrapolated vaccine prices 

Figure 6: Global budget impact analysis of PCV vaccination over 10 years
The budget impact analysis shows the effect of PCV vaccination on health-care 
costs (in 2015 I$). Negative values represent net savings in the health-care costs. 
Birth cohort size was assumed to vary based on UN population projection, and 
vaccine purchase costs were assumed to vary by countries’ income classification. 
In the first birth cohort, we included a buffer stock of 25% and assumed it to 
remain constant over time. I$=international dollars. PCV=pneumococcal 
conjugate vaccine.
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from a few settings with publicly available prices (Pan-
American Health Organization Revolving Fund, Gavi, 
and the Vaccines for Children programme in the USA) 
to other countries in the same income group. This 
approach probably overestimates prices for high-income 
countries and underestimates prices in middle-income 
countries with no access to pooled procurement 
mechanisms. It is notable that most countries yet to 
introduce PCV into their routine schedules are middle-
income countries outside Latin America (ie, those with 
no access to pooled procurement), possibly indicating 
that high vaccine prices are a barrier to wider 
introduction. Our analysis provides an indication of 
prices that countries could seek to negotiate for in 
national tenders, although country purchasers are 
usually encouraged to use their own nationally derived 
thresholds for such computations.32

Treatment costs were obtained from global meta-
analyses or from the WHO-CHOICE database because of 
unavailability of cost-of-illness studies in most countries. 
Similarly, lifetime costs of meningitis sequelae, which 
can be substantial (as evidenced by a meta-analysis24 
focused on low-income and middle-income countries), 
were not considered in this analysis because of the 
unavailability of cost-of-illness studies. Therefore, our 
analysis is conservative. However, our deterministic and 
probabilistic sensitivity analyses confirmed that PCV13 
was cost-effective globally across changes in disease 
burden and treatment cost.

Finally, our study focused only on populations younger 
than 5 years. Infant vaccination protects older children 
and adults through herd effects, although post-
introduction data in high-income countries suggest that 
reductions in vaccine-type disease in these groups are 
mitigated by increases in non-vaccine-type disease to a 
greater extent than in young children.34,35 Our ability to 
model these dynamics is limited by the scarcity of data 
on serotype distribution in adult disease; however, the 
population effect of vaccination is likely to be higher 
if adults are included. For this reason, the aggregate 
cost-effectiveness of PCVs is an underestimate. Par
ticularly in settings with a high disease burden among 
older individuals, as in most high-income countries, the 
indirect effect of vaccination on adult pneumococcal 
disease is likely to be significant.36

In conclusion, our results show large benefits of PCV 
use worldwide in terms of lives saved and disability 
averted, and in terms of cost-effectiveness, particularly in 
Africa and Asia. These results provide information for 
decision making in countries that have yet to introduce 
PCVs and countries that still have low coverage of 
existing PCV programmes. We also estimate a large 
financial cost associated with vaccine introduction that is 
only partially mitigated by treatment cost savings, and we 
acknowledge the risk for middle-income countries with 
no access to pooled procurement facing a financial 
barrier because of high vaccine prices. These findings 

call for renewed efforts on vaccine introduction support 
and the continuous pursuit of affordable prices for 
disadvantaged populations.
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