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Abstract——Recent remarkable advances in genome
sequencing have enabled detailed maps of identified
and interpreted genomic variation, dubbed “muta-
nomes.” The availability of thousands of exome/
genome sequencing data has prompted the emergence
of new challenges in the identification of novel drug-
gable targets and therapeutic strategies. Typically,
mutanomes are viewed as one- or two-dimensional.
The three-dimensional protein structural view of
personal mutanomes sheds light on the functional
consequences of clinically actionable mutations revealed
in tumor diagnosis and followed up in personalized
treatments, in a mutanome-informed manner. In this
review, we describe the protein structural landscape of

personal mutanomes and provide expert opinions on
rational strategies for more streamlined oncological
drug discovery and molecularly targeted therapies
for each individual and each tumor. We provide the
structural mechanism of orthosteric versus allosteric
drugs at the atom-level via targeting specific somatic
alterations for combating drug resistance and the
“undruggable” challenges in solid and hematologic
neoplasias. We discuss computational biophysics
strategies for innovative mutanome-informed cancer
immunotherapies and combination immunotherapies.
Finally, we highlight a personalmutanome infrastructure
for the emerging development of personalized cancer
medicine using a breast cancer case study.

I. Introduction: Personal Cancer
Mutanome Defined

In 2004, the complete sequence of the human
genome (NCBI Build 35) containing approximately
2.85 billion nucleotides was reported at an estimated
cost of $2.7 billion (International Human Genome
Sequencing Consortium, 2004). Owing to remarkable
advances of next-generation sequencing technologies,
one human genome cannowbe sequenced at an estimated
cost of less than$1000 (Hayden, 2014; Telenti et al., 2016).
Multi-center cancer genomeprojects (Fig. 1A), such asThe
Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC), have significantly improved
our understanding of the landscape of somatic alterations
by identifying frequently mutated protein-coding genes
(Garraway and Lander, 2013; Vogelstein et al., 2013;
Martincorena and Campbell, 2015). However, sequenc-
ing data from thousands of exome and genomes have
now led to newly emerging challenges in the field of
oncology, such as how to translate this massive genomic
data into recommendations for patient care, how to
match the right drugs at the right dose to the right
patients rapidly, and how to increase the coverage of
molecularly targeted agents that can specifically target
actionable mutations. A recent Molecular Analysis for
Therapy Choice (NCI-MATCH) trial funded by the US
National Cancer Institute suggests that only 2.5% of the
patients could bematchedwith a targeted therapy based on
a cohort of 795 enrolled patients with relapsed solid tumors
and lymphoma as of May 2016 (http://ecog-acrin.org/
nci-match-eay131/interim-analysis). These are com-
pounded by the increase in the number of reported

loss-of-function mutations in tumor suppressor genes
(e.g., TP53 and PTEN) and gain-of-function mutations
in “undruggable” (Table 1) master regulators or oncogenes
(e.g.,myelocytomatosis andKRASproto-oncogene,GTPase
[KRAS]), underscoring an urgent need to identify new
druggable pathways and therapeutic anticancer agents.

Structural genomics technologies provide an increasing
number of high-quality protein three-dimensional struc-
tures. The Structural Genomics Consortium successfully
demonstrated the integration of the three-dimensional
structures of proteins and genomic data for innovative
therapeutic strategies for complex diseases, including
cancer (http://www.thesgc.org/). The great numbers of
deciphered human genomes and innovative computa-
tional tools have enabled progress in rapid identifica-
tion of genetic variation in individual cancer samples.

A personal mutanome (Table 1) offers unique oppor-
tunities for understanding the functional consequences
of somatic alterations in a single patient and for
developing personalized cancer treatment. In this arti-
cle, we consider a personal mutanome, an emerging
personalized medicine infrastructure, for accelerating
the development of precision oncology. We will discuss
four potential points of clinical utility from deriving
personal mutanomes:

1. Precision Prevention and Diagnostics: From
Sequence to Consequence of Personal Mutanome
in Cancer. We illustrate the protein structural
landscape of druggable cancer proteomes with
well-annotated hotspot mutations in cancer, which
highlights the successes of the application of
genomics in personalized cancer medicine.

ABBREVIATIONS: ABL1, abelson murine leukemia viral oncogene homolog 1; AKT1, AKT serine/threonine kinase 1; AML, acute myeloid
leukemia; BCR, breakpoint cluster region protein; BRAF, proto-oncogene B-Raf; CML, chronic myeloid leukemia; 3D, three-dimensional;
EGFR, epidermal growth factor receptor; ER(a), estrogen receptor (alpha); ERCC1, excision repair cross-complementation group 1; FDA, Food
and Drug Administration; HER2, human epidermal growth factor receptor 2; IDH1/IDH2, isocitrate dehydrogenases 1/2; KRAS, KRAS proto-
oncogene, GTPase; MHC-I, major histocompatibility complex class I; NSCLC, non-small cell lung cancer; PD-1/PD-L1, programmed cell death
protein 1/programmed death-ligand 1; PDB, Protein Data Bank; PDEd, phosphodiesterase-d; PI3K, phosphatidylinositol 3-kinase; PIK3CA,
phosphoinositide-3-kinase, catalytic, alpha polypeptide; PTEN, phosphatase and tensin homolog; SF3B1, splicing factor 3B, subunit 1; TCGA,
The Cancer Genome Atlas; U2AF1, U2 small nuclear RNA auxiliary factor 1; YAP1, yes-associated protein 1.
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2. Personalized Oncology Drug Discovery. We dis-
cuss the protein structural mechanism of orthos-
teric versus allosteric drugs targeting specific
somatic alterations (e.g., KRAS-G12C, EGFR-
C797C, and HER2-T798I) for overcoming drug
resistance and undruggable challenges in various
solid and hematologic malignancies, which inform
the usefulness of genomic technologies in person-
alized oncology drug discovery and development.

3. Personalized Immunotherapy. We describe com-
putational biophysics approaches that enable
development of new neoantigen-focused cancer im-
munotherapies or combination immunotherapies.

4. Precision Cancer Medicine and Patient Care. We
highlight a personal mutanome infrastructure for
patient stratification in accelerating personalized
treatment using breast cancer as a case study.

A. Coding Versus Non-coding Personal Mutanomes
in Cancer

Although the protein-coding regions of the human
genome accounts for;2% of the total sequence, variants
in protein-coding regions have received the most
attention. For instance, whole-exome sequencing is
well regarded as a reliable and cost-effective approach
to explore somatic mutation profiles in protein-coding

Fig. 1. Diagram illustrating development of structural genomics and cancer genomes. (A) Number of tumor genomes sequenced by The Cancer
Genome Atlas across 26 major cancer types from Genomic Data Commons Data Portal (https://portal.gdc.cancer.gov). (B) Number of PDB structures of
human proteins from 1988 to 2017 from PDB database (https://www.rcsb.org). (C) Genotyping by next-generation sequence technology. (D) Regulatory
non-coding mutations in cancer. (E) Protein structural view of coding mutations in cancer.
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genes. Several national and international genome proj-
ects have identified numerous coding driver mutations
on several highly mutated genes, such as TP53, RAS
subfamily, and the ERBB family, which promote tumor
initiationandprogression.With the remarkableadvancesof
whole-genome sequencing technologies, many studies have
demonstrated the importance of non-coding variants in
cancer (Weinhold et al., 2014; Califano and Alvarez, 2017;
Zhang et al., 2018). Mechanistically, recurrent non-coding
mutations commonly can create new binding motifs for
transcription factors and lead to dysregulation of gene
regulatory networks (Fig. 1D). For example, several earlier
studies found frequent promoter mutations on telomerase
reverse transcriptase and succinate dehydrogenase com-
plex subunit D in melanoma and pancreatic ductal adeno-
carcinomaand thesemutations are associatedwith reduced
gene expression and poor survival rates (Weinhold et al.,
2014; Feigin et al., 2017). Here, we focus on structural
mechanisms (Fig. 1E) of protein-coding somatic mutations
that are involved in tumor initiation, disease progression,
and drug responses. The functional machinery of non-
coding variants in cancer can be found in several recent
reviews (Albert and Kruglyak, 2015; Khurana et al., 2016).

B. Personal Mutanomes in Modern Oncology
Drug Discovery

Over the last several decades, the application of
genomics to inform drug discovery has generated some

successes (Dugger et al., 2018). Getting a drug to the
market involves four successfully clinical trial phases
(Phases I–IV). The first (Phase I) focuses on drug safety
in a small group of patients. The second (Phase II)
assesses drug safety and efficacy in a larger group. The
third (Phase III), prior to US Food and Drug Adminis-
tration (FDA) approval, measures efficacy in patient
versus placebo populations. Phase IV trials are com-
monly performed after approval to re-examine safety
and efficacy in a larger population as well as potential
side effects via postmarketing surveillance. Tradition-
ally, clinical trials survey only few measures from
thousands of participants by evaluating the average
responses to therapy, which results in high failure rate
and soaring cost (Schork, 2015). Figure 2 shows the
lowest success rate of traditional drug discovery in
oncology compared with other diseases from Phase I to
approval. Biomarkers that can be determined in the
context of disease diagnosis and clinical intervention
have been integrated into the drug discovery protocol
and the design of the clinical trials. Recent data show
that biomarker-derived personalized clinical trials achieve
higher success rate (25.9%) in oncology comparedwith other
therapeutic areas (8.4% success rate shown in Fig. 2B).
Table 2 summarizes the US FDA-approved person-
alized medications for highly targeted therapies in
cancer from 2012 to 2017. These approved medications
maximize clinical efficacy while minimizing side effects.

TABLE 1
Definitions of some key words

Key Word Definitions

Allosteric site A regulatory site on the protein’s surface is distinct from
the substrate, ligand, or partner binding sites
(Nussinov and Tsai, 2015).

Clinically actionable mutation A mutation alters clinical responses (e.g., survival or
drug responses) in patients harboring this mutation.

Driver mutation A mutation directly or indirectly promotes a selective
growth or survival to the cell in which it occurs.

Edgetic alleles Genetic alterations (mutations) alter specific
macromolecular interactions (“edges”) rather than
affecting folding and stability of proteins (Sahni et al.,
2015). Edgetic mutations include “node” removal by
truncating mutations (Zhong et al., 2009) and
in-frame edgetic mutations that disrupt interactions
between proteins, DNA, or RNA.

Network-attacking mutations Mutations alter signaling networks via different types
of network perturbations: signaling network
dynamics, network structure, and dysregulation
of phosphorylation sites (Creixell et al., 2015).

Orthosteric site The primary, unmodulated binding site (on a receptor)
of a ligand, such as adenosine triphosphate (ATP)
binding site of a kinase.

Personal mutanome A personal mutanome is a portfolio of DNA sequencing
data (e.g., whole exome or whole genome), protein
structural genomics, and interpretation of mutational
landscape of an individual patient.

Personalized medication Interventions or/and products are tailored to the
individual patients based on their predicted response
or risk (e.g., particularly genomic or molecular
profiles as clinically actionable biomarkers) of disease.

Spliceosome mutations Hotspot somatic mutations affect genes encoding RNA
splicing factors (Dvinge et al., 2016).

Undruggable A protein could not be targeted pharmacologically. More
appropriate terms might be “difficult to drug” or
“yet to be drugged.”
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Fig. 2. Survey of personalized oncology drug discovery. (A) Oncology vs. non-oncology phase transition success rate. (B) Biomarker-based phase
transition success rates. (C) Success rate of personalized medicines approved by FDA from 2014 to 2017. BLA, Biologic License Application; NDA, New
Drug Application. Data collected from BIO Industry analysis (https://www.bio.org/bio-industry-analysis-published-reports) and FDA website (https://
blogs.fda.gov/fdavoice/index.php/2015/03/fda-continues-to-lead-in-precision-medicine).

Personal Mutanomes Meet Precision Oncology 5

https://www.bio.org/bio-industry-analysis-published-reports
https://blogs.fda.gov/fdavoice/index.php/2015/03/fda-continues-to-lead-in-precision-medicine
https://blogs.fda.gov/fdavoice/index.php/2015/03/fda-continues-to-lead-in-precision-medicine


Half of the FDA-approved oncology drugs in 2016
(Fig. 2C) are personalized medications (Table 1), in-
dicating the great promise of personalized oncology
drug discovery.

C. Personal Mutanomes in Molecularly
Targeted Therapies

In 2003, Francis S. Collins, Director of the National
Institutes of Health, penned the concept of personalized
medicine: “The sequencing of the human genome, along
with other recent and expected achievements in geno-
mics, provides an unparalleled opportunity to advance
our understanding of the role of genetic factors in human
health and disease, to allow more precise definition of the
non-genetic factors involved, and to apply this insight
rapidly to the prevention, diagnosis and treatment of
disease (Collins et al., 2003).” In January of 2015, US
President Barack Obama announced the Precision Med-
icine Initiative (Collins and Varmus, 2015). The basic
idea of precision oncology is to tailor drugs based on the
genomic or molecular profile of the tested tumor, such as
epidermal growth factor receptor (EGFR)-T790M in
non-small cell lung cancer (NSCLC) (Pao and Hutch-
inson, 2012), BRAF-V600E in melanoma (Sun et al.,
2014), HER2 amplification in breast cancer (Arteaga

and Engelman, 2014), BCR-ABL fusion oncoprotein in
chronic myeloid leukemia (CML), and Philadelphia
chromosome-positive acute lymphoblastic leukemia
(Shet et al., 2002) (Table 2). Generally speaking, there
are two types of small molecule agents marketed for
targeted cancer therapies at protein structural perspec-
tives: orthosteric and allosteric. A large number of highly
specific small molecule agents have been approved for
molecularly targeted therapies to orthosteric ATP-binding
sites. For example, Gleevec (Imatinib) is the first FDA-
approved drug for CML patients with tumors displaying
BCR-ABL fusion, with more than 80% of the patients
treated by Imatinib surviving for over 10 years (Kalmanti
et al., 2015). Despite promising clinical evidence against
mutated tumors in the early months, acquired resistance
arises rapidly owing to “gatekeeper” mutations in the
ATP-binding sites, such as ABL1-T315I (Pemovska
et al., 2015), EGFR-T790M (Ke and Wu, 2016), and
HER2-T798I/T798M (Rexer et al., 2013; Hanker et al.,
2017). Compared with orthosteric drugs with off-target
toxicity resulting from low specificity, allosteric drugs are
promising candidates for targeted therapieswith ahigher
specificity (Nussinov and Tsai, 2015; Moslehi, 2016).
Recent studies of allosteric drugs pointed to promising
preclinical evidence of activity against tumor cells with

TABLE 2
Lists of US FDA-approved personalized oncological medications during 2012–2017

Data comes from www.fda.gov/drugs.

Drug Name Company Active Ingredient Approval Date Indication Biomarkers

Verzenio Eli Lilly Abemaciclib 09/28/2017 Breast cancer HR+ and HER2-
Idhifa Celgene Enasidenib 08/01/2017 Acute myeloid leukemia (AML) IDH2 mutation
Nerlynx Puma Biotechnology Neratinib 07/17/2017 Breast cancer HER2-amplified
Rydapt Novartis Midostaurin 04/28/2017 AML FLT3+
Alunbrig Takeda Brigatinib 04/28/2017 Non-small cell lung cancer (NSCLC) ALK+
Zejula Tesaro Niraparib 03/27/2017 Recurrent epithelial ovarian, fallopian tube,

or primary peritoneal cancer
BRCA1, BRCA2

Kisqali Novartis Ribociclib 03/14/2017 Metastatic breast cancer HR+, HER2-
Imfinzi AstraZeneca Durvalumab 03/01/2017 Metastatic urothelial carcinoma PD-L1
Rubraca Clovis Oncology Rucaparib 12/19/2016 Ovarian cancer BRCA1, BRCA2
Lartruvo Eli Lilly Olaratumab 10/19/2016 Soft tissue sarcoma PDGFRA+
Tecentriq Genentech Atezolizumab 5/18/2016 Bladder cancer PD-L1
Venclexta AbbVie and Genentech Venetoclax 4/11/2016 Chronic lymphocytic leukemia (CML) 17p-deleption
Alecensa Roche and Genentech Alectinib 12/11/2015 Metastatic NSCLC ALK
Cotellic Genentech Cobimetinib 11/10/2015 Metastatic melanoma BRAF-V600E/K
Unituxin United Therapeutics Dinutuximab 3/10/2015 Neuroblastoma MYCN-amplification
Tagrisso AstraZeneca Osimertinib 11/13/2015 NSCLC EGFR-T790M
Ibrance Pfizer Palbociclib 2/3/2015 Metastatic breast cancer ER+/HR+, HER2-
Opdivo Bristol-Myers Squibb Nivolumab 12/22/2014 Metastatic melanoma BRAF-V600
Lynparza AstraZeneca Olaparib 12/19/2014 Metastatic ovarian cancer BRCA1, BRCA2
Keytruda Merck Pembrolizumab 9/4/2014 Metastatic melanoma PD-L1 positive
Zykadia Novartis Ceritinib 4/29/2014 Metastatic NSCLC ALK+
Imbruvica Janssen Ibrutinib 11/13/2013 Mantle cell lymphoma (MCL) 17p-deleption
Gazyva Genentech Obinutuzumab 11/1/2013 Chronic lymphocytic leukemia (CLL) MS4A1 (CD20+)
Gilotrif Boehringer Ingelheim Afatinib 7/12/2013 Metastatic NSCLC EGFR
Tafinlar GlaxoSmithKline Dabrafenib 5/29/2013 Metastatic melanoma BRAF-V600E/K
Mekinist GlaxoSmithKline Trametinib 5/29/2013 Metastatic melanoma BRAF-V600E/K
Kadcyla Genentech Ado-trastuzumab

emtansine
2/22/2013 Metastatic breast cancer HER2+

Iclusig Ariad Pharmaceuticals Ponatinib 12/14/2012 CML BCR-ABL1, T315I
Cometriq Exelixis Cabozantinib 11/29/2012 Medullary thyroid cancer RET
Synribo Teva Pharmaceutical Omacetaxine

mepesuccinate
10/26/2012 CML BCR-ABL1

Bosulif Pfizer Bosutinib 9/4/2012 CML BCR-ABL1
Perjeta Genentech Pertuzumab 6/8/2012 Metastatic breast cancer HER2+

ALK, anaplastic lymphoma kinase; BRCA, breast cancer; FLT3, fms like tyrosine kinase 3; HR+, hormone receptor-positive; MS4A1, membrane spanning 4-domains A1;
MYCN, N-myc proto-oncogene protein; PDGFRA, platelet-derived growth factor receptor A; RET, ret proto-oncogene.
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newly acquired somatic mutations, such as KRAS-G12C
(Ostrem et al., 2013), EGFR-C797C (Jia et al., 2016),
HER2-T798I (Hanker et al., 2017), andBCR-ABL1 fusion
(Wylie et al., 2017). Here we describe structural mecha-
nisms of allosteric drugs at the atomic level for combating
the drug resistance and off-target side effects of tradi-
tional orthosteric agents in the individuals.

D. Personal Mutanomes in Cancer Immunotherapy

In January of 2016, Obama announced the Cancer
Moonshot 2020 initiative, a nationwide effort to accel-
erate the testing of immunotherapy drug combination to
fight cancer by exploiting the promise of precision oncol-
ogy. Immunotherapies (e.g., immune checkpoint inhibi-
tors), which turn the body’s immune system against
cancerous cells, boost clinical outcomes in several cancers,
such as advanced melanoma (Ledford, 2016). Ipilimumab
is the first FDA-approved anti-cytotoxic T-lymphocyte-
associated antigen 4 antibody and nivolumab is the first
FDA-approved anti-programmed death-1 (PD-1) anti-
body (Mahoney et al., 2015). Mechanistically, cytotoxic
T-lymphocyte-associated antigen 4 or PD-1 inhibitors
do not activate the immune systems to destroy tumor cells;
rather, they turn off inhibitorypathways that block effective
antitumor T-cell responses (e.g., cytotoxic T lymphocytes)
(Mahoney et al., 2015). A recent clinical study showed that
ipilimumab and nivolumab dramatically improved the
response rates in patients with advanced melanoma from
19% with ipilimumab alone to 58% with a combination
(Larkin et al., 2015). However, the overall response rate of
immunotherapy alone is highly variable across different
cancer types (Sharma and Allison, 2015). Furthermore, the
potential immune-relatedadverse events (e.g., autoimmune
lethal cardiotoxicity), especially with combination immuno-
therapies, have discouraged some investors and cancer
immunologists in the cancer immunotherapy community
(Ledford, 2016; Cheng and Loscalzo, 2017).
More recently, cancer vaccines have focused on

targeting neoantigens, which are new peptides derived
from tumor-specific mutations, not found in normal
tissues. Compared with traditional tumor-associated
self-antigens, neoantigen-focused immunotherapies
induce lower toxicity than autoimmune reactions in
normal cells. Two recent studies suggested the poten-
tial clinical benefits of personalized neoantigen vaccine
in melanoma patients by exploiting the personal muta-
nome (Ott et al., 2017; Sahin et al., 2017). The central
question in neoantigen identification is which mutant
proteins are processed into 8- to 11-residue peptides by
the proteasome and bind to the major histocompatibil-
ity complex class I (MHC-I) for recognition by CD8+
T-cells (Fig. 3). Computational biophysics strategies
have been reported for identification of new neoantigens,
focusing on which peptides bind to the MHC-I molecules
(Hackl et al., 2016). Current neoepitope prediction ap-
proaches generate a vast number of predicted candidates,
of which only a short list is ever found to be immunogenic

in patients. Additional research is required to address
these challenges, such as that by the Tumor Neoantigen
Selection Alliance (Nature Publishing Group, 2017).
Recent studies have provided proof-of-principle for com-
putational biophysics approaches, such as neoepitope-
focused vaccine design in infectious diseases (Correia
et al., 2014). Below, we will briefly discuss recent compu-
tational biophysics approaches to develop neoantigen-
focused cancer immunotherapies and combination
immunotherapies. Detailed description of computational
tools for cancer immunotherapies can be found in a
recent review (Hackl et al., 2016).

II. Computational Resources and Tools for
Personal Mutanomes

Insights into how genes, proteins, and their networks
give rise to normal, precancerous, and cancer cellular
phenotypes requires large, experimentally derived data
sets. Computational investigations are essential, and
increasingly, there is a need for collection, storage, and
display of the data in robust databases. To understand
better the biologic and functional consequences of
personal mutanomes, there is a pressing need for
computational identification and interpretation of how
specific mutations affect tumorigenesis and drug re-
sponses. Testable hypotheses derived from these com-
putational models and refinement of models based on
new experimental data are essential for development of
personalized cancer medicine.

A. Bioinformatics Resources

In 2005, TCGA was launched as the major national
cancer genome project for accelerating a comprehensive
understanding of the genetic basis and molecular mech-
anism of cancers, with multidimensional data of.11,000
patients (whole exomes/genomes) across 33 cancer types
released by the end of 2016 (Fig. 1A) (Tomczak et al.,
2015). In 2008, ICGC launched the biggest international
cancer genome project with 88 committed projects to
generate a comprehensive catalog of genomic abnor-
malities of over 25,000 cancer genomes across 50 cancer
types/subtypes (Milius et al., 2014). The Catalogue Of
Somatic Mutations In Cancer (COSMIC) is the most
comprehensive database of somatic mutations in cancer.
As of September 2017 (v82), COSMIC contains 4,835,986
coding mutations, 18,809 fusions, and 1,180,789 copy
number variants by curating cancer genomics data
from 1,326,347 (Forbes et al., 2015; Nakagawa et al.,
2015). The cBioPortal was developed by the Memorial
Sloan-Kettering Cancer Center to systematically visu-
alize and analyze the cancer genome landscape. As of
December 2017, cBioPortal curated genomic data for
over 30,000 samples from 164 cancer studies (Gao et al.,
2013). The PDB is the global archive for experimentally
determined, atomic-level three-dimensional structures
of biologic macromolecules (Rose et al., 2017). As of
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September 2017, the PDB contains 133,759 proteins,
DNA, or RNA structures, including 37,284 from Homo
sapiens (Fig. 1B). A detailed description of the bio-
informatics resources discussed here is summarized
in Table 3.

B. Computational Tools for Personal Mutanomes

1. Mutation Clustering on Protein Structures.
CLUMPS (clustering of mutations in protein struc-
tures) is a statistical method that detects an overall
enrichment of somatic mutant residues that are spatially
close to each other in the protein three-dimensional (3D)
structure (Kamburov et al., 2015). Applying CLUMPS to
4742 tumors having TCGA whole-exome sequencing

data and human 3D protein structures in the PDB
identified well-known onco- and tumor-suppressor pro-
teins harboring significant 3D clustering of missense
somatic mutations. Several similar computational tools
were further developed, such as HotSpot3D, SGDriver,
and AlloDriver (Table 3). HotSpot3D extends the 3D
clustering hypothesis to detect mutation-mutation and
mutation-drug clusters in protein structures and corre-
lates these clusters with known or potentially interact-
ing functional variants, domains, and proteins.HotSpot3D
offers a useful tool to identify druggable mutations
enriched in ligand-protein binding pockets. SGDriver
analysis of 746,631 missense mutations observed in
approximately 5000 tumor-normal pairs across 16 cancer

Fig. 3. A diagram illustrating computational approaches for development of personalized immunotherapies. (A) Collection of patient samples (both
tumor samples and matched samples). (B) An integrated approach for identification of actionable biomarkers using innovative genomics approaches,
proteomics, and computational biophysics. (C and D) Guiding the application of personalized immunotherapies or combination immunotherapies that
highly specifically target neoantigens derived from tumor somatic mutations. CTLA-4, cytotoxic T-lymphocyte-associated protein 4; MHC, major
histocompatibility complex; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; TCR, T-cell receptor.
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types from TCGA, reveals that 13% of the patients might
benefit from current targeted therapies (Zhao et al.,
2016). This proportion would increase to 31% using drug
repositioning strategies (Cheng et al., 2012, 2016, 2018;
Jiang et al., 2018), offering a testable strategy toprioritize
druggable mutations for personalized treatments in
cancer. Finally, AlloDriver (Shen et al., 2017) offers a
powerful tool for detection of druggable missense so-
matic mutations clustered on allosteric sites (Table 1).
2. Mutation Clustering on the Human Interactome

Network. Genes and proteins do not function indepen-
dently. They participate in complex, interconnected
networks and pathways in human cells. Perturbations
to those networks may promote cells to new disease
status, for example, tumorigenesis (Cheng et al., 2014).
Understanding how somatic mutations perturb these
networks is still missing. A new conceptual paradigm
that incorporates both innovative experimental and
computational strategies, such as edgetic mutations
(Sahni et al., 2015) or “network-attacking” mutations
(Cheng et al., 2014; Creixell et al., 2015) (Table 1), may
allow better assessment of the intrinsic complexities of
cancer cells at their network perturbation level. A pan-
cancer network analysis reveals a positive correlation
of protein connectivity in the human protein-protein

interactome with the number of nonsynonymous
somatic mutations, whereas a weaker or insignificant
correlation exists with the number of synonymous
somatic mutations, suggesting conceptual network-
attacking perturbation by somatic mutations (Cheng
et al., 2014). The phosphorylation-dependent signal-
ing network plays a crucial role in tumorigenesis and
drug responses in cancer. Phosphorylation sites have
been clustered to examine the kinome-wide landscape
of pharmacogenomic interactions. KNMPx (kinome-
wide network module for cancer pharmacogenomics)
offers a powerful tool for identifying oncogenic alter-
ations by rewiring phosphorylation-related signaling
networks that involve patient survival rate and drug
sensitivity/resistance (Zhao et al., 2017). ReKINect de-
tects network-attacking mutations in phosphorylation-
based signaling networks (Creixell et al., 2015). By
analyzing the exomes and quantifying (phospho-)-
proteomes of five ovarian cancer cell lines and of the
global cancer genome repository, ReKINect identifies
several network-attacking mutations that encode spec-
ificity switches analogous to de novo appearances of
kinases within the kinome (Creixell et al., 2015).

Comprehensive investigation of the functional con-
sequences of somatic alterations on the structurally

TABLE 3
Lists of computational tools and bioinformatics resources for analysis of personal mutanomes in cancer

Names Description Website Refs

Cancer genomics resources
TCGA and GDC The Cancer Genome Atlas and Genomic Data

Commons Data Portal
https://portal.gdc.cancer.gov Chin et al. (2011)

ICGC The International Cancer Genome Consortium https://icgc.org Milius et al. (2014)
CBioPortal Providing visualization, analysis and download of

large-scale cancer genomics data sets.
http://www.cbioportal.org Gao et al. (2013)

COSMIC Comprehensive resources for curating somatic
mutations

http://cancer.sanger.ac.uk/cosmic Forbes et al. (2015)

Bioinformatics resources for protein structures
PDB The PDB is the global archive for experimentally

determined, atomic-level three-dimensional
structures of proteins, DNA, and RNA.

https://www.rcsb.org/ Rose et al. (2017)

Interactome3D Manually curated protein-protein interactions with
known three-dimensional structure information.

http://interactome3d.irbbarcelona.org Mosca et al. (2013)

dSysMap dSysMap is a useful tool to study the network
perturbations by genetic variants

http://dsysmap.irbbarcelona.org/ Mosca et al. (2015)

Interactome INSIDER An integrative structural and genomic resource for
functional exploration of human disease mutations
at multiple-scale, proteome-wide human interactome

http://interactomeinsider.yulab.org Meyer et al. (2018)

Mutational clustering tools on protein structures
AlloDriver Detect druggable mutations via dysregulation of

protein allosteric functions.
NA Shen et al. (2017)

Cancer3D A useful tool to explore potential cancer drivers or
pharmacogenomic biomarkers using protein
structure information.

http://cancer3d.org/ Porta-Pardo et al. (2015)

CLUMPS Assess the significance of mutational clustering in a
given 3D structure.

NA Kamburov et al. (2015)

HotSpot3D Detect mutation–mutation and mutation–drug clusters
using three-dimensional protein structures.

NA Niu et al. (2016)

KNMPx Detect a kinome-wide pharmacogenomic biomarkers
via rewiring phosphorylation-related signaling
networks and drug sensitivity/resistance

NA Zhao et al. (2017)

ReKINect Detect network-attacking mutations in
phosphorylation-based signaling networks.

http://rekinect.science/ Creixell et al. (2015)

SGDriver A structural genomics-based method that detects
mutation clustering on protein–ligand binding site
residues via a Bayes inference statistical
framework.

NA Zhao et al. (2016)
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resolved human protein-protein interactome has of-
fered unexpected opportunities for better understand-
ing the molecular mechanism and the genetic basis of
tumorigenesis and tumor progression (Wang et al.,
2012). Interactome3D is a comprehensive resource for
structural annotation and modeling of the protein-
protein interactions in human cells, offering a useful
tool for exploring the functional consequences of so-
matic mutations on the 3D human interactome (Mosca
et al., 2013). The dSysMap developed by the same group
is a useful tool to study network perturbations by
disease mutations, including somatic mutations in
cancer (Mosca et al., 2015). However, there are only
;4000 resolved structural, human protein-protein inter-
actions, limiting global investigation of cellular network
perturbations on the proteome scale. Interactome
INSIDER is a comprehensive resource for the human
protein-protein interactome with well-annotated inter-
action interface information, including both structur-
ally resolved and large-scale computationally predicted
protein-protein interactions using an ensemble machine-
learning algorithm (Meyer et al., 2018). Integration of
high-throughput experimental assays and computational
strategies represent promising strategies for studies of
the functional consequences of personal mutanomes
from the human protein-protein interactome network
prospective. However, understanding biologic networks,
pathways, and broadly molecular systems will require
dynamic information at multi-dimensional levels, in-
cluding cells, tissues, organs, and organisms, which are
missing in current experimental and computational ap-
proaches. Development of new experimental and compu-
tational techniques that allow in vivo, real-time,
cell/tissue-specific measurements of protein or gene ex-
pression, localization, modification, and kinetics are
urgently needed.
3. Mutation Clustering on Spliceosome. Recent ad-

vances in DNA-seq and RNA-seq data analyses have
suggested that hotspot somatic mutations affect genes
encoding RNA splicing factors, dubbed “spliceosomal
mutations” (Table 1) (Dvinge et al., 2016). Several
commonly mutated spliceosomal proteins have been
involved in solid and hematologic tumors, such as U2
small nuclear RNA auxiliary factor 1 (U2AF1) (Brooks
et al., 2014) and splicing factor 3B, subunit 1 (SF3B1)
(Alsafadi et al., 2016; Wang et al., 2016). For example, a
pan-cancer analysis has identified splicing changes
associated with U2AF1-S34F/Y mutations in lung ade-
nocarcinoma and acute myeloid leukemia (AML). Wang
and colleagues examinedRNA-seqdata from37patients
with chronic lymphocytic leukemia and found that SF3B1
mutations increased the telomerase activity, Notch sig-
naling, and DNA damage, by promoting alternative 39
splice sites involved in leukemogenesis (Wang et al.,
2016). RNA-seq analysis revealed that SF3B1-R625/
K666 mutations affected alternative splicing by promot-
ing alternative branchpoint usage in uveal melanomas

(Alsafadi et al., 2016). Although cancer-associated
spliceosomal mutations have been recognized, identifi-
cation and prioritization among hundreds of down-
stream mis-spliced isoforms, as well as validation and
interpretation of the functional role of specific isoforms
in cancer are challenging (Dvinge et al., 2016; Yang
et al., 2016). For example, KRas4A and KRas4B, two
splice variants of KRAS, play essential roles in cancer
and other diseases (Nussinov et al., 2016; Cheng and
Nussinov, 2018). However, comparison of protein se-
quences among HRas, NRas, KRas4A, and KRas4B
show that the catalytic domains (residues 1–166) are
almost identical, indicating the difficult task of de-
termination of isoform-specific functions (Nussinov
et al., 2016, 2018). A recent integrative analysis of
reverse-transcription polymerase chain reaction assay
and splice variant-specific antibodies has shown that
among four Ras proteins, KRas4A is unique in possess-
ing a dual membrane-targeting motif that could in-
dependently deliver KRas4A to the plasma membrane
(Tsai et al., 2015). Analysis of all-atom molecular
dynamics simulations (total 5.8 ms) shows a mecha-
nism of unique orientation at the membrane for KRas4A
compared with KRas4B (Li and Buck, 2017). Specifically,
the electrostatic interaction between the protein’s
charged residues and anionic lipids determines the
unique KRas4A orientations, consistent with previous
experimental observation (Tsai et al., 2015).

Although to date, approaches targeting KRAS have
failed, specifically targeting K-Ras4A might play a signif-
icant role in KRAS-driven tumors (Tsai et al., 2015).
However, experimental measurements of the expression
of different protein isoforms in cancer are challenging. The
excision repair cross-complementation group 1 (ERCC1)
proteinwith four isoforms by alternative splicing has been
demonstrated a potential prognostic biomarker of cancer
patient survival and treatment efficacy in various studies,
including genomic, transcriptional, and protein levels
(Friboulet et al., 2013). However, a recent immunohis-
tochemical analysis using currently available ERCC1
antibodies cannot detect unique functional ERCC1 iso-
form, limiting therapeutic decision making in clinics
(Friboulet et al., 2013). Antibodies can directly inhibit
RAS function in cells, and initial results with monoclo-
nal antibody inhibition are promising (Spencer-Smith
and O’Bryan, 2017). For example, monoclonal antibody
Y13-259 against oncogenic HRAS was first microin-
jected into NIH-3T3 cells to inhibit HRAS-driven pro-
liferation and oncogenic transformation by binding to
the switch 2 region (residues 60–76), blocking RAF
interaction. Problems posed by the low solubility of
the scFv fragment that resulted in aggregation and
the failure of the antibodies to readily cross the cell
membrane were subsequently resolved, suggesting that
monoclonal antibodies are a viable potential option to
block RAS signaling. Monoclonal antibody against a
synthetic peptide (anti-p21Ser) related to KRAS (G12S)
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bound to the nucleotide-free RAS state and inhibited
GTP binding, which suggests that the RAS protein
picomolar affinity for the nucleotide may not preclude
pharmacological targeting. However, whereas normally
the GTP-bound form is the active RAS state, nucleotide-
free HRAS activates PI3KC2b (Wong et al., 2012),
indicating targeting nucleotide-free HRAS may fail
to negatively regulate PI3KC2b activation by HRAS
(Spencer-Smith and O’Bryan, 2017).
Immunohistochemistry studies with the SP174 anti-

body were developed to identify Q61R-mutant NRAS as
an alternative to genetic testing in melanoma. Two
hundred ninety-two malignant melanomas were evalu-
ated, with 29 (10%) presenting positive immunoreac-
tivity. Sequencing revealed a c.182A.G substitution
(resulting in Q61R mutation) in NRAS in 22 tumors as
well as in HRAS and KRAS. Other NRAS mutations or
wild type immunoreacted with the SP174 antibody,
suggesting selective specificity to this mutation but
cross-reactivity with other RAS isoforms (Turchini
et al., 2017; Felisiak-Goląbek et al., 2018). Thus, although
the antibody was 100% (14/14) sensitive and specific
(83/83) for NRASQ61Rmutation (Massi et al., 2015), its
non-selective isoform recognition emphasizes the chal-
lenges facing antibody development.

III. Personal Mutanomes for Accelerating
Modern Oncology Drug Development

A. Druggable Proteome Informed by
Somatic Mutations

Recent advances in protein structural genomics ap-
proaches and computational strategies have provided
the detailed structural consequences of somatic alterations
through systematic analysis of thepositional distributionof
protein-altered somatic mutations (Table 3) (Vuong et al.,
2014; Kamburov et al., 2015; Araya et al., 2016; Niu et al.,
2016; Zhao et al., 2016; Shen et al., 2017). Making the
connection between the reams of data coming out of
protein structures and sequencing laboratories and the
individual cancer patient has sparked excitement for
personalized cancer medicine. Here we illustrate the
protein structural landscape of the druggable pro-
teome in cancer for 13 selected highlymutated proteins
with well-annotated hotspot somatic mutations across
various cancer types (Fig. 4).
1. RAS Pathway. More than 30% of all human

cancers are driven by mutations of the RAS family of
genes with three members: HRAS, KRAS, and NRAS
(Nussinov et al., 2016). Mutations in KRAS are esti-
mated to drive over 95% of all pancreatic cancers and
45% of colorectal cancers. The vast majorities of KRAS
mutations are recurrent “hot-spot” driver mutations at
positions 12, 13, and 61. For example, G12D is the most
common KRAS mutation and is estimated to occur in
over 50,000 new cases of cancer in the United States
every year. Worldwide efforts specifically target mutant

RAS genes (Ostrem et al., 2013). Such efforts havemet
with limited success to date. In-depth review of the
structure, dynamics, mutational activation and inacti-
vation, and signaling mechanisms of RAS can be found
in several recent reviews (Lu et al., 2016b; Ostrem and
Shokat, 2016). RAS small molecule drug discovery has
been hampered by the lack of sufficiently deep hydro-
phobic pockets (Lu et al., 2016a). This has shifted efforts
to inhibiting RAS by targeting its pathways (Nussinov
et al., 2013), focusing on its plasma membrane anchor-
age and localization (Cox et al., 2015), its activation by
SOS (Winter et al., 2015; Lu et al., 2016c), for example
by inducing a modification in the Switch II pocket, such
that e.g., ligand 2C07 binding would push Switch I away
from the nucleotide, disrupting the essential polar con-
tacts. This inhibits SOS binding and alters nucleotide
preference and nucleotide exchange (Gentile et al.,
2017). Ras interactions and activation of cofactors were
also targeted, although the high affinity of the interac-
tion with RAF has been challenging. Still, recent work
has revealed a cyclic peptide that blocked the binding of
KRAS with the Ras binding domains (RBDs) of RAF,
T-lymphoma invasion and metastasis-inducing protein
1, and Ral guanine nucleotide dissociation stimulator
in vitro, albeit with poor membrane permeability (Wu
et al., 2013). An upgraded version, Cyclorasin 9A5,
potently blocked the RAS-RAF interaction with an
IC50 in the low micromolar range. Cyclorasin 9A5
diminishedMAPK (ERK), but also AKT serine/threonine
kinase 1 (AKT/AKT1) activation and tumor cells lines
expressing a mutant EGFR, pointing to its likely toxicity
(Upadhyaya et al., 2015). Other strategies include inhib-
itors to PDEd-KRAS interaction, which shuttles KRAS
to the endomembrane to maintain a pool of KRAS
localized at the plasmamembrane, and the Arl-2, which
helps KRAS release from PDEd. For example, Deltar-
asin binds with nanomolar affinity to the farnesyl
binding pocket of PDEd, blocking its association with
KRAS (Martin-Gago et al., 2017). Blocking RAS dimer-
ization has been another venue for inhibitingmutantRAS
(Spencer-Smith et al., 2017), as well as combinations with
drugs targeting frequently observed resistancemutations,
such as those inYAP1, the transcriptional coactivator that
rescues KRAS-dependent cells upon KRAS inhibition and
is required for KRAS-induced cell transformation (Shao
et al., 2014). Functional studies established the role of
Yap1 and the transcriptional factor Tead2 in driving
Kras (G12D)-independent tumor maintenance (Kapoor
et al., 2014). Altogether these raise hope that the
enigmatic RAS will eventually be subdued (Spencer-Smith
and O’Bryan, 2017).

2. Epidermal Growth Factor/Epidermal Growth
Factor Receptor Signaling Pathway. TheERBB family
consists of four related transmembrane tyrosine kinase
receptors: EGFR (ERBB1), HER2/neu (ERBB2), HER3
(ERBB3), and HER4 (ERBB4). EGFR was first discov-
ered by Stanley Cohen, who shared the Nobel Prize in
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Medicine in 1986 with Rita Levi-Montalcini for their
discovery of growth factors. A recent study of.200 lung
adenocarcinoma tumors by TCGA has suggested that
14% of the tumors have somatic mutations on EGFR,
including substitution mutations, such as T790M and
L858R (CancerGenomeAtlas ResearchNetwork, 2014).
EGFR-related tyrosine kinase inhibitors that target
the ATP orthosteric site of the kinases, such as gefitinib
and erlotinib, are approved for NSCLC harboring
activating mutations on EGFR, affect tumor response
rate, survival, and quality of life (Ke andWu, 2016). The
EGFR-T790M is the most common somatic alteration
and is detected in approximately 50% of progressing
lung tumors (Gazdar, 2009). Osimertinib was approved
for the treatment of patients with metastatic NSCLC
harboring EGFR-T790M in 2015 (Table 2) (Ke and Wu,
2016). Furthermore, osimertinib and afatinib have been
approved for metastatic NSCLC whose tumors have
EGFR with second mutations of exon 19 deletions or

exon 21 substitution mutations (L858R) (Ke and Wu,
2016). Despite promising clinical evidence of activity
against mutated tumors in the early several months,
acquired resistance arises rapidly, owing to several
new secondary mutations, such as the double EGFR-
L858R/T790M as well as the triple EGFR-L858R/
T790M/C797S (a mutant resistant to all currently
available EGFR-tyrosine-kinase inhibitors) within the
ATP orthosteric site of the receptor (Thress et al., 2015).

HER2was reported to be amplified inmultiple cancer
types, such as breast, esophageal, and gastric. A recent
sequencing study of .5000 recurrent and metastatic
breast tumors suggested that 12.5% of the patients (698)
harbored HER2 alterations, including 10.6% of tumors
(596 patients) with HER2 amplification and 2.4% of
tumors (138) with substitution mutations (L755S,
D769Y, R768Q, V777L, and V842I in the kinase do-
main) or indels. Trastuzumab, a humanized immuno-
globulin G1 antibody approved by the FDA in 1998, has

Fig. 4. Structural landscape of druggable proteome in oncology drug discovery. In total, 18 selected cancer genes with well-annotated driver mutations
and available protein three-dimensional structures across five classic cancer pathways were illustrated: 1) PI3K/AKT/PTEN pathway, 2) EGF/EGFR
signaling, 3) RAS pathway, 4) cell metabolism pathways, and 5) hormone (estrogen/androgen) pathways. Cancer driver mutations were collected from My
Cancer Genome (https://www.mycancergenome.org/). Protein structures were collected from PDB database (http://www.rcsb.org/pdb/home/home.do).
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provided substantial clinical benefit to breast cancer
patients with HER2 amplification. Yet, ultimately pa-
tients have acquired resistance to trastuzumab and
lapatinib owing to various secondary somatic mutations
on HER2. Neratinib, a dual irreversible inhibitor of
HER2 and EGFR, has shown promising clinical benefits
by overcoming resistance of somatic mutations on
HER2 (Bose et al., 2013). Hanker et al. (2017) recently
identified a new acquired HER2-T798I gatekeeper muta-
tion that induces resistance to neratinib in a metastatic
patient with a known HER2-driven mutation L869R.
Protein structural modeling suggests that HER2-T798I
reduces the binding affinity between HER2 and nerati-
nib (Hanker et al., 2017).
3. Phosphatidylinositol 3-Kinase /AKT/Phosphatase

and Tensin Homolog Pathway. The phosphatidylinositol
3-kinase (PI3K) pathway is essential for cancer cell
growth, proliferation, survival, and metabolism. PIK3CA
activating alterations, such as E542K and E545K (exon9)
in the helical domain and H1047R (exon 20) in the kinase
domain, are common in human breast cancer (Cancer
Genome Atlas, 2012). Two recent studies independently
suggested that PIK3CA-H1047R inducedmultiple-potency
and multi-lineage mammary tumors and further drove
breast tumor heterogeneity and progression (Koren et al.,
2015; Van Keymeulen et al., 2015). A previous sequencing
study of 507 primary breast tumors by TCGA suggested
that PIK3CA-H1047R was only detected in 17% of HER2
positive tumors (Cancer Genome Atlas, 2012). A recent
single cell sequencing study using a specific-to-allele PCR-
FISHapproach revealed thatPIK3CA-activatingmutations
were present in approximately 20%–40% of HER2-
positive tumors, further supporting intratumoral het-
erogeneity driven by activating mutations on PIK3CA
(Janiszewska et al., 2015). Interestingly, activating muta-
tions on PIK3CA are observed in over 30% of ER-positive
breast cancer. A preclinical study has suggested that
PIK3CA inhibitors (e.g., BYL719) trigger the activation
of estrogen receptor (ER) transcriptional activity in
ER-positive breast cancer, suggesting that combined
PI3K and ER blockage is a rational approach for targeted
therapy in breast cancers harboring activating mutations
on PIK3CA (Bosch et al., 2015).
PTEN, encoding phosphatase and tensin homolog,

is a tumor suppressor gene by negatively regulat-
ing the Akt/PKB signaling pathway (Chalhoub and
Baker, 2009; Caserta et al., 2015). From a structural
perspective, PTEN contains three domains: phospha-
tase, C2, and PDZ. Several functional mutations on
PTEN coding region (Fig. 4) have been involved in
multiple cancer types: 1) p.R130*, p.R130G, and p.R130Q
mutations on the phosphatase domain and N323fs*2
and N323fs*21 on the C2 domain in ovarian cancer
(Chalhoub and Baker, 2009) and 2) p.R159S on the
phosphatase domain and the R233* mutation on the
C2 domain in breast (Lee et al., 1999) and colorectal
cancers (Markman et al., 2010).

4. Hormone Pathways. Hormones (e.g., estrogen and
progesterone) are substances that function as chemical
messengers in the human body. Overexpression or dysre-
gulation of hormone pathways, such as estrogen or
androgen receptors, has played critical roles in tumor
growth of various cancers, such as breast and prostate.
For example, approximately 80% of breast cancers are
ER positive (Davies et al., 2011). ER antagonists (e.g.,
tamoxifen and toremifene) have demonstrated great
success in treatment of ER-positive breast cancer. How-
ever, recent genomic studies have suggested that several
substitution mutations (e.g., Y537S/C/N or D538G on
ER ligand binding domains) promote tumorigenesis
and tumor progression without hormone stimulation
(Robinson et al., 2013; Toy et al., 2013). Further studies
showed that those activating mutations on the ER
reduce the efficacy of ER antagonists, such as tamoxi-
fen, thus contribute to acquired endocrine resistance
(Li et al., 2013; Robinson et al., 2013; Toy et al., 2013).

5. Cell Metabolism Pathways. Regulation of cancer
cell metabolism has attracted much attention over the
past several decades (Cairns et al., 2011; Pavlova and
Thompson, 2016). TheWarburg effect was first reported
by Otto Warburg, who received Nobel Prize in Physiol-
ogy or Medicine in 1931. Warburg (1956) hypothesized
that cancer growth is caused by tumor cells generating
energy mainly by anaerobic breakdown of glucose.
However, metabolic dysregulation in tumors extends
beyond theWarburg effect, such as pyruvate kinase and
isocitrate dehydrogenases (Cairns et al., 2011). Isoci-
trate dehydrogenases 1 and 2 (IDH1 and IDH2) muta-
tions (e.g., R132H) are activating mutations that lead to
production of high levels of 2-hydroxyglutarate from
alpha-ketoglutarate in the mitochondria (Mondesir
et al., 2016). On August 1, 2017, Enasidenib (AG-221),
a first-in-class, oral, selective, small-molecule inhibitor
on IDH2-R132H mutant protein was approved by the
FDA for the treatment of adult patients with relapsed or
refractory acute myeloid leukemia with IDH2-R132H
mutations based on the 199-patient phase I/II study
(NCT01915498). AG-120 (Ivosidenib), a selective IDH1-
R132H inhibitor, was also under Phase I/II for treat-
ment of a number of solid tumors types via targeting
cancer cell metabolism (Mullard, 2016). However, re-
cent studies have suggested that some cancer types
display elevation in 2-hydroxyglutarate even in the
absence of IDH mutations, indicating the unknown
clinical outcomes of IDH1/2 mutation-specific inhibitors
in those cancer types, such as triple-negative breast
cancer (Terunuma et al., 2014) and clear cell renal cell
carcinoma (Shim et al., 2014).

B. Mutation-Specific Allosteric Drug Discovery

1. Epithelial Growth Factor Receptor-C797S.
Cysteine is the most reactive amino acid, forming
covalent bonds with numerous chemical warheads.
Several covalent inhibitors have been approved for
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molecularly targeted therapies in several cancer types,
such as Bruton’s tyrosine kinase inhibitor ibrutinib for
chronic lymphocytic leukemia (Byrd et al., 2013) and
EGFR inhibitor afatinib for non-small cell lung cancer
(Yu and Pao, 2013; Yang et al., 2015). However, orthos-
teric drugs with low specificity often result in off-target
toxicity (Moslehi, 2016). Allosteric agents are promising
candidates for targeted therapies with a higher specific-
ity (Nussinov and Tsai, 2015). Recently, a novel allosteric
inhibitor, EAI045, was revealed to target specifically
the conventional tyrosine kinase inhibitor-resistant
EGFR mutants by binding an allosteric site created by
the displacement of the regulatory C-helix in an inactive
conformation of EGFR.EAI045 inhibits the L858R/T790M
mutant EGFR with a low nanomolar potency; however,
a single agent is not effective in blocking EGFR-driven
cell proliferation because of differential potency on the
two subunits of the dimeric receptor (Jia et al., 2016).
Interestingly, combination of EAI045 and cetuximab
that blocks EGFR dimerization synergistically sup-
presses tumor growth in mouse models of lung cancer
driven by the double EGFR-L858R/T790M mutants as
well as by triple EGFR-L858R/T790M/C797S mutants,
which are resistant to all current EGFR-target thera-
pies (Jia et al., 2016).
2. KRAS-G12C. Inhibitors that act on both wild-type

and mutant cancer proteins are more likely to cause
substantial toxicity. One merit method of achieving
mutant specificity is targeting the mutant residue itself
via covalent allosteric inhibitors. KRAS-G12C (c.34G.T)
is one of the three most common KRAS driver mutations
in various cancer types, with a non-native cysteine
residue compared with the wild-type protein. A recent
study identified a panel of compounds that irreversibly
inhibited KRAS-G12C by forming a covalent attachment
to themutant cysteine (Ostrem et al., 2013). Despite those
compounds binding to the KRAS-G12C in the inactive
state, they can still be clinically beneficial via a shift of the
active mutant population toward the inactive state, with
subsequent capture by the covalent inhibitor.
3. Breakpoint Cluster Region Protein-Abelson Murine

Leukemia Viral Oncogene Homolog Fusion. The BCR-
ABL1 fusion protein promotes tumorigenesis and tumor
progression in CML. Several targeted agents (e.g., nilo-
tinib) have been developed for highly specific targeting
of ABL1. However, ABL1 kinase inhibitors often elicit
acquired resistance in some patients. Using fragment-
based nuclear magnetic resonance screens, Wylie et al.
(2017) identified allosteric ABL1 inhibitors that specif-
ically bind to the myristoyl pocket to induce the auto-
inhibited kinase conformation by supporting a bend in
the C-terminal helix. Further lead optimization identi-
fied a more potent ABL1 selective allosteric inhibitor
ABL001. ABL001 selectively suppresses the growth of
BCR-ABL1-driven tumor cells via inhibiting phosphor-
ylation of BCR-ABL1 and signal transducer and activa-
tor of transcription 5 during in vitro studies. Structural

studies have determined that nilotinib and ABL001
bind to BCR-ABL1 simultaneously by a potential dual
targeting effect. In vivo and phase-I studies have
suggested that nilotinib and ABL001 combination pro-
mote tumor eradication and delay acquired resistance
in patients harboring BCR-ABL1-driven tumors through
potential dual inhibition of allosteric and catalytic
activities of BCR-ABL1.

C. Neoantigen-Driven Personalized Immunotherapies

In contrast to traditional surgery, radiation, chemo-
therapies, and molecularly targeted therapies, immu-
notherapy has shown the broadly successful strategies
for metastatic tumors in clinic. Pembrolizumab, a human-
ized antibody, boosts the immune systems against cancer
cells by inhibiting the PD-1 receptor. In May 2017, it was
approved by the FDA for any unresectable or metastatic
solid tumor with mismatch-repair deficiency based on a
published phase 2 study (Le et al., 2015). A recent study
reported that administering tumor-infiltrating lymphocytes
isolated from a 50-year-old woman with metastatic co-
lorectal cancer patient, namely adoptive T-cell transfer
immunotherapy, mediate effective antitumor immune
responses against tumors that express the KRAS-G12D
mutation (Tranet al., 2016). This study firstly implies that
the identification of HLA-C*08:02-restricted T-cell recep-
tors that specifically target KRAS-G12D neoantigen (e.g.,
GADGVGKSAL) would provide an opportunity to develop
highly targeted immunotherapies against a common
actionablemutation identified inmultiple cancers, such
as colorectal and pancreatic cancers. A recent study
examined the relationship between the objective re-
sponse rate for anti-PD-1/anti-PD-L1 therapy and the
corresponding median tumor mutational burden across
27 cancer types/subtypes (Yarchoan et al., 2017). A
significant correlation between the tumor mutational
burden and the objective response rate was observed,
highlighting a stronger relationship of the tumor muta-
tional burden and the response rate of anti-PD-1 thera-
pies. However, the quality of the neoantigen, rather than
the quantity, is reported as actionable biomarkers for
guiding the application of personalized immunotherapies,
through an integrated approach, including genetic,
immunohistochemical and transcriptional immuno-
profiling, computational biophysics, and functional
assays (Balachandran et al., 2017). Figure 3 illustrates
an integrative computational and experimental infra-
structure for the emerging development of personalized
immunotherapies through incorporating innovative ge-
nomics, proteomics technologies, and computational
biophysics approaches.

Ott et al. (2017) generated personalized cancer
vaccines by identifying tumor-specific mutations and
accordingly determining neoantigens from the tumor-
normal matched DNA sequencing profiles of six
patients with melanoma. They demonstrated proof-of-
principle of a vaccine that targets up to 20 computationally
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predicted tumor neoantigens for eliciting strong T-cell
responses against cancer in phase I trial. Sahin et al.
(2017) showed a similar framework of identifying the
tumor neoantigens from somatic mutations on 13 mel-
anoma patients via computational identification of
the binding between small mutant peptides and MHC
proteins. Both studies suggested that the predicted
neoantigens presented in the vaccine and recognized by
CD4 T-cells boosted significantly antitumor immune
responses. Although the number of patients who were
treated in the two studies were small, they revealed
potential durable clinical benefits. Additional controlled,
randomized clinical trials will be needed to test the
clinical benefits of neoantigens-based personalized im-
munotherapies in a large cohort study.
A recent study reported a novel computational pro-

tein design approach, namely Fold FROMLoops, for the
development of epitope-specific neutralizing antibodies
for the human respiratory syncytial virus (Correia et al.,
2014). Fold FROM Loops generates small, thermally
and conformationally stable protein scaffolds that ac-
curately mimic the viral epitope structure. This study
provides proof of principle for epitope-driven vaccine
design and enables the evaluation and further develop-
ment of these strategies for cancer vaccine design by
targeting specific neoantigens. In addition to somatic
mutation-derived neoantigens, nonmutated endogenous
proteins, called T-cell epitope associated with impaired
peptide process neoantigens, can also act as immunogenic
epitopes (van der Burg et al., 2016). A new study provided
more unique structural mechanisms of the first identified
T-cell epitope associated with impaired peptide pro-
cess antigens derived from Trh4 proteins using crys-
tallographic investigation, highlighting a significant
advance in the search for novel immunotherapeutic
targets (Hafstrand et al., 2016).
While these are exciting early results, computational

neoantigen prediction is a field still in its infancy. A
more disciplined approach to the development of the
algorithms might be next for this field. Researchers in
other areas of bioinformatics (e.g., DNA variant effect
prediction, protein structure prediction, and biomedical
text processing) have generated reference datasets on
which periodic competitions are held such that more
accurate algorithms can be continually refined. The
establishment of a reference data set and competition
might now be due for neoantigen prediction.

IV. A Personal Mutanome Infrastructure for
Precision Oncology

“Precision medicine requires a different type of clinical
trial that focuses on individual, not average, responses to
therapy,” says Nicholas J. Schork, Director of Human
Biology at the J. Craig Venter Institute (Schork, 2015).
Studies that focus on “one-person trials” have shown
a proof-of-concept for the emerging development of

personalized treatment in cancer. A recent study re-
ported that an individual with metastatic bladder
cancer with tuberous sclerosis complex 1 somatic muta-
tions showed a super response to Everolimus (Iyer et al.,
2012). Thus, exceptional responders can help researchers
to predict the responses of many other patients with
tumorsharboring particular genomic ormolecular profiles
(Marx, 2015). Currently, cancer therapy is moving from a
drug-centered to a patient-centered approach with differ-
ent levels of personalization. This requires paradigm
shifts along the entire drug development process and
multiple data integration. A personal mutanome infra-
structure that utilizes the wealth of structural genomics
would offer a prototype for how to open this territory by
developing best-practice blueprints for the implementa-
tion of personalized cancer treatments. Fig. 5 illustrates
a personal mutanome infrastructure for development of
personalized cancer treatment using breast cancer as a
case study. The entire infrastructure contains four core
components for 1) performing tumor genetic and genomic
testing, 2) identifying actionable biomarkers that may
guide the personalized therapies using bioinformatics and
computational biology tools (e.g., protein structure hotspot
clustering as shown in Table 3), 3) in vitro functional
assays based on the short list of predicted biomarkers
from step 2, and 4) guiding the application of mono-
therapies or combination therapies based on the iden-
tified biomarkers from steps 1–3. Among the promising
actionable biomarkers for personalized therapies in breast
cancer patients are substitution mutations on HER2
(L755S, D769Y, R768Q, V777L, V842I, and T798I),
PIK3CA (E542K, E545K, and H1047R), and ESR1
(Y537S/C/N and D538G), as shown in Fig. 4. However,
monotherapies often failed during the emerging drug
resistance. Combination therapies that target different
pathways have shown some promises. For example,
PI3K pathway inhibitors have emerged as promising
therapeutic agents for ER-positive breast cancer. A recent
study suggested that the epigenetic regulator KMT2D
(histone-lysineN-methyltransferase 2D) enhances ERa
transcriptional activity in BYL719-treat PIK3CA mu-
tant breast cancer, providing a rationale for targeting
the epigenome and PI3K signaling (Toska et al., 2017).
Moreover, combination of chemotherapeutic agents or
molecularly targeted agents with immunotherapies has
also shown promise in clinical trials of breast cancer
(Kohrt et al., 2012) (NCT01570036) or advanced triple
negative breast cancer (NCT02768701).

V. Conclusions and Perspectives

Recent advances of innovative biomedical technolo-
gies and computational tools have made it possible to
identify and interpret actionable mutations in individ-
uals to inform drug discovery and personalized treat-
ments. The field of oncology has been a promising
pioneer of precision medicine by exploiting the wealth
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of large-scale sequencing and structural genomic data.
Traditionally, chemotherapeutic agents with a broad
anticancer spectrum in various cancer types commonly
kill both cancerous and healthy cells. Molecular tar-
geted agents that selectively suppress pathways neces-
sary for cancer cell growth work through two primary
mechanisms: orthosteric and allosteric site inhibition.
Effective orthosteric agents that target the clinically
actionable variants in primary binding sites (e.g., the
ATP site in kinases) have shown promising clinical
benefits against cancer cells in the early months of
therapies. However, emerging drug resistance owing to
acquired mutations and off-target toxicity have been
challenging. Allosteric agents have been demonstrated
as promising candidates for the next generation of
targeted therapies with a higher specificity in pre-
clinical and clinical studies (Ostrem et al., 2013; Jia
et al., 2016; Wylie et al., 2017). New directions are
emerging for personalized oncology drug discovery and

development in the genomics era. Some highly mutated
oncogenes (e.g., RAS and myelocytomatosis), which to
date could not be targeted pharmacologically, pose a key
challenge in personalized cancer medicine (Dang et al.,
2017). Several National Institutes of Health-sponsored
national efforts, such as Illuminating the Druggable
Genome (http://targetcentral.ws/index) and The RAS
Initiative (https://www.cancer.gov/research/key-initia-
tives/ras), inspire development of new technology plat-
forms to study the “undruggable” genome, which is
expected to witness substantial progress. Newer part-
nerships, for example, the Accelerating Therapeutics
for Opportunities inMedicine (ATOM) Project involving
the University of California, San Francisco (UCSF), the
National Cancer Institute (Fredrick National Laboratory
for Cancer Research), the US Department of Energy
(Lawrence Livermore National Laboratory), and
GlaxoSmithKline, suggest that future innovations are
going to require teams of scientific minds powered by

Fig. 5. A personal cancer mutanome infrastructure for the development of personalized treatment using breast cancer as a case study. The entire
infrastructure contains four core components: performing tumor genetic and genomic testing (A), identifying actionable biomarkers that may guide
the personalized therapies using bioinformatics and computational biology tools (e.g., protein structure hotspot clustering shown in Table 3) (B),
pre-clinical validation (in vitro or in vivo functional assays) (C), and guiding the application of monotherapies or combination therapies based on
steps 1–3 (D).
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significant computer infrastructure and data on poten-
tial drug candidates (https://www.ucsf.edu/news/2017/
10/408841/public-private-consortium-aims-cut-preclinical-
cancer-drug-discovery-six-years).
Cancer immunotherapy that targets T-cells to en-

hance immune response has generated both excitement
and skepticism. Although immunotherapies have gen-
erated durable clinical responses and long-term remis-
sions in some cancer types (e.g., melanoma), autoimmune
and other immune-related adverse effects associated
with cancer immunotherapy tempered the enthusiasm
of cancer immunologists for the broad use of these
powerful agents (June et al., 2017). There is a pressing
need for innovative strategies to improve the clinical
benefits for the broad cancer population toward mini-
mizing autoimmune adverse effects. Targeting mutation-
specific neoantigens is one of the attractive strategies for
patient stratification for improving clinical benefits
and mitigating the risk of autoimmunity. Intelligently
combining immune checkpoint inhibitors with cytotoxic
chemotherapy (e.g., cyclophosphamide) or targeted ther-
apy (e.g., BRAF inhibitors) may provide better control of
dosage and cardiotoxicity. It may also help improve long-
term cardiovascular outcomes in patients by exploiting
immunologic “side” effects of conventional chemothera-
peutic agents and targeted antitumor agents (Galluzzi
et al., 2015). Futuremanipulation of themicrobiome could
further enhance the therapeutic efficacy and diminish
immunotoxicity of cancer immunotherapy (Sivan et al.,
2015; Honda and Littman, 2016).
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