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Abstract

In a classic study, Huffaker demonstrated that abiotic forms of spatial heterogeneity could induce 

stability in predator-prey interactions. Recent theories suggest that space can also act to destabilize 

predator-prey systems and that stability can arise from coupling of unstable units. Here, using 

Huffaker’s classic experimental design refitted with modern empirical and statistical techniques, 

we reassess the effect of space on predator-prey interactions when the prey are pests of agriculture, 

and when predators must compete with pathogens for shared prey resources. Using an empirical 

system including aphids, ladybird beetles and entomopathogenic fungi, we show that while two 

different control agents were ineffective at controlling pests in insolation, coupling them together 

not only improved control of the pest, but also reduced the occurrence of large, spatially-clustered 

pest outbreaks. Our results suggest that as agriculture becomes increasingly isolated and 

consolidated across landscapes, endogenous forms of spatial heterogeneity, which arise from 

interactions between diverse assemblages of control agents, may break down. We suggest that 

improving connectivity across landscapes is important for maintaining effective biological control 

in agroecosystems.
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Introduction

In 1958, C. B. Huffaker conducted what would become a classic study on the role of 

dispersal in the coexistence of predators and prey (Huffaker 1958). At the time, the Lotka-

Volterra equations were well-known to predict regular, repeatable cycles between predators 

and prey, yet empirical studies failed to reproduce these theoretical results (Gause 1934; 

Gause et al. 1936). These early empirical studies were done in well-mixed environments to 

mimic the assumptions of the Lotka-Voltera model. Predators had easy access to prey, but 
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rather than decreasing in numbers before prey were completely exhausted, in most cases 

predators overexploited prey, leading to extinction of the whole system. Citing Nicholson’s 

(Nicholson 1933, 1954) criticism of the early empirical studies being contained in 

microcosms that were “too small to even approximate a qualitative, to say nothing of a 

quantitative, conformity to theory,” Huffaker designed experiments using a series of spatial 

arrays or “universes” composed of carefully arranged oranges (prey resources), while 

manipulating the dispersal abilities of predatory and prey mite species. He discovered that 

reducing the dispersal of predators by slowing them with petroleum jelly and encouraging 

dispersal in prey by providing wooden dowels for long distance migration introduced 

sufficient spatial heterogeneity to keep prey from going extinct immediately, allowing 

predator-prey cycles to be observed (Huffaker 1958). This early study established the 

importance of spatial heterogeneity in maintaining predator/prey cycles, providing one 

mechanism to explain the discordance between experimental evidence that predator/prey 

pairs go extinct and the overwhelming evidence from nature that predators and their prey do 

indeed persist over many years.

In his conclusions, Huffaker cautioned that the use of spatially homogenous monocultures in 

agriculture could have unintended consequences for biological control, which are simply 

predator-prey systems where control agents are released to consume pest prey (Huffaker 

1958; Huffaker et al. 1963). This is still a concern for agroecosystems today, particularly in 

small, biodiverse farms that currently persist within a matrix of large monocultures and 

urban land (Perfecto et al. 2009). Small-scale farms, which produce upwards to 80% of food 

for human consumption in only 53% of the current agricultural land, are often unable to 

afford, or prefer not to apply pesticides and herbicides, relying instead on a diverse set of 

natural enemies to control pest problems (Altieri 1999; Badgley et al. 2007; Montenegro 

2009; Graeub et al. 2016). As homogenization and consolidation of agriculture continues to 

gain speed, questions arise as to how biological control in small, biodiverse farms will be 

affected (Altieri 1999; Agarwal et al. 2002; Perfecto et al. 2009; Lambin and Meyfroidt 

2011).

In the past, many biological control programs that sought to eliminate pest species with a 

single, highly efficient control agent found it difficult to stabilize predator-prey dynamics 

(Nicholson and Bailey 1935; Murdoch 1975). Strong agents caused cycles of three repeating 

phases: 1) control agent overexploits pests 2) control agent declines due to lack of prey, and 

3) pests resurge to outbreak levels under enemy-free conditions (Luck 1990; Arditi and 

Berryman 1991). Theory based on the Lotka-Volterra equations predicted that the magnitude 

of booms and busts would increase with every successive control agent-pest cycle until a 

stochastic event pushed the control agent to extinction (Luck 1990; Arditi and Berryman 

1991). Using a diversity of control agents was one suggested solution (Murdoch 1975). Yet, 

in light of the then-popular competitive exclusion principle, incorporating more than one 

predator on a single prey (the pest) would be unlikely to work since only a single predator 

would survive, leading back to the same problem of prey overexploitation and extinction of 

the desired predator-prey control system (Denoth et al. 2002; Louda et al. 2003; Straub et al. 

2008). Huffaker’s study moved in a different direction and sought to challenge the growing 

consensus that predator-prey systems are inherently unstable. Taking Nicholson’s critique of 

previous empirical work, he sought to create background conditions that more closely 
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reflected some key elements of the environments faced by real predator-prey systems in 

nature, effectively removing the “mean-field” assumption of the well-mixed system and 

explicitly creating a spatially extended framework.

The prevalence of strong negative interactions in biological control, including intraguild 

predation where predators consume one another in addition to shared resources, dissuaded 

many from advocating multiple control agents to resolve pest problems (Rosenheim et al. 

1995; McCann et al. 1998; Denoth et al. 2002; Straub et al. 2008). However, recent 

theoretical work found that strong negative interactions between a predator control agent and 

a pathogen control agent can result in a system that is stable even when the agents are 

completely unstable when isolated from one another (Ong and Vandermeer 2015). These 

strong negative interactions could be responsible for autonomous biological control—the 

observation that a diversity of natural enemies are able to keep levels of pests below 

economic thresholds, but above levels for natural enemies to persist without boom-bust 

dynamics (Lewis et al. 1997; Vandermeer et al. 2010; Ong and Vandermeer 2014).

Though Huffaker’s study and many theoretical studies that followed established spatial prey 

refuges as a stabilizing force for consumer-resource dynamics, contemporary theoretical 

work has shown that space can also induce unstable dynamics, including chaos (Huffaker 

1958; Folt and Schulze 1993; Pascual 1993; Petrovskii and Malchow 2001). Though the 

specific size of a pest population may become unpredictable, chaotic systems can still be 

considered “stable” in pest control if the possible range of pest population sizes is 

constrained to an envelope below economic thresholds (Ong and Vandermeer 2015). These 

are important considerations for diverse biological systems where large, unpredictable 

fluctuations in population sizes are common phenomena (Berryman 1982; Dwyer et al. 

2004). Thus, in this paper we distinguish between stable and effective biological control. 

Stable implies dynamic stability, where trajectories tend towards (but not necessarily reach) 

some non-zero equilibrium. Effective biological control implies that pest populations are 

both stable and that equilibrium values are lower than in control treatments where no natural 

enemies are present. Ineffective control implies that pest populations in natural enemy 

treatments are equal to or greater than control treatments. Ineffective control could be either 

unstable or stable, but this is less important for management applications.

Here, we borrow Huffaker’s classic framework to test how the coupling of competing 

pathogen and predator natural enemies improves or worsens control of pests when placed in 

a spatial context where dispersal is constrained or free. But rather than impose spatial 

heterogeneity on the lattice as Huffaker did, we examine how differences in dispersal 

capacities and intra, interspecific interactions naturally create spatial heterogeneity. Though 

we know much about how intra and interspecific interactions affect dispersal behavior (via 

alarm pheromones etc.), we know very little about how this then scales up to spatial patterns 

and questions of species persistence (Kring 1972; Schellhorn and Andow 1999; Perfecto and 

Vandermeer 2008).

Huffaker’s results imply that prey must be able to move freely in order to escape 

overexploitation by their predators. Thus, when only one species of natural enemy is present, 

we expect high rates of dispersal to encourage the formation of spatial refuges for pests. In 
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these refuges, pests can build populations that are large enough to support long-term 

persistence of the natural enemy population, improving biological control. However, if 

natural enemies cannot find pests efficiently, outbreaks can occur. When two natural enemies 

are combined, the effects of space on biological control are unclear. On the one hand, 

competition between enemies may increase spatial heterogeneity through the delineation of 

territories or other behavioral divisions of space. If more spatial refuges for pests result from 

having multiple natural enemies, search efficiency of those natural enemies should also 

improve since there are more pest populations to encounter. Alternatively, the presence of 

multiple natural enemies could cause spatial clustering in pests, reducing the number of 

spatial refuges. In this case we might expect more outbreaks to occur since enemies are less 

likely to find prey.

Materials and methods

Experimental Setup

Spatial arrays of 3” pea plant cuttings (Pisum sativum var. Dwarf Grey) were set up under a 

12hr-dark 12hr-light cycle. Each independent array (or “universe,” as Huffaker referred to 

them) consisted of a 4X5 network of clear plastic chambers (3 ¾” top diameter, 2 ½” bottom 

diameter, 4 ¾” height) that were sealed to prevent escape by arthropods, but not airtight. 

Each chamber included a test tube filled with dH2O (distilled water) and a pea plant cutting 

inserted through a hole in the test tube top. The chambers were connected laterally using 

plastic corridors of two diameters: 0.219” (small) and 0.47” (large) cut to 2” in length. A 

single universe consisted of all small or all large corridors to represent a low or high 

dispersal treatment, respectively. Chambers were connected using a von Neumann 

neighborhood design with edge effects. Both low (L) and high dispersal (H) universes were 

subjected to four treatments: 1) aphids (Acyrthosiphon pisum) only, 2) aphids and ladybird 

beetles (Hippodamia convergens) (B), 3) aphids and the entomopathogenic fungus 

(Beauveria bassiana) (F), 4) aphids, beetles, and fungus (FB). All units started with an initial 

population of 50 aphids, 25 in the (1,1) position and 25 in the (4,5) position of the spatial 

array (diagonal corners). Eight beetles were added to the (4,1) position of the array for 

treatments including beetles. For fungal treatments, the initial aphid populations were 

sprayed with 2 pumps of a B. bassiana emulsion made by vortexing 4 mL dH2O and 1.28 

mL B. bassiana obtained as the commercially available product “Mycotrol-O” with a 

concentration of 2 × 103 viable spores per quart. Universes were surveyed twice a week 

using direct counting methods. The number of healthy aphids was recorded for 28 time 

points or until extinction occurred. During census, pea cuttings were replaced as necessary 

so that fresh resources were always available in the array. However, once a pea plant was 

colonized by one or more aphids, no new pea cuttings would be provided in that chamber 

until all aphids went locally extinct or moved to neighboring chambers. In this way aphid 

populations were able to locally overexploit resources. After every local extinction event, 

chambers were thoroughly cleaned with 70% ethanol and fresh pea cuttings provided. In 

total we ran 66 universes with 10 replicates of the L treatment, 5 H, 10 BL, 7 BH, 10 FL, 6 

FH, 10 FBL, and 8 FBH. Given the available laboratory space, we were able to run 16 

universes at a time. Two replicates from each treatment were run simultaneously. 

Differences in times to extinction led to the different number of replicates per treatment.
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Parameter Estimation

We modeled population dynamics using a coupled map lattice. The lattice was 4X5, the 

same as in the experimental setup. Given our biweekly sampling, aphids are capable of both 

short distance movements to adjacent cells, and long-distance movements across the array 

within a single time step. Thus, in order to align our data and model appropriately, we 

include both local and long-distance migration parameters in our model. At each time step 

the entire lattice first experienced local population dynamics, then local dispersal, and then 

long-distance dispersal. The local population dynamics were determined by the Ricker 

function (Ricker 1954) with parameters r and K. After local population dynamics a fraction, 

m1, of individuals from each site dispersed locally to neighboring sites. These dispersing 

individuals were evenly distributed to the 2–4 sites in the focal site’s von Neumann 

neighborhood. After local dispersal a fraction, m2, of individuals migrated to all the sites in 

the lattice. We define this as long distance dispersal. These individuals were evenly 

distributed among the 19 other sites. These population and dispersal dynamics are described 

by the following equations:

Ni j t + 1
3 = Ni j(t)e

r 1 −
Ni j(t)

K

Ni j t + 2
3 = m1 Ni j t + 1

3 − Ni j t + 1
3

Ni j(t + 1) = m2 N t + 2
3 − Ni j t + 2

3

(1)

Here t is the time step and is equal to integer values 2, …, 28 to match the conditions of the 

experiment. The subscripts i and j indicate the location of the site and range from 1, …, 4 

and 1, …, 5, respectively. The parameters, r and K, are the population growth rate and 

carrying capacity, respectively. The parameters, m1 and m2, are the fraction of individuals 

who disperse locally and globally. Ni j is the average number of individuals in the sites in 

Nij’s von Neumann neighborhood. N is the average number of individuals in all sites except 

for Nij.

We ran these rules for the same time frame and starting conditions as in the experiment 

(described earlier). Population values were assumed to be Poisson distributed or negative 

binomial distributed with mean given by the above model. For each treatment we pool all 

replicates and estimate the maximum likelihood parameter values, across all replicates, 

using simulated annealing (Bolker 2008). The Poisson model had a lower AIC than the 

negative binomial one, so was used. Model estimates converged for all parameters except for 

carrying capacities of aphids under low dispersal conditions. The large incidence of 

extinctions made carrying capacities irrelevant for these treatments because aphids had 

negative growth rates. Thus, populations never increased to the point where carrying 

capacities could be estimated. For each parameter (r, K, m1, m2), a likelihood profile was 

created. To do this, a given parameter is held constant at a series of values, and then for each 

Ong et al. Page 5

Ecosphere. Author manuscript; available in PMC 2018 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



value, the model is re-optimized with all other parameters in the model allowed to vary. The 

resulting likelihoods for each parameter value are the likelihood profile of the given 

parameter. Using the likelihood ratio test, likelihood cutoffs are calculated to create a 95% 

confidence interval in the parameter estimate (Bolker 2008).

Spatio-temporal projections

Once parameterized we used our coupled map lattice to project populations under each 

treatment for 200 time steps assuming both the original 4X5 experimental design with edge 

effects and a 30X30 spatial grid placed on a torus. We constructed confidence bands by 

simulating the model 1000 times for each treatment and taking the 95% quantiles of the total 

aphid population size at each time step. We added parameter uncertainty into our simulations 

by randomly drawing new parameters for each simulation based on the confidence intervals 

estimated for each parameter. For each simulation, spatial patterning was measured using 

Moran’s I, where I > 0 implies clustered, and I < 0 implies dispersed patterns. We 

constructed 95% confidence bands for Moran’s I using the same process as population size. 

Simulated and experimental results for aphid population size and spatial patterning were 

overlaid to visualize model fits to data. Differences in treatments were considered significant 

for some time frame if confidence bands did not overlap. All analyses were conducted in R 

(R Core Team, 2016).

Results

Long-term persistence of aphids was projected only for high-dispersal treatments (Fig. 1). 

This occurred when the simulated spatial array matched the experimental dimensions (4X5) 

and also when the array was extended to the larger, 30X30 torus (Fig. 1 c and d). In all other 

treatments, aphids were projected to go extinct.

Overall, aphid growth rates were higher when the dimension of dispersal corridors was 

larger. Under these high-dispersal conditions, the presence of natural enemies consistently 

reduced aphid growth rates from controls. The fungus-only treatment had the lowest growth 

rate, followed by fungus-beetle, and finally the beetle-only treatment (Table S1). Under low 

dispersal conditions, fungus actually increased aphid growth rates relative to controls. The 

beetle only treatment had the lowest growth rate followed by the fungus-beetle treatment 

(Table S1).

Aphid populations in low dispersal treatments were all projected to decline, making aphid 

carrying capacity estimates impossible to predict. However, under high dispersal conditions, 

aphid carrying capacities significantly increased when beetles were present alone. Fungus 

alone had no effect on carrying capacity, but the combined fungus-beetle treatment caused a 

3-fold reduction in carrying capacity (Table S1).

Under low dispersal conditions, both natural enemies had the same effects on aphid 

migration rates. When each of these natural enemies was introduced alone, local aphid 

migration rates decreased and long-distance migration rates increased (Table S1). The effect 

of the fungus on aphid migration rates remained consistent under high dispersal conditions. 

However, beetles reversed effects, increasing local and reducing long-distance aphid 
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migration rates when dispersal corridors were larger (Table S1). Combining fungi and 

beetles had no effect on local or long-distance migration rates when dispersal was low. 

However, when dispersal was high, combining the natural enemies caused local migration 

rates to decrease and long-distance migration rates to increase (Table S1).

Spatial patterns of aphids in the experiment and in the model assuming the same spatial 

configuration as the experiment were not significantly different from random and did not 

differ between treatments (Fig. S1). However, when the model was projected to the larger 

30X30 torus, spatial patterns emerged. For low-dispersal 30X30 torus simulations, pest 

populations were projected to go extinct but remained significantly clustered until extinction 

(Fig. 2a and b). Under high-dispersal 30X30 torus conditions, local clustering of aphids was 

significantly reduced when fungi were present alone or in combination with beetles. In 

contrast, beetle-only treatments caused spatial clustering of aphids to increase (Fig. 2c and 

d).

Discussion

As predicted, long-term persistence of the system only occurred under high-dispersal 

conditions where aphids and natural enemies could move more easily through the array (Fig. 

1) (Huffaker 1958). Without sufficient dispersal, pests and by extension any iteration of the 

pest-natural enemy system cannot persist (Fig. 1). These results largely confirm Huffaker’s 

conclusion that space can stabilize predator-prey interactions by providing refuge to prey 

from predators. We note however, that all instances of pest persistence are not equally 

beneficial from the perspective of biological control.

Though our experimental setup did not individually control the movements of each 

component of the system as Huffaker did, intra and interspecific interactions amongst the 

pest and two natural enemies were sufficient to create an endogenous form of spatial 

heterogeneity (Perfecto and Vandermeer 2008; Vandermeer et al. 2008; Liere et al. 2012). 

Based on body size alone, rates of diffusion are greatest for the pathogen, followed by the 

pest and finally the predator. In addition, each natural enemy had a characteristic effect on 

the vital rates and dispersal behavior of the pest, which was further mediated by the overall 

connectivity in the matrix (Table S1). Thus, each combination of enemies and connectivity 

gives rise to different spatial patterns and consequences for biological control.

Fungus had consistent effects on migration rates for aphids regardless of the diameter of 

corridors between cells. In both cases, fungus caused aphids to reduce local migration rates 

and increase long-distance migration rates (Table S1), reflecting an adaptive response to 

avoid pathogen outbreaks that occur more easily with host clustering (Shah and Pell 2003). 

We see this play out in the spatial dynamics, where local clustering of aphids is significantly 

reduced when fungus is present (Fig. 2c and d). We note that aphid growth rates actually 

increased relative to controls in low dispersal treatments with fungus (Table S1). Infection 

by the entomopathogenic fungus can cause a stress-response in aphids that encourages 

molting (quick progression to adulthood), and greater fecundity rates prior to death (Kim 

and Roberts 2012; Ortiz-Urquiza and Keyhani 2013). However, in high dispersal treatments 

where aphids survive long-term, the presence of fungus reduced growth rates in aphids, as 
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expected. The effect of beetles on migration rates of aphids was dependent on whether the 

arrays allowed low or high dispersal. In low dispersal treatments, beetles mirrored fungus 

effects by causing local aphid migration rates to reduce and long-distance migration rates to 

increase (Table S1). Since aphids are already clustered in low dispersal treatments (Moran’s 

I > 0), beetles very easily discover and decimate local clusters of aphids, which are hindered 

from migrating due to the small diameter of the corridors between cells (Fig. 2a and b). This 

is evidenced by short aphid survival times and low aphid growth rates in the beetle only low-

dispersal treatments (Fig. 1 and Table S1). Beetle movement is highly constrained in the low 

dispersal treatments. Thus, aphids that are able to migrate longer distances survive, causing 

the increase in long-distance migration rates (Fig. 2b). These results are similar to the 

Janzen-Connell hypothesis where survival of seedlings is greatest for those that are 

transported furthest from parent trees where natural enemies are less common (Janzen 1970; 

Connell 1971). However, in high dispersal treatments, beetles caused the reverse effect with 

local aphid migration rates increasing and long-distance migration rates decreasing (Table 

S1). Aphids are known to exhibit dropping behavior as a quick evasive tool when exposed to 

predators (Losey and Denno 1998). When aphids can easily move through the spatial array, 

beetle predation events disrupt clusters of aphid populations causing short-distance 

migration to neighboring cells. Yet, migration requires a pause in feeding, imparting a high 

metabolic and reproductive cost for aphids (Rankin and Burchsted 1992). Thus, long-

distance migration events are unfavorable unless the risk of predation or infection is high. 

Beetles can also move more easily in high dispersal arrays, but the search behavior of 

ladybird beetles is considerably random (Dixon 1959). Long predator search times appear to 

allow new, local clusters of aphids to build before rediscovery by the predator. This is 

evidenced by the increased aphid clustering that occurs with high dispersal-beetle only 

treatments (Fig. 2). When predator search times are sufficiently long, aphids are not 

consistently exposed to predation, reducing the need for long-distance dispersal events.

Under low dispersal conditions, we could not estimate carrying capacities of aphids because 

of the large incidence of extinctions (Table S1, Materials and methods). We did find that 

single natural enemy treatments increased local migration and reduced long-distance 

migration, but the combination of natural enemies eliminated effects on migration so that 

there were no differences from controls. Since aphids were a limiting resource in low 

dispersal treatments, competition between natural enemies in the combined natural enemy 

treatment may have reduced the effects of natural enemies on pest movement. Indeed, strong 

competition between natural enemies is well-documented in biological control systems 

(Rosenheim et al. 1995; Denoth et al. 2002; Louda et al. 2003; Straub et al. 2008).

Under high dispersal conditions, the combination of both natural enemies best controlled 

aphids by reducing aphid clustering and equilibrium pest densities through a marked 

reduction in their carrying capacity (Fig. 1). This is a particularly surprising result since 

neither natural enemy alone reduced the carrying capacity of the pest (Table S1). In fact, the 

beetle significantly increased the carrying capacity of aphids (Fig. 1). Since no new food 

resources were made available to aphids after they occupied a cell, aphid carrying capacity 

should increase only if aphids move to new cells and discover new food resources (Materials 

and methods). Increases in local migration rates of aphids under the presence of beetles can 

explain the positive effect on aphid carrying capacity. This counterintuitive result aligns well 
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with the paradox of biological control, where highly efficient control agents overexploit pest 

resources and cause outbreaks (Luck 1990; Arditi and Berryman 1991). In this theory, pest 

populations surge after control agents decline from starvation. Our experiment may 

accelerate this process since predators become physically separated from their prey when 

they overexploit local clusters. Though the fungus alone reduced spatial clustering of aphids, 

carrying capacity was not reduced (Figs. 1–2, Table S1). Increases in long-distance 

migration were canceled out by a reduction in aphid growth rates under fungus exposure to 

have no effect on carrying capacity (Fig. 1 and Table S1). Thus, equilibrium densities of 

aphids under the presence of fungus alone are no different than high dispersal controls (Fig. 

1). However, when both natural enemies are combined, aphid populations are doubly 

threatened, reducing carrying capacities and increasing long-distance migration to a much 

larger extent than either enemy alone. This synergistic effect may result from combining 

intense predation by the beetle predator and the reduction in spatial clustering that occurs 

with the pathogen (Fig. 2). Much like in the original theoretical work that inspired our 

experiment (Ong and Vandermeer 2015), we find that a combination of two ineffective 

control agents can effectively rescue control, not only reducing equilibrium pest densities, 

but also reducing local spatial clusters and limiting the carrying capacity of pests.

It is tempting to generalize these results. Allowing that all species on earth are faced with the 

combination of predators and pathogens acting simultaneously (Ong and Vandermeer 2014, 

2015), we can envision the effects of spatial extent in a very simple dynamic. If the pathogen 

induces long-distance migration (as it here does), and if the predator is more effective at 

finding spatial clusters of prey (as it here is), then the pathogen, if its virulence is 

appropriately constrained, effectively causes the prey to “move” to “refuges.” The refuges 

are the areas of recently migrated individuals that have not yet locally reproduced enough to 

form a cluster that is sufficiently attractive to the predator. The stability condition (or 

persistence condition) is thus a critical combination of dispersal rates of all three elements, 

plus the nonlinear trait-mediated effects of the pathogen and predator on the dispersal of the 

prey. Generalizing to a system of two predators and a prey, the key nonlinearities (trait-

mediated effects) of one predator increasing the migration rate of the prey, the other 

increasing the local cluster formation, creates the conditions for stabilizing the whole system 

(with appropriate parameter values). We summarize this speculative generalization in Figure 

3.

In our experiment we find that the combination of two natural enemies does indeed increase 

spatial heterogeneity and this heterogeneity does improve biological control from single 

enemy treatments. The “clustered” versus “isolated” prey form two types of spatial refugia, 

allowing enemies to avoid competition by concentrating on their “niche,” or preferred form 

of prey refugia. Complementarity arising from partitions in space or time are common in the 

literature on biological control (Denoth et al. 2002; Ramirez and Snyder 2009; Gable et al. 

2012). For example, natural enemies are known to partition time by concentrating on early 

or late season populations, and space by concentrating on populations existing at various 

heights in the vegetation strata. Yet the “clustered” versus “isolated” populations in our 

experiments imply that spatio-temporal separations allowing for complementarity can exist 

in constant flux. Once a cluster has been discovered and decimated by one predator, 

surviving prey become isolated populations that are a niche to a different type of predator. 
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However, connectivity is essential to maintain this kind of dynamic spatio-temporal 

heterogeneity. Autonomous biological control and coexistence between competing natural 

enemies can naturally arise as competitors partition prey by space and time. Yet, somewhat 

paradoxically, improving the connectivity of landscapes is necessary for these 

complementarity-inducing partitions to arise. Thus, if we are to improve natural pest control 

in agriculture, we may need to increase the rate at which pests (and their associated natural 

enemies) can move through the farm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Projected aphid population time series.
Total aphid population sizes are projected in coupled mapped lattice models for 200 time 

units using parameters fit by maximum likelihood inference to the experimental data where 

aphids had (a, b) low dispersal and (c, d) high dispersal. Models assume either (a, c) the 

same 4X5 bounded dimensions of the experiment or (b, d) a 30X30 spatial grid placed on a 

torus. Rows in plots correspond to experimental treatments where aphids were alone (black, 

second row) or in the presence of the following natural enemies: entomopathogenic fungus 

only (blue, third row), ladybird beetle only (red, fourth row), and fungus and beetle 

combined (purple, fifth row). In top row, all plots are overlaid to show differences between 

treatments. Solid lines in (a, c) are the mean population of aphids averaged across repetitions 

(n varies, see Methods) in the experiment. Each time unit corresponds to a biweekly census 

in the experiment. 95% confidence bands are plotted around mean model predictions (dotted 

lines) for n=1000 simulations.
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Fig. 2. Projected spatial clustering of aphids on a 30X30 torus.
Plotted are the means (dotted line), and 95% quantile confidence bands of Moran’s I for 

n=1000 simulations of the coupled lattice model assuming a 30X30 spatial grid on a torus 

using parameters estimated from treatments where aphids had low (a) or high dispersal (c) 
and no natural enemies (black, second row), or while in the presence of the following natural 

enemies: entomopathogenic fungus only (blue, third row), ladybird beetle only (red, fourth 

row), and fungus and beetle combined (purple, fifth row). In top row, all plots are overlaid to 

show differences between treatments. Example spatial plots for low (b) or high dispersal (d) 
show different levels of clustering for treatments (corresponding with rows in a and c) at 

time 10 and 20 for low dispersal treatments and at time 40 when clustering peaks for beetle 

only treatment and equilibrium, time 200 for high dispersal treatments. White colors 

correspond to larger, and red to lower population sizes of aphids. A completely orange 

lattice indicates population extinction. Moran’s I > 0 indicates clustered, < 0 indicates 

dispersed and 0 = random spatial patterns.
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Fig. 3. 
Hypothesized generalization of coexistence of two competitors (the two predators) in a 
spatially extended system, where one of the predators has a trait-mediated effect in 

inducing the prey to disperse faster and the other has a trait-mediated effect in inducing the 

prey to form spatial clusters. In the absence of predator II, the prey will tend to occur as 

isolates, inducing extinction of predator I. In the absence of predator I, the prey will tend to 

occur in the clusters, inducing extinction of predator II. Arrowheads indicate positive effect, 

balls represent negative effect.
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