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Somatic, de novo mutations affecting pluripotent cells and occurring early in embryogenesis 

can generate lesions in distinct germ layers (Hall, 1988; Youssoufian & Pyeritz, 2002). Such 

events give rise to syndromic mosaic disorders including Schimmelpenning-Feuerstein-

Mims syndrome (SFM), Cutaneous Skeletal Hypophosphatemia syndrome, and McCune-

Albright syndrome (MAS), wherein a multipotent cell acquires a postzygotic mutation in the 

Ras subfamily or GNAS, respectively, prior to its replication and differentiation into 

segments of mutant neural, endocrine, skeletal, and skin tissues (Groesser et al., 2012; Lim 

et al., 2014; Weinstein et al., 1991). Consequently, multiple end organs present a 

constellation of symptoms: SFM features ipsilateral keratinocytic or sebaceous nevi 

associated with central nervous system disorders including epilepsy, seizures, and mental 

retardation, as well as ocular, skeletal, cardiovascular, and genitourinary anomalies 

(Groesser et al., 2012), while MAS patients exhibit melanotic skin patches, polyostotic 

fibrous dysplasia of the bones, and endocrinopathies (Robinson, Collins, & Boyce, 2016; 

Weinstein et al., 1991). Unless the postzygotic mutation affects gonadal tissues as in 

germline (mutation present in gametes) or gonosomal (mutation in both soma and gametes) 
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mosaicism, such disorders are not transmitted to subsequent generations (Happle, 2016). 

Certain mutations, like the AKT1 variants that cause the Proteus syndrome, only manifest as 

mosaic disorders, as they are likely constitutionally lethal (Lindhurst et al., 2011). Patterned 

distributions of lesional tissue such as unilateral or linear presentations suggest genetic 

mosaicism (Happle, 2016). However, exceptions such as the coat-like pattern of giant 

congenital melanocytic nevi arising most commonly from somatic activating mutation in 

neuroblastoma RAS viral oncogene homolog (NRAS), exist (Charbel et al., 2014).

Here, we report a 5-year-old boy (MOS100) who presented at 3 years of age with 

asymptomatic expansion of the right maxillary alveolar ridge (Figure 1a). His parents gave 

informed consent for him to be evaluated under a NIDCR IRB-approved protocol and a Yale 

Human Investigation committee-approved study protocol. Dental radiographic imaging and 

computed tomography (CT) revealed a fibro-osseous lesion suggestive of fibrous dysplasia 

(Figure 1b), but without “ground-glass” appearance. The primary teeth exhibited abnormal 

growth and one permanent tooth bud was missing. Endocrine workup was unremarkable, 

and a bone series did not indicate evidence of extragnathic fibro-osseous bone lesions. A 6-

month follow-up CT and magnetic resonance imaging (MRI) revealed a slow expansion of 

the maxillary lesion, and incidental findings of a new brain stem mass with mild obstructive 

hydrocephalus (Figure 1c,d). Histopathologic assessment of the maxillary lesion 

demonstrated hypermineralized woven bone, with regions of dentinal tubules (Figure 2a,b) 

suggestive of a tooth cell origin. The patient underwent biopsy of brain stem lesion and 

placement of ventriculoperitoneal shunt, and histopathology was consistent with pilocytic 

astrocytoma (Figure 2c). The tumor was not mitotically active, with a mildly elevated Ki67 

proliferation index (5%). Florescence in situ hybridization using the D7Z1 DNA Probe 

(chromosome 7α satellite DNA) at 7p11.1-q11.1 and homebrew probes RP11-767F15 and 

RP11-60F17 did not identify BRAF duplication at 7q34 in the brain lesion (Tian et al., 

2011) and Sanger sequencing did not identify hotspot mutations in BRAF (V600) and 

GNAS (R201) mutation in the brain and maxillary lesions (data not shown).

Paired whole exome sequencing was performed using genomic DNA isolated from blood 

and biopsy of the maxillary lesion (Supporting Information Supplementary Methods), 

identifying a single somatic c.439C>T, p.147R>C mutation in beta-actin (ACTB). The 

mutation was confirmed via Sanger sequencing of DNA isolated from cells cultured from 

affected bone tissue (Supplementary Methods and Supporting Information Table 1). 

Suspecting that the subject’s astrocytoma resulted from widespread ACTB mosaicism, we 

performed targeted sequencing of ACTB in brain biopsy DNA. In so doing, we found the 

identical c.439C>T, p.147R>C ACTB mutation (Figure 2d), confirming multilineage ACTB 
mosaicism affecting the mesoderm (maxilla) and ectoderm (astrocytes) (Figure 2d).

Beta-actin is one of six isoforms of the highly conserved, ubiquitous “housekeeping” actin, a 

cytoskeletal protein involved in cell motility, adhesion, and embryonic development 

(Bunnell, Burbach, Shimizu, & Ervasti, 2011). Distinct germline mutations in ACTB 
including p.74G>S, p.117E>K, p.120T>I, and p.196R>H have been reported to cause 

Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) (Di Donato et al., 2014; Riviere et 

al., 2012), an autosomal dominant developmental disorder that features characteristic facies 

with hypertelorism, ptosis, broad nasal bridge, and pointed chin, along with mental disability 
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and structural brain abnormalities due presumably to impaired neuronal migration (Verloes, 

Drunat, Pilz, & Di Donato, 2015). Functional analyses of BWCFF ACTB mutations found 

altered cell adhesion and polymer instability (Johnston et al., 2013). Other germline ACTB 
mutations including p.183R>W cause juvenile-onset dystonia with hearing loss and 

developmental delay (Conboy et al., 2017), and this mutation led to alter depolymerization 

dynamics leading to a morphologically abnormal actin cytoskeleton (Procaccio et al., 2006).

Notably, the same postzygotic p.147R>C mutation in ACTB as in our subject was recently 

identified in a majority (14 of 23 examined, 61%) of Becker’s nevi (BN) and Becker’s nevus 

syndrome (BNS) subjects, along with a p.147R>S mutation. BN are common benign 

hamartomas affecting approximately 1 in 200 individuals, with syndromic cases having 

variable symptoms of cardiomyopathy, developmental delay, and unilateral breast 

hypoplasia (Cai et al., 2017). The mutation is localized to the pilar muscle of hair follicles, 

and was not shown to affect cytoskeletal actin organization or MAPK signaling. In mutation-

expressing myoblasts treated with smoothened agonist, however, increased Gli1 expression 

was found, suggesting that the ACTB p.147R>C mutation in tissues leads to increased 

Hedgehog (Hh) signaling (Cai et al., 2017). In our case of fibro-osseous dysplasia with 

pilocytic astrocytoma, the mechanism by which the p.147R>C mutation gives rise to the 

neoplasms is unclear, though Gli-dependent aberrant activation of the Hh pathway is a 

feature of multiple solid tumors and affects tooth development (Hanna & Shevde, 2016; 

Hardcastle, Mo, Hui, & Sharpe, 1998). Moreover, the Hh pathway has been shown to 

regulate the growth of gliomas, and higher levels of GLI1 as well as PTCH, a transcriptional 

target of the Hh pathway, was demonstrated in pilocytic astrocytomas (Rush, Abel, Valadez, 

Pearson, & Cooper, 2010). Finally, ACTB has been demonstrated to play a role in the 

development of gliomas by facilitating interactions between heat shock proteins and 14-3-3 

proteins, which are known to play a role in the patho-genesis of gliomas (Com et al., 2012). 

BNS can often feature skeletal defects, though they tend to be structural abnormalities such 

as hypoplasia of the shoulder girdle and extremities, scoliosis, and pectus excavatum 

(Happle & Koopman, 1997).

Our findings identify a novel clinical phenotype arising from multilineage ACTB mosaicism 

and extend the phenotypic spectrum of somatic ACTB mutation diseases to include a unique 

dental stem cell related facial skeletal disease and pilocytic astrocytoma. The presence of 

identical somatic mutation in two end organs arising from distinct germ layers confirms 

early postzygotic mutagenesis affecting a multipotent progenitor.
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FIGURE 1. 
Maxillary lesion and brain stem mass in MOS100. (a) Expansion of the maxillary bone was 

noted on routine dental examination (arrow). (b) Coronal CT demonstrated an area of 

dysplastic bone with a mostly sclerotic appearance (asterisk). (c) T2 sagittal MRI of the 

brain identified a central, soft tissue mass (arrow), which on biopsy was found to be a low-

grade astrocytoma, and (d) associated hydrocephalus in the lateral ventricles [Color figure 

can be viewed at wileyonlinelibrary.com]
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FIGURE 2. 
ACTB mutation in maxillary lesion and pilocytic astrocytoma. (a) Representative 20× 

histology from an area of the maxillary lesion, which included areas of fibrosis (asterisk) 

within areas of woven bone (WB). (b) 40× view of tubular-like structures consistent with 

dentinal tubules. (c) 40× histology of smear of brain stem lesion demonstrates monomorphic 

population of glial tumor cells with elongated pilocytic processes in myxoid matrix, without 

Rosenthal fibers or eosinophilic granular bodies. (d) Sanger sequencing of ACTB 
demonstrates multilineage somatic c.439C>T, p.147R>C mutation, present in both the 

maxillary bone lesion (middle) and astrocytoma (right), which is absent in blood (left) 

[Color figure can be viewed at wileyonlinelibrary.com]
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