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INTRODUCTION

Commensal gut bacterial communities (microbiomes) are predicted to influence human 

health and disease1,2. Neonatal gut microbiomes are colonized with maternal and 
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environmental flora, and mature toward a stable composition over two to three years3,4. To 

study pre- and post-natal determinants of infant microbiome development, we analyzed 402 

fecal metagenomes from 60 infants aged 0–8 months, using longitudinal generalized linear 

mixed models (GLMMs). Distinct microbiome signatures correlated with breastfeeding, 

formula ingredients, and maternal gestational weight gain (GWG). Amino acid synthesis 

pathway accretion in breastfed microbiomes complemented normative breastmilk 

composition. Prebiotic oligosaccharides, designed to promote breastfed-like microflora5, 

predicted functional pathways distinct from breastfed infant microbiomes. Soy formula in 

six infants was positively associated with Lachnospiraceae and pathways suggesting a short-

chain fatty acid (SCFA)-rich environment, including glycerol to 1-butanol fermentation, 

which is potentially dysbiotic. GWG correlated with altered carbohydrate degradation and 

enriched vitamin synthesis pathways. Maternal and postnatal antibiotics predicted 

microbiome alterations, while delivery route had no persistent effects. Domestic water 

source correlates suggest water may be an underappreciated determinant of microbiome 

acquisition. Clinically important microbial pathways with significant dietary correlates 

included dysbiotic markers6,7, core enterotype features8, and synthesis pathways for 

enteroprotective9 and immunomodulatory10,11 metabolites, epigenetic mediators1, and 

developmentally-critical vitamins12, warranting further investigation.

MAIN TEXT

Commensal gut microbes contribute to pathogen exclusion, nutrient acquisition, and 

immune recognition, thereby preventing or modulating multiple human pathologies1,2. 

Understanding determinants of early microbiome establishment can guide health-promotion 

and disease-prevention efforts.

Human milk provides optimal infant nutrition12, and favors gut Bifidobacterium and 

Lactobacillus spp4,13. While commercial formulas closely approximate breastmilk 

composition12,14, and galacto- (GOS) and fructo-oligosaccharides (FOS) are designed to 

mimic human milk oligosaccharides5, breastfed and formula-fed infant gut microbiomes 

remain distinct4,12. The impact of specific formula ingredients on gut microbiome 

acquisition is underdetermined.

To test the hypothesis that specific formula components alter developing gut microbiomes’ 

taxa and gene-encoded functions, we whole-metagenome shotgun sequenced 402 frozen 

fecal samples collected monthly from 60 healthy twins (median gestational age 37 weeks) 

from birth to eight months3,13 (Table S1). We constructed longitudinal GLMMs for taxa and 

genetically-encoded functional pathways (for brevity hereafter referred to as “pathways”) 

inferred using MetaPhlAn2 and HUMAnN2; all p values are two-tailed, from maximum-

likelihood GLMMs Tukey-corrected for multiple comparisons (see Online Methods, Tables 

S2-S7). This study, approved by the Human Research Protection Office of Washington 

University School of Medicine, complied with all ethical regulations. Written informed 

consent was obtained for all subjects.

We identified multiple known determinants of gut microbiome assembly, confirming the 

validity of our approach. (Figures 1, S1)4,15–17. Alpha diversity (Shannon index) correlated 
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positively with time (N=402 samples, p<0.001) and fruit/vegetable exposure (N=160, 

p=0.011), and negatively with maternal intrapartum ampicillin-sulbactam (N=46, p=0.005) 

and any postnatal antibiotics (N=49, p=0.043). Bifidobacteriaceae enrichment correlated 

with >50% breastfeeding (N=75, p=0.003) and lifetime GOS exposure (N=204, p=0.005). 

Lachnospiraceae increased with time (N=402, p<0.001) and decreased with any 

breastfeeding (N=125, p=0.014), Enterobacteriaceae decreased with time (N=402, p<0.001) 

and GOS (N=204, p=0.003), and Bacteroidaceae decreased with Cesarean delivery (N=227, 

p=0.003) and increased with fruit/vegetable exposure (N=160, p=0.004).

Breastfed infant gut microbiomes accrued amino acid synthesis pathways that 

complemented breastmilk’s changing amino acid content14, suggesting that parallel milk 

and microbiome development may reflect physiologic adaptation (Figure 2). Majority-

breastfed (>50%) infant gut microbiomes (N=75) had significantly more methionine 

(p<0.001), BCAA (branched-chain amino acids isoleucine/leucine/valine, p=0.020), 

cysteine/serine (p=0.012), threonine (p=0.004), and arginine (p=0.023) synthesis pathways. 

All pathways enriched in breastfed microbiomes except cysteine/serine correspond to amino 

acids less concentrated in breastmilk than in standard infant formula14,18. Breastfed 

microbial arginine and BCAA synthesis pathways increased sharply after birth and 

plateaued at ~60 days, coinciding precisely with normative declining amino acid content as 

breastmilk transitions from colostrum to mature milk.14 (Fig. 2). Breastmilk is low in 

methionine and cysteine in all lactation stages14; breastfed microbiomes had more 

methionine and cysteine pathways at all timepoints. Histidine and tryptophan are more 

abundant in breastmilk than in formula14, and breastfed microbiomes had significantly less 

histidine-purine-pyrimidine (p=0.046) and tryptophan-precursor chorismate (p<0.001)19 

synthesis pathways. Glutamate and glutamic acid are abundant in breastmilk14, and 

glutamate synthesis pathways (PWY-5505), though too sparse to model, were almost 

exclusive to formula-fed microbiomes (N=114, 90% of total). Lysine was an exception to 

milk-microbe complementarity. Infant formulas have more lysine than breastmilk, yet 

formula-fed microbiomes had more lysine synthesis pathways (p=0.003). Lysine synthesis 

pathways mapped to Bacteroides and Firmicutes genera (Supplementary Table 40); formula-

associated enrichment likely reflects accelerated microbiome maturation following 

breastfeeding cessation4,13.

Milk-microbiome complementarity may be physiologically relevant to neonatal and infant 

protein balance12,14. Although breastmilk’s amino acid content declines post-partum14 and 

formula composition is static, normative serum arginine, cysteine, and methionine levels 

decline almost identically in breastfed and formula-fed infants20, suggesting a “gap” that 

might be filled by microbially-produced amino acids. Breastfeeding-enriched metabolic 

pathways could mechanistically explain some of its known benefits11,12. Arginine and 

cysteine might prevent serious infections10,11 and biotin, enriched in breastfed infants 

(p=0.006), inhibits pathogenic E. coli adherence9. Many breastfeeding-associated amino 

acid synthesis pathways mapped to Bifidobacterium spp., an exceptionally successful 

breastfed gut colonizer. Breastfeeding-correlated enrichment of Bifidobacterium-identified 

amino acid synthesis pathways in a pattern contemporaneous and complementary to human 

milk maturation might reflect ancestral co-evolution with commensal microbiota.
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GOS and FOS are added to formulas to promote breastfed-like microbial communities5. 

Although lifetime GOS exposure correlated with Bifidobacteriaceae enrichment, prebiotics 

did not uniformly predict breastfed-like functional pathways, highlighting current 

technologic limitations of formula design and manufacturing (Figure S2). Concurrent GOS 

and FOS exposure (N=26) predicted increased microbial BCAA (p<0.001) and threonine 

(p=0.038) synthesis pathways, mimicking breastfeeding. Lifetime GOS exposure (N=204) 

predicted decreased tyrosine (p=0.004), cysteine/serine (p=0.003), and arginine-polyamine 

(p=0.040) synthesis pathways, opposing breastfeeding. In all models, prebiotic coefficients 

approximately equaled or exceeded those for breastfeeding. Pathways depleted with GOS 

exposure primarily belonged to Enterobacteriaceae (Table S4); discordant GOS and 

breastfeeding correlates might reflect GOS-related decrease in Enterobacteriaceae5.

Six infants from four families were soy-exposed; sample size ranged from 31–37, depending 

on soy formula type (+/− FOS) and exposure type (current or lifetime, Table S6). Soy 

feeding predicted greater alpha diversity (Shannon index, N=31, p=0.036), low 

Bifidobacteriaceae (N=31, p<0.001) and high Lachnospiraceae (N=32, p<0.001) content; in 

both taxonomic models, the coefficient for soy was greater than for breastfeeding (Figures 

1b, 3, S3). Two soy-exposed twin pairs were soy-discordant, permitting comparison with a 

related control. Twins are expected to have similar microbiomes3,13, yet soy-discordant twin 

microbiomes were dissimilar, while unrelated soy-exposed microbiomes had strong 

resemblance. Soy encourages Lachnospiraceae proliferation16, but has no clear effect on 

Bifidobacteriaceae16,21. Soy formula could disfavor Bifidobacteriaceae via cidal effects of 

soy isoflavone derivatives22, by containing prebiotics (FOS) with weak bifidogenic 

properties23, or by favoring competing taxa16. Pre-soy samples were few (N=6), but pre-post 

soy comparisons did not suggest soy-mediated bifidobacterial suppression: soy-fed 

microbiomes were low in Bifidobacteriaceae prior to soy exposure.

Low pre-soy bifidobacterial content suggests that low-Bifidobacteriaceae microbiomes 

might drive soy formula selection, especially as soy-feeding is usually elective24, rather than 

required for galactosemia, congenital lactase deficiency, and cow’s milk protein allergy25. 

Soy-correlated depletion of Bifidobacteriaceae-identified methionine (N=31, p=0.010) and 

S-adenosyl methionine (N=37, p=0.019) synthesis pathways suggests a mechanism for this 

effect (Table S4). Low-Bifidobacteriaceae microbiomes are associated with infant colic, 

which often prompts formula changes6. Methionine is a plausible mediator of enteric 

symptoms, as it is affects both gut epithelia26 and motility27. Indeed, methionine synthesis 

pathways positively correlated with reported diarrhea in our cohort (N=16, p<0.001), 

possibly representing a clinical correlate of methionine’s reported prokinetic properties27. 

Soy protein is methionine-deficient relative to mammalian casein and whey proteins; soy 

formula is methionine-supplemented with a free methionine content ~125 times that of 

breastmilk18,24. These gut-specific effects of methionine provide a biologically-plausible 

mechanism for symptoms associated with low bifidobacterial and methionine synthesis 

pathway content to improve after initiation of high-methionine formula.

Several soy-associated pathways – chorismate synthesis (N=31, p<0.001), lactose/galactose 

degradation (N=37, p=<0.001), and starch degradation (N=31, p<0.001) – suggested SCFA-

producing Lachnospiraceae proliferation. Soy-correlated enrichment of lysine synthesis 
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(N=32, p<0.001), riboflavin synthesis (N=32, p<0.001), and glycerol-to-butanol 

fermentation (N=32, p<0.001) pathways suggested adaptation to SCFAs. Lactose/galactose 

and starch degradation pathways frequently mapped to Lachnospiraceae (Table S4), and a 

greater proportion of chorismate synthesis pathways were Blautia-identified post-soy 

exposure (Fig. 3c). Lysine provides an acetate and butyrate synthesis substrate28, butyrate 

stress in Clostridium spp. induces upregulation of riboflavin and downregulation of 

methionine synthesis29, acetate stress promotes glycerol to butanol fermentation29, and 

many microbes co-regulate riboflavin synthesis genes with metabolic stress response 

modules30. Some soy-associated changes are potentially dysbiotic: decreased 

Bifidobacteriaceae and elevated glycerol to 1-butanol fermentation combined with high 

Lachnospiraceae content have been associated with inflammation, allergies, and hepatic 

steatosis2,7. These dysbiotic features raise concerns about the long-term safety and efficacy 

of elective soy formula feeding.

Maternal GWG has yet-to-be determined effects on infant gut microbiome 

development15,31,32. Here, GWG (N=402) predicted persistent enrichment of infants’ 

microbial glucose (p<0.001) and glycogen (p=0.005) degradation pathways, and 

phenylalanine (p=0.011), cysteine/serine (p<0.001), folate (p=0.015), thiamine (p<0.001), 

biotin (p<0.001), and pyridoxine (p=0.009) synthesis pathways, after controlling for 

gestational age, maternal diabetes, and pre-pregnancy body mass index (Table S1). Starch 

degradation pathways negatively correlated with GWG (p=0.032) The GWG distribution in 

our cohort roughly corresponded with Institute of Medicine guidelines for twin pregnancies 

(see Online Methods): women with inadequate and excessive GWG fell into the first and 

fourth quartiles, respectively. GWG-correlated pathways plotted by age and quartile suggest 

that GWG-mediated effects persistent at 8 months are most apparent in infants born to 

mothers who gained the least weight, and low GWG appears more impactful with increasing 

gestational age (Figure 4).

Although true malnutrition is unlikely in our cohort, maternal undernutrition increases risk 

of oxidative injury, glucose dysregulation, adiposity, and cardiovascular disease in 

offspring1. Several GWG-enriched vitamin synthesis pathways (pyridoxine, thiamine, folate) 

are critical to early infant neurodevelopment12 and thiamine synthesis pathways are a 

proposed distinguishing core ‘enterotype’ feature8. GWG negatively correlates with folate 

synthesis pathway abundance in the placental microbiome33. We observed the inverse 

relationship in our population (GWG-associated folate pathway enrichment), perhaps 

representing compensation for the fetal microenvironment. Folic acid is a key epigenetic 

mediator, and might effectuate enduring host-microbe interactions and mediate fetal origins 

of disease1.

GWG-associated microbial metabolic pathway changes persisting eight months postnatally 

extends current knowledge that GWG influences microbiome development in the first 

months of human life15,31,32 and up to one year in non-human primates34. As maternal 

dietary records and weight gain by trimester were not collected, we can neither identify 

trimester-specific modulations nor attribute GWG-associated effects to specific dietary 

variables (e.g. fat content). Enduring GWG-associated changes independent of delivery 

route or breastfeeding might reflect altered in-utero meconium colonization35, microbe 
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transfer from caregivers36, and other genetic or environmental factors (e.g. family feeding 

practices) influencing both GWG and infant microbiome acquisition.

Maternal intrapartum antibiotics predicted postnatal development of taxa and functional 

pathways, eclipsing the effects of delivery route and postnatal antibiotics (Figure S4). 

Maternal intrapartum ampicillin-sulbactam exposure (N=46) predicted depleted histidine/

purine/pyrimidine synthesis (p=0.012) and homolactic fermentation (p<0.001) pathways in 

offspring microbiomes. Postnatal amoxicillin exposure (N=38), analogous to ampicillin 

without sulbactam, predicted increased histidine/purine/pyrimidine synthesis pathways 

(p=0.011). Maternal intrapartum clindamycin exposure (N=25) positively correlated with 

Lachnospiraceae (p= 0.008), Enterobacteriaceae (p<0.001), and cysteine/serine (p<0.001) 

and biotin (p=0.002) synthesis pathways. Clindamycin was given immediately prior to 

Cesarean delivery in our cohort, but the more frequently used cefazolin (N=164) did not 

correlate with these pathways. Lack of persistent microbiome effects associated with 

Cesarean delivery when corrected for confounders is consistent with prior reports15. Infant 

multivitamin with iron exposure (N=40, Fig. S5) predicted enriched arginine-polyamine 

(p=0.018), folate (p<0.001), and heme (p=0.026) biosynthesis and homolactic fermentation 

pathways (p=0.028).

Domestic drinking water sources had associated microbiome signatures (Figure S5); sample 

size depended on exposure type (Table S6). Lactose/galactose degradation pathways 

positively correlated with filtered water exposure (N=42, p=0.004); enhanced bacterial 

counts with home water filters might explain this effect37. Tap water exposure predicted 

decreased Enterobacteriaceae (N=251, p=0.016), glycogen degradation (N=230, p=0.006) 

and homolactic fermentation (N=230, p=0.007) pathways. Bottled water exposure predicted 

increased homolactic (N=122, p=0.002) pathways, and boiled/distilled water correlated with 

increased pyridoxine synthesis pathways (N=61, p=0.003). Together with animal data38, 

these patterns suggest an underappreciated influence of drinking water on microbiome 

acquisition.

Although this DNA-based study represents genetic potential rather than confirmed functions, 

our observations are consistent with transcriptomic studies showing enriched arginine 

biosynthesis transcripts in mother-fed relative to formula-fed piglets39 and enhanced BCAA 

synthesis with sialylated oligosaccharide exposure in mice40. Further work is required to 

mechanistically establish a causal relationship between soy exposure and soy-fed 

microbiome signatures and to definitively show that soy protein per se drives these changes, 

likely via experimental validation in microbiome-humanized gnotobiotic mice13.

In summary, our findings suggest host-microbe metabolic mutualism in infancy, whereby gut 

microbiome gene content expands to counterbalance components lacking in human milk 

(Fig. S6). We propose that this milk-microbiome synergy reflects physiologic co-evolution 

with our earliest commensals, and could play a major teleological role in infant protein 

nutrition and child growth. The observed discordance between microbial functional 

correlates of formula components (e.g. prebiotics) and breastmilk may warrant revised 

metrics for evaluating the safety and efficacy of infant formulas. Soy formulas corresponded 

with profoundly altered taxa and pathways, some of which have pathologic correlates6,7. 
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Finally, the association between maternal GWG and altered infant microbiome carbohydrate 

utilization and vitamin synthesis pathways enduring eight months postnatally extends 

current knowledge that maternal GWG influences early microbiome acquisition. These data 

can inform further ecologic and mechanistic interrogations of gut microbiome development.

ONLINE METHODS

Study Population

This study was approved by the Human Research Protection Office of Washington 

University School of Medicine in St. Louis, and it complied with all ethical regulations. 

Written informed consent was obtained from all adult participants, and from the parents or 

legal guardians of all minor subjects. We used fecal samples that had been frozen at −80oC 

since collection at monthly intervals from a birth cohort of healthy twins in St. Louis, in 

which the mothers had consented to monthly fecal sample collection from birth until two 

years of age3,13,41–43. We selected a time interval of 0–8 months of age to capture transitions 

from breastfeeding to formula and early introduction of solid food. To minimize potential 

confounding effects of early illness or antibiotic administration, we excluded any neonates 

who received antibiotics in hospital following delivery. Because of this predetermined 

exclusion criterion, we also excluded all infants with a maternal history of chorioamnionitis. 

402 samples from 60 infants in thirty-one families met our pre-defined coverage threshold of 

5 million reads (2.5 million forward/reverse) before processing44, for a median of 7 samples 

per infant (IQR 6–8). Demographic data are provided in Table S1. We excluded neonates 

treated with antibiotics in the first week of life to avoid potential bias from early illness or 

antibiotic exposure; there were accordingly no infants with a maternal history of 

chorioamnionitis. Infant age at stool collection ranged from the day of delivery to 253 days. 

All infants were exposed to solid food by the end of the study period. The median 

gestational age was 37 weeks (IQR 36–38), 43% of infants were delivered vaginally, and 

47% of twins were monozygotic, 50% dizygotic, and 3% of unknown zygosity. Four infants’ 

mothers were diabetic (7%), six infants’ mothers developed preeclampsia (10%), and two 

infants were born to a mother with both conditions.

DNA Extraction and Sequencing

We extracted fecal metagenomic DNA and a positive control (Zymobiomics microbial 

community standard D6300), and used a modified Nextera DNA Library Preparation Kit 

protocol to prepare DNA for Illumina-platform sequencing (NextSeq-High; ~400,000,000 

max reads, 150 cycles per read). A positive control (Zymobiomics community standard) and 

a negative control (nuclease-free water) were included in sequencing runs. Detailed 

experimental protocols follow.

DNA extraction—We extracted DNA using the MoBio DNEasy PowerSoil Extraction Kit 

(Qiagen, 12888–100) according to the manufacturer’s instructions, with the following 

modification: in lieu of centrifugation, we used bead-beating with a BioSpec Mini-

BeadBeater for 4 minutes. Bead-beating consisted of 2 minutes on the “homogenize 

setting”, 2 minutes on ice, and then 2 minutes on the “homogenize setting”. A Zymobiomics 

microbial community standard (Zymobiomics, D6300) 0.75 mL was also extracted along 
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with fecal DNA samples. DNA was eluted in 100uL nfH20 and quantitated using a Qbit 

fluorometer and a Qbit dsDNA HS Assay Kit (Invitrogen, Q32854) according to the 

manufacturer’s instructions.

Nextera library preparation—Fecal DNA samples were diluted to a concentration of 0.5 

ng/uL and 1uL of each sample (including a nuclease free water negative control and the 

Zymo community standard positive control) were added to a 96-well plate. Sequencing 

libraries were prepared using the Nextera DNA Library Preparation Kit (Illumina, FC-121–

1011) protocol according to the manufacturer’s instructions, with the following 

modifications:

A. Tagmentation

1. Tagmentation master mix (TMM) Preparation:

Component 1 rxn (uL) 100 rxns (uL)

TD buffer 1.25 125.0

TDE1 enzyme 0.125 12.5

Nuclease free water 0.125 12.5

2. 1.5uL TMM added to 1uL gDNA in each well of the 96-well plate, 

vortexed, and centrifuged

3. Plate covered with microseal B and incubated in a Thermocycler at 55C 

for 15 minutes.

B. Adapter Addition

1. KAPA HiFi PCR master mix (KAPA HiFi HotStart 2x ready mix 

#KK2602/KM2605) used for addition of oligonucleotide index 

adapters. 11.2 uL KAPA PCR MasterMix and 8.8 uL of adapters (1uM) 

to each well, vortex and centrifuge.

2. PCR done with following Thermocycler protocol

i. 72C, 3:00

ii. 98C, 5:00

iii. 98C, 0:10

iv. 63C, 0:30

v. 72C, 0:30

vi. go to iii 13X

vii. 72C, 5:00

viii. 4C, forever

C. PCR cleanup

1. Add 22.5 uL AmpPure XP beads to PCR reaction (Agencourt A63881)

2. Incubate 5 min at room temperature
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3. Separate beads x 2min on magnetic stand

4. Remove supernatant

5. Wash beads x 2 with 200uL 80% ethanol

6. Air-dry x 15 min

7. Add 30uL resuspension buffer (10 mM Tris-Cl, 1 mM EDTA, 0.05% 

Tween-20 (pH 8.0)), pipet mix

8. Incubate at RT for 5 minutes

9. Separate beads on magnetic plate x 2 minutes

10. Transfer 27uL supernatant to new plate

11. Quantitate DNA with Qubit HS dsDNA Assay kit (Invitrogen, Q32854)

Illumina sequencing

A. Library Pooling: After quantitation, sequencing libraries were pooled in triplicate 

to minimize the effects of pipetting error. Schema for pooling included the 

following rules:

1. Target of 5ng DNA per sample, per pool

2. If calculated volume for 5ng <1uL, samples were diluted (2x, 5x, 10x, 

or 20x) so the volume was >1uL

3. Triplicate pools quantitated with Qubit HS dsDNA Assay kit 

(Invitrogen, Q32854)

4. Each pool was added to a single pool to make an equimolar solution, 

and diluted to a concentration of 2ng/uL

5. Pool submitted for Illumina platform sequencing (MiSeq flowcell) as a 

~500,000 read spike-in sample; reads analyzed to determine evenness 

of sample distribution. If needed, a fourth corrective pool was pipetted 

and added to the solution to ensure adequate read coverage (>2.5M 

forward/reverse) for all samples.

B. Sequencing

Pooled samples diluted to 2ng/uL with nfH20 (~10uM based on expected 

fragment size) were submitted for Illumina platform sequencing (NextSeq-High; 

~400,000,000 max reads) with 150 cycles per read. Sequence data was returned 

as a .fastq file with reads demultiplexed according to oligonucleotide adapter 

indexes.

Clinical Data Collection

Clinical data were collected from medical records at the time of delivery, monthly parental 

surveys at the time of stool sample collection, and outpatient pediatric records, and securely 

stored on a RedCap database. Parental questionnaires, infant medical records, and formula 
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manufacturers’ labels provided a detailed clinical and dietary dataset (including symptoms, 

medications, and introduction of new foods) associated with each sample. Parental dietary 

reports included infant formula brands, solid foods, and water sources, as well as fields for 

reporting daily or weekly frequency of each dietary exposure from the CDC Infant Feeding 

Practices Study II 45. As exclusive breastfeeding was rare in this twin cohort, infants were 

classified as breastfed if their parents reported >=50% of their feeds as breastmilk in the 

survey associated with a given stool sample. All breastfed infants received maternal milk; 

there were no reported exposures to banked or donated human milk. Medication exposures 

reported on parental surveys were confirmed with medical records from the child’s primary 

care physician. Information from the manufacturer’s label for each infant formula was used 

to generate a suite of variables representing exposure to specific formula ingredients (e.g. 

lactose, sucrose, soy protein, GOS, FOS); full details are below.

Clinical data analytic specifications—Clinical data de-identified of any protected 

health information was collected from medical records at the time of delivery, monthly 

parental surveys at the time of stool sample collection, and outpatient pediatric medical 

records, and securely stored on the RedCap database. Parental dietary reports included:

A. Binary fields for exposure to human milk, various infant formula brands, foods, 

medications, experience of symptoms, etc.

B. Fields for frequency of exposure to a food type, expressed either as the number 

of times an infant received a food per day, or per week

C. Free text options

To transform dietary information into data that were usable in statistical models, the 

following steps were followed

A. All frequency information listed as exposures per day was converted into 

exposures per week for convenience

B. Percentage of feeds comprised of formula were calculated from parental reports 

of number of formula feeds per week and number of breastfeeds per week. A 

binary variable for “Mostly Breastfeeding” was also generated if the percentage 

of breastfeeds was > 50%.

C. Carbohydrate, protein, and prebiotic (galacto-oligosaccharides, fructo-

oligosaccharides) ingredients were determined for each infant formula according 

to the manufacturer’s label (Table S7). Binary variables for exposure to each 

ingredient at each timepoint were generated according to the brand(s) of 

formula(s) the parents had reported, and the manufacturer’s labels. If parents 

reported using any brand of formula use on the survey associated with a stool 

sample, binary variables for ingredients in that formula were coded as “1”, even 

if the parents otherwise recorded that the infant was exclusively breastfed (i.e. if 

parents reported 100% breastfeeds, but filled in Enfamil Lipil as a formula they 

selected, the infant was coded as mostly breastfed, but exposed to the ingredients 

in Enfamil Lipil). If there was ambiguity in the specific brand of formula, then 

missing values were recorded for binary variables (e.g. if it was unclear whether 
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an infant was given Enfamil Lipil or Enfamil Premium, Lactose and Cow’s milk 

Formula, which are present in both, would be coded as “1” but galacto-

oligosaccharides and Polydextrose, which were only present in Premium, were 

recorded as missing). Twin siblings were assumed to have concordant feeding 

practices unless the parents specified otherwise.

D. Prebiotic variables were assigned according to exposure to neither, one, or both 

prebiotics (galacto-oligosaccharides and fructo-oligosaccharides)

a. GOS: exposure to galacto-oligosaccharides, regardless of concurrent 

FOS exposure

b. FOS: exposure to fructo-oligosaccharides, regardless of concurrent 

GOS exposure

c. Only GOS: exposure to galacto-oligosaccharides with NO concurrent 

FOS exposure

d. Only FOS: exposure to fructo-oligosaccharides with NO concurrent 

GOS exposure. ONLY found in soy formulas.

e. GOS/FOS: concurrent exposure to galacto-oligosaccharides AND 

fructo-oligosaccharides.

E. Solid food binary variables were aggregated as follows:

a. Fruit or vegetable exposure → Fruit/Veg variable; positive if either 

Fruit or Vegetables were positive

b. Meat, fish, or egg exposure → MeatFishEggs variable; positive if any 

of the components were positive

c. Juice or sweetened drink exposure → JuiceSweetDrink variable; 

positive if either component was positive

d. Cereal or starch exposure → CerealStarch variable; positive if either 

component was positive

e. An AnyDairy variable was created for exposure to any dairy product, 

including cow’s milk formula.

F. For binary variables reflecting current exposure to a food, medication, or 

ingredient, a second binary variable was generated reflecting lifetime exposure to 

that food, medication, or ingredient (exposure at any point prior).

G. Sample size for all binary variables is listed in Table S6.

H. Continuous variables (day of life, maternal weight gain, gestational age, weight) 

were log10-transformed prior to statistical analysis. Sample size for all 

continuous variables is 402.
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Sequence Data Processing

A predetermined minimum sequencing depth of 5 million raw reads (2.5 million forward/

reverse) per sample was required for inclusion in the study. Reads were trimmed using 

Trimmomatic (trimmomatic/0.33, minimum length = 60), and human DNA contamination 

was removed using Deconseq (Deconseq/0.4.3-chr38). We used MetaPhLan 2 

(metaphlan2/2.2.0)46 to extract taxonomic data, and HUMAnN2 (humann2/0.9.4)47 to 

identify microbial functions. All taxonomic data is reported as relative abundance; all 

functional data was normalized to counts per million using the humann2_renorm_table 

function. Full details are below.

Quality control—Only samples with >2.5M raw reads in each direction (>5M total raw 

reads) were included in this study. Fig. S7 shows reads by subject age (months) and the 

distribution of samples included in the study by age in months There was no systematic bias 

in raw reads by age. Neonates and infants <3 months had fewer successful samples than 

infants 3–8 months of age, with neonates having the lowest number of samples that met our 

quality threshold. The median number of raw reads per sample was 11.3 million (IQR 6.3 

million); the median number of reads following trimming and filtering human DNA was 9.2 

million (IQR 5.6 million).

We trimmed reads using Trimmomatic48 (trimmomatic/0.33), with the following 

specifications

PE –phred33

SLIDINGWINDOW:6:10

LEADING:13

TRAILING:13

MINLEN:60

We eliminated human sequences using Deconseq/0.4.3-chr3849. All analyses were 

performed on trimmed and decontaminated samples. Decontaminated sequence data was 

publicly deposited to protect the privacy of human subjects (Bioproject ID PRJNA473126, 

accession codes SAMN09259835-SAMN09260236).

Taxonomic data extraction—We used MetaPhlAn246 (metaphlan2/2.2.0) to extract 

taxonomic data from quality-filtered reads, with the following specifications

-- mpa_pkl ${mpa_dir}/db_v20/mpa_v20_m200.pkl

-- bowtie2db ${mpa_dir}/db_v20/mpa_v20_m200

Control samples (both a negative control and a positive control from a Zymo community 

standard) were included in all sequencing runs; the community standard failed in the fifth 

run. There were no taxa identified from the negative control samples. Although there was 

some bias in the community standard (gram negative organisms overrepresented, gram 

positive underrepresented), likely reflective of bias in DNA extraction, the results were 

highly reproducible, which is reassuring for analysis of longitudinal trends. There were 
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small proportions (relative abundance <0.1%) of taxa identified in the community standard 

sample that were not part of the theoretical community composition: Nauvomozyma 

unclassified, Pantoea unclassified, and Eremothecium unclassified (Table S8). 

Nauvomozyma and Eremothecium were not identified in any fecal samples, and Pantoea 

unclassified was only found in a relatively small number of fecal samples (N=73 out of 402). 

There were no taxa identified in the negative control sample. Community standard and 

negative control results did not suggest any systemic contamination.

Functional data extraction—We used Humann247 (humann2/0.9.4) to identify genes 

and functional pathways from short-read data, with the following specifications.

-- input-format fastq

-- search-mode uniref50

-- bypass-translated-search

-- bypass-prescreen

-- gap-fill off

We used the function humann2_renorm_table to convert gene and pathway output into 

normalized counts per million.

All models are performed on community-wide counts of MetaCyc-identified functional 

pathways47,50. Individual pathways contributing to aggregate families are detailed in Table 

S2. The proportion of functional pathways identified as homologous to specific genera are 

summarized in Table S4. In order to model the abundance of pathways related to synthesis 

of a specific metabolite (e.g. clinical predictors of arginine synthetic pathway abundance 

instead of just the abundance of arginine synthesis I or arginine synthesis IV), pathways that 

were related to a specific metabolite were aggregated by summing the normalized 

community-wide abundance.

Statistical Analysis

Statistical analysis and generation of figures was performed in R using the vegan, ape, 

ggplot2, lme4, lmerTest, MuMin, and multcomp packages. Alpha-diversity is reported as the 

Shannon index, determined from species-level abundance using the vegan diversity() 

function. PCOA plots were generated from a Bray-Curtis dissimilarity matrix of family-level 

taxa generated using the vegan vegdist() and ape pcoa() functions. Sequential MANOVA 

was performed using the vegan adonis() function. All generalized linear mixed models 

(GLMMs) in this study are maximum-likelihood mixed models generated using the lme4 

lmer() function, and Because the close resemblance between twins’ microbial communities 

represent an important potential confounding factor3,13,42, we controlled for twin status by 

including both Family and subject (Time | Subject) as mandatory random effects in all 

models.

Time, in log(days) was a mandatory fixed effect in all longitudinal GLMMs; all other fixed 

effects were back-fitted using a stepwise approach, according to the following schema. As 

the effects of some clinical variables (e.g. specific formula ingredients) on the developing 
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gut microbiome are completely unknown, we began the model-fitting process agnostic to 

which variables would be significant and screened all variables for inclusion. To broadly 

screen for covariation between clinical variables and microbiome features, for every 

taxonomic or pathway variable, we created two arrays of metadata corresponding to the 

values above and below the median (relative abundance or normalized CPM). We then 

applied a two-tailed test to compare these two arrays (t-test for continuous variables and 

Fisher’s Exact test for binary variables) and included all metadata variables with a screening 

p value <0.05 in a first-approximation GLMM. Because of the potential effects of Cesarean 

delivery and breastfeeding on the developing microbiome, they were always included in the 

first-approximation GLMM, even if they did not pass the screening test.

Maternal weight variables represented a special case, with multiple potential confounding 

variables15,31,32,35,51–53. GWG would ideally be classified as normal, inadequate, or 

excessive according to maternal pre-pregnancy BMI and estimated gestational age of 

delivery, according to Institute of Medicine guidelines54. However, such calculations are 

established only for singleton pregnancies, with provisional guidelines available for total 

weight gain in twin gestation. Thus, in our twin population, we attempted to control for 

confounding variables such as pre-pregnancy BMI, gestational age, maternal diabetes, and 

preeclampsia, by modifying our model selection pathway so that pre-pregnancy BMI and 

gestational age at delivery were always included in our first-approximation GLMM, even if 

they did not pass the initial screening test. The GWG distribution in our cohort roughly 

corresponded with provisional IOM guidelines for GWG in twin pregnancies (16.8–24.5kg 

for normal pre-pregnancy BMI, 14.1–22.7 kg for overweight pre-pregnancy BMI, 11–3-19.1 

kg for obese pre-pregnancy BMI)54. All mothers with inadequate GWG were in the first 

quartile of our population (2–15kg), while the fourth quartile from our population (26–33kg) 

represented excessive weight gain irrespective of pre-pregnancy BMI. Additional 

information found in Table S1.

First-approximation GLMM was then back-fitted with the lmerTest step() function, and the 

MuMin rsquaredGLMM() function as a preferred post-hoc test for goodness of fit. All p 

values are two-tailed, and are adjusted for multiple comparisons using the multcomp glht() 

function (tension = Tukey)55. Parameters for all GLMMs are in Table S1, and statistically 

significant coefficients are summarized in Table S5. Full details are below.

Statistical Modeling: All maximum-likelihood longitudinal generalized linear mixed 

models were constructed using the lme4, lmerTest, MuMin, and multcomp packages in R. 

For all taxonomic and functional pathways, the model formulae took the format of:

lmer(PathwayOrTaxon ~ (1 | Family) + (0 + log(day of life) | Subject) + log (day of life) + x 

+ y + …., REML=FALSE, data=df)

Family and (time | subject) were mandatory random effects and time was a mandatory fixed 

effect in all models.

Fixed effects were backfitted according to the following schema:

1. Screening for candidate variables

Baumann-Dudenhoeffer et al. Page 14

Nat Med. Author manuscript; available in PMC 2019 April 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a. For each outcome variable of interest (pathway or taxon abundance), 

the median was determined.

b. Two arrays of clinical variables were created; one associated with 

values above the median for the pathway or taxon of interest, and one 

associated with values below the median

c. To screen for co-variation of clinical variables with the outcome 

variable of interest, a two-tailed t-test was done for all continuous 

clinical variables, and a two-tailed Fisher’s Exact test was done for all 

binary clinical variables. This screening test was performed to select 

candidate variables for inclusion in a longitudinal generalized linear 

mixed model (GLMM). No statistical conclusions were made based on 

this screening test, as this simple screen could not correct for repeated 

sampling over time, familial effects, and correction for confounding 

variables.

d. All clinical variables with p<0.05 on initial t-test or Fisher’s Exact test 

screening were considered candidate variables for inclusion in the next 

naïve model-fitting set.

e. Day of life, delivery route, and breastfeeding (>50%) were always 

included in the set of candidate variables, regardless of significance in 

the initial variable screening step.

f. If any maternal weight variable (maternal pre-pregnancy BMI or 

maternal gestational weight gain) came through the initial screening 

step, then maternal pre-pregnancy BMI, maternal gestational weight 

gain, and infant gestational age at delivery were all included in the set 

of candidate variables, due to the potential for confounding effects.

2. Naïve model fitting

a. As binary variables were in two formats (current exposure to an 

ingredient vs lifetime exposure to an ingredient), two models were 

fitted: one for current exposure; one for lifetime exposure. 

Demographic variables (e.g. maternal age, infant birthweight, day of 

life) were included in all models

b. If variables were supersets of other variables (e.g. “Maternal Peripartum 

antibiotics” is a superset of “Maternal Ampicillin” and “Maternal 

Cefazolin”), the supersets and subsets were not included in the same 

model; instead a specific model (with only subset variables) and a 

general model (with only superset variables) were created.

c. Maximum-likelihood generalized linear models of all candidate 

variables identified in step 1 were created using the lmer() function in 

the lme4 package.

d. The step() function in the lmerTest package was used to backfit 

maximum-likelihood generalized linear models (GLMMs) for all 
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candidate variables, with a significance cutoff of 0.05 for retaining fixed 

effects.

e. Pseudo-R2 was determined using r.squaredGLMM() in the MuMin 

package

3. Testing for contribution of interaction terms

a. If the correlation matrix of the output model showed any values >0.1 or 

< −0.1, between infant age and another variable, an interaction term for 

that variable and infant age (x * log(day of life)) was added to the set of 

candidate variables, and back-fitting with the step() function was 

repeated

b. Pseudo-R2 was determined using r.squaredGLMM() in the MuMin 

package

4. Model comparison

a. The best model was selected from the set of backfitted models 

associated with a given outcome variable, which included a current-

exposure model and a lifetime-exposure model. If superset/subset 

variables were part of the candidate set, then the current and/or lifetime-

exposure models were also divided into specific and general models. 

Pseudo-R2 was prioritized as a post-hoc test to select the best model.

5. Adjustment for multiple comparisons

a. The glht() function in the multcomp package55 was used to adjust p 

values in the preferred model for multiple comparison 

(lincfit=mcp(tension=“Tukey”)).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Taxonomic Composition of Infant Fecal Microbiota
1A: Relative Abundance of Genera, Grouped by Month, Diet, and Delivery Route. 
Samples are grouped horizontally by month of life, diet (breastfeeding, cow’s milk formula, 

soy formula), and delivery route. All genera with ≥ 2% relative abundance in any sample are 

included, sorted vertically by phylum and relative contribution to the aggregate community 

of all subjects.

1B: Diversity and Major Taxa by Age and Diet. Boxplots (boxes representing 

interquartile ranges with median shown in black) portray alpha diversity (Shannon index) 

and relative abundance of Bifidobacteriaceae, Lachnospiraceae, and Enterobacteriaceae over 

time, separated by diet type: majority breastfeeding (N=75 samples), cow’s milk formula-

feeding (N=295), and soy formula-feeding (N=32). Diversity increases with age (p<0.001) 

and soy (p=0.036). Bifidobacteriaceae positively correlated with breastfeeding (p=0.003), 

and negatively with soy (p<0.001). Lachnospiraceae increased in association with time 

(p<0.001) and soy (p<0.001) and decreased with breastfeeding (p=0.014). 

Enterobacteriaceae decreased with time (p<0.001) and GOS in cow’s milk formula 

(p=0.003). All p values are from multivariate longitudinal maximum-likelihood GLMMs, 

Tukey-corrected for multiple comparisons (Table S3).

1C: Principle Coordinate Analysis (PCoA) plot of Taxonomic Families, Colored by 
Major Taxa. PCoA plots of taxonomic families based on the Bray-Curtis dissimilarity index 

for all samples (N=402) are shaded from low (purple) to high (green) relative abundance of 

Bifidobacteriaceae, Lachnospiraceae, and Enterobacteriaceae, highlighting three distinct 

clusters. Sequential MANOVA (adonis in R, two-tailed) yielded R2 values of 0.37 for 
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Bifidobacteriaceae (p=0.001), 0.13 for Lachnospiraceae (p=0.001), 0.11 for 

Enterobacteriaceae (p=0.001); residual R2 from a multivariate model including only these 

three taxa was 0.38.
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Figure 2: Dynamic Development of Amino Acid Synthesis Pathways
2A: Selected Amino Acid Synthesis Pathways, By Age and Diet (Breastfeeding vs. 
Formula), 2B: Selected Amino Acid Synthesis Pathways, By Age and Diet (Breastfed, 
Cow’s Milk Formula-Fed, Soy Formula-Fed). Scatterplots of normalized abundance 

(counts per million) of selected amino acid synthesis pathways vs. infant age (days) are 

shaded according to diet type. In plot 2A, mostly breastfeeding (N=75 samples) is compared 

with mostly formula feeding (N=327); in plot 2B, current majority breastfeeding (N=75), 

cow’s milk formula-feeding (N=295), and soy formula-feeding (N=32) are compared. 

Regression lines with 95% confidence interval shading are drawn using the loess method in 

R. All p values are two-tailed, from multivariate longitudinal maximum-likelihood GLMMs, 

Tukey-adjusted for multiple comparisons (Table S3).

2C: Known Reference Ranges for Human Milk Total Amino Acid (TAA) Content. 
Published TAA reference ranges in term breastmilk are plotted in comparison with USDA 

standards for infant formula to contextualize panels 2A and 2B. The line graph plots 

normative human milk TAA content (mg/100mL) content over time for colostrum (origin), 

transitional milk (0.5 months), two months, and four months post-delivery (Zhang et. al, 

Table 4)14. The bar plot shows predicted differences in total amino acid content (mg/100g 

total nitrogen) between USDA 2009 standards for infant formula and mature human milk 

(Zhang et. al, Table 8)14, divided by normative values for human milk; a +0.36 value for 

methionine indicates that formula has 36% more methionine (mg/total N) than human milk.
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Figure 3: Taxonomic and Functional Changes Associated with Soy Formula
3A: Taxonomic Structure of Soy-Exposed Infants’ Gut Microbiota. Stacked bar plots 

show relative abundances of taxonomic families over time from four twin pairs with at least 

one soy-exposed sibling. All families with ≥ 3% relative abundance are included (rare taxa 

aggregated as “Other”). Pre- and post-soy samples were available for three infants. 

Bifidobacteriaceae abundance was low pre-soy and throughout the study in all soy-exposed 

infants, except infant T0186_A, whose Bifidobacteriaceae recovered following soy formula 

cessation. Soy-discordant twin microbiomes were visibly dissimilar.

3B: Metabolic Pathways by Age and Soy Exposure Status. These boxplots (boxes 

representing interquartile ranges with median shown in black) show normalized abundance 

(normalized counts per million CPM) versus age (months) of three functional pathways: 

chorismate synthesis (PWY-6163), riboflavin synthesis (RIBOSYN2-PWY), and the 

aggregate methionine synthesis variable METCOMB. Longitudinal plots are separated into 

soy-naïve (N=364 current, N=359 lifetime), pre-soy (N=6), and soy-exposed samples (N=32 

current, N=37 lifetime). Chorismate and riboflavin synthesis pathways increased post-soy, 

while methionine synthesis pathways decreased. All p values are two-tailed, from 

multivariate longitudinal maximum-likelihood GLMMs, Tukey-adjusted for multiple 

comparisons (Table S3).

3C: Changes in Chorismate Synthesis Pathway Homology Following Soy Exposure. 
The column graph shows numerical differences in total chorismate synthesis pathway 

(PWY-6163) abundance pre- and post-soy in three soy-exposed infants and one control (N=4 

each timepoint). Total PWY-6163 abundance qualitatively increased more in soy-exposed 

infants than in the control. The heatmap plots numerical pre-post soy difference (normalized 
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CPM) in chorismate synthesis pathway-identified genera, which qualitatively shifted 

towards Blautia pathway homology with soy exposure.
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Figure 4: Altered Development of Vitamin Synthesis and Carbohydrate Utilization Pathways in 
Association with GWG (kg)
Boxplot boxes in all panels represent interquartile ranges with the median line shown in 

black; total N=402 all plots. All p values in all panels are two-tailed, from multivariate 

longitudinal maximum-likelihood GLMMs Tukey-adjusted for multiple comparisons (Table 

S3).

4A: Selected Metabolic Pathways by GWG. These panels plot normalized abundance 

(counts per million) of the glycogen degradation pathway GLYCOCAT-PWY, the aggregate 
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glucose degradation variable GLUCCOMB and the aggregate pyridoxine synthesis variable 

THISYNCOMB versus GWG (kg). The plots are colored according to GWG quartile in this 

population. All pathways plotted have a significant positive association with GWG. Sample 

size by quartile: Q1 (N=93 samples), Q2 (N=93), Q3 (N=108), Q4 (N=108).

4B: Selected Metabolic Pathways by Age, GWG. These panels plot normalized abundance 

(counts per million) of the same pathways by month of life, stratified by maternal GWG (kg) 

quartile in this population. The differences between the lowest and highest GWG become 

more apparent over time.

4C: Selected Metabolic Pathways by Maternal Pre-Pregnancy Body Mass Index. 
Normalized abundance (cpm) of the same pathways plotted versus maternal pre-pregnancy 

BMI, colored by GWG (kg) quartile.

4D: Selected Metabolic Pathways by Gestational Age (GA), GWG. These panels plot 

normalized abundance (counts per million) of the same three pathways versus GA at 

delivery, stratified by GWG (kg) quartile. In the lowest GWG quartile, the abundance vs GA 

curve slopes in the opposite direction of the abundance vs GWG curve, suggesting that 

lower GWG is more important with increasing GA.
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