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Abstract

Chronic livestock diseases cause large financial loss and affect animal health and welfare.
Controlling these diseases mostly requires precise information on both individual animal
and population dynamics to inform the farmer’s decisions, but even successful control pro-
grammes do by no means assure elimination. Mathematical models provide opportunities
to test different control and elimination options rather than implementing them in real herds,
but these models require robust parameter estimation and validation. Fitting these models
to data is a difficult task due to heterogeneities in livestock processes. In this paper, we
develop an infectious disease modeling framework for a livestock disease (paratuberculo-
sis) that is caused by Mycobacterium avium subsp. paratuberculosis (MAP). Infection with
MAP leads to reduced milk production, pregnancy rates, and slaughter value and increased
culling rates in cattle and causes significant economic losses to the dairy industry. These
economic effects are particularly important motivations in the control and elimination of
MAP. In this framework, an individual-based model (IBM) of a dairy herd was built and MAP
infection dynamics was integrated. Once the model produced realistic dynamics of MAP
infection, we implemented an evaluation method by fitting it to data from three dairy herds
from the Northeast region of the US. The model fitting exercises used least-squares and
parameter space searching methods to obtain the best-fitted values of selected parameters.
The best set of parameters were used to model the effect of interventions. The results show
that the presented model can complement real herd statistics where the intervention strate-
gies suggest a reduction in MAP prevalence without elimination. Overall, this research not
only provides a complete model for MAP infection dynamics in a dairy herd but also offers a
method for estimating parameters by fitting IBM models.
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Introduction

Chronic livestock diseases like paratuberculosis (PTB) and bovine tuberculosis (bTB) are com-
monly reported worldwide [1,2]. Bovine TB is caused by the pathogen Mycobacterium bovis
(M. bovis) while PTB is caused by Mycobacterium avium subsp. paratuberculosis (MAP). In the
UK, bTB has been spreading over the last two decades, putatively due to the presence of a wild-
life reservoir in badgers [3]. In the United States (US), 68% of dairy herds have apparently at
least one cow that is infected with MAP [4]. Both diseases pose a potential threat not only to
animal health and production, but also to public health. Historically, bTB has been a contribu-
tor to human TB cases worldwide and PTB infections in humans have been associated with an
increased risk of Crohn’s disease in humans [5]. Recently, it has been reported that these dis-
eases may pose additional collateral risks for public health due to dispensed antibiotics as a
treatment in some cases contributing to the spread of antibiotic resistance [6].

In the US cattle industry, the cost of PTB was estimated at $250 million every year [7]. The
MAP Infection usually occurs in the first year of a ruminant’s life [8] and transmission can
occur vertically [9] and/or horizontally via ingestion of fecal material contaminated by MAP
[10]. As PTB is a slowly progressive disease, the progression of individual animals through dif-
ferent MAP infection states is a complex continuous process alternating excreting and non-
excreting stages with a late onset of clinical signs [11,12]. It has a large economic impact for
producers due to decreased milk production [13-15], premature culling [16,17], reduced
slaughter value [18], low fertility [19,20], and an increased animal replacement rate [21]. How-
ever, MAP is difficult to diagnose due to the long incubation period [22,23], lack of early clini-
cal signs [24-26], and imperfect testing [27].

In the last two decades, different mathematical models have been developed on a within-
herd scale to understand MAP transmission dynamics [28,29] and effectiveness of recom-
mended control strategies [30-33]. These models were used to assess the impact of contact
structure on the MAP transmission [28], efficacy of test-and-cull policy [29,30,34,35], impact
of low diagnostic test sensitivity in decision making [8,36], stopping some transmission path-
ways using hygiene improvement [37], improved calf management [38], impact of super-shed-
ders in transmission [25,39], and economic efficacy of recommended programs [34]. Most of
these studies suggest that culling a test positive animal is an effective solution to reduce the
prevalence within a herd. However, none of the previous models considered the pervasiveness
of MAP in the farm environment and the value of individual animal information along with
real dairy herd data. Moreover, controlling MAP requires management of testing and culling
strategies to reduce the prevalence, but these are unregulated and reliant on farmers’ decisions
[40]. The decision to cull an animal is not straightforward and poses a multiscale problem
where an individual animal, farm dynamics, infectious status, disease symptoms, and manage-
ment profit are related [41]. Substantial costs are also related to the implementation of control
measures and prevention [21,25,42]. Previous MAP models have explored many potential
interventions programs, most considered population-level decision making rather than indi-
vidual-level animal information. Recently, individual-based models (IBMs) have been pro-
posed to show the value of the information about the infection, daily life events and
management policy for each individual animal within the farm [37,41,43-46].

Mathematical models of infectious diseases are tools to enhance the understanding both of
infection biology and efficacy of intervention policies in human and veterinary medicine [47].
However, translating modeling results into practice requires appropriate real-world assump-
tions to be built into the model. We hypothesize that in case of MAP, use of model results will
be more realistic when the model has been built on up-to-date infection biology and epidemi-
ology, parametrized from adequate real herd data, and fitted back to that real-world scenario

PLOS ONE | https://doi.org/10.1371/journal.pone.0203177 December 14, 2018 2/18


https://doi.org/10.1371/journal.pone.0203177

o ®
@ ’ PLOS ‘ ONE A data-driven infectious disease model

to test the recommended intervention strategies. In this paper, our aim is to build an IBM
framework of MAP infection that is fitted to and validated by in-depth longitudinal data from
three northeastern dairy farms. The objective of this study was four-fold: first, we extended an
existing IBM of a dairy herd to resemble the population level parameters (i.e. milk yield, herd
size) with three real herds to create three in silico herds; second, we fitted the milk-yield mea-
surement of individual animal to those herds; third, we fitted the model-predicted apparent
MAP prevalence to the observed data to obtain herd-specific infection parameters; and fourth,
we integrated a risk-based control strategies on those three in silico herds to evaluate the effi-
cacy of risk-based controls. Finally, we discuss the value of observational data to feed informa-
tion to simulation models, thereby making simulations more reflective and predictive of real-
world circumstances.

Materials and method
The Individual-based model

We used a multiscale agent-based simulation of a dairy herd (MABSDairy), an improved ver-
sion of dairy herd published in Al-Mamun et al. [37,44]. The MABSDairy is a multiscale sto-
chastic IBM that simulates individual cows in a standard US cattle herd with a daily time step.
In brief, each cow resides in one of three different management operations: adult/milking
(aged >720 days), calf (aged 1-60 days) and heifer rearing housing (aged 61-719 days). Adult
cows must calve to produce milk and the lactation cycle refers to the period between one calv-
ing and the next. The lactation cycle includes the processes of a voluntary waiting period
(interval during the postpartum period), insemination, and the dry off period (a non-lactating
period prior to an impending parturition to optimize milk production in the subsequent lacta-
tion). For fitting purpose, we modified the milk production Wood lactation curve by adding a
herd-specific term and a herd-specific random component [48]. The function is defined as

Y, = ad’e” +f «f,

wherei = Parity1 and2 by farm A, B, and C

where Y, is the yield on day t after calving, d is days in milk (DIM), a is a scaling factor for ini-

tial yield, b is a rate factor for the increase in yield to peak, c is a rate factor for the decline after

the peak, f; farm specific factor and f; is a random number. We used base milk yield parameters
from Dematawewa et al. for parities 1 and >2 in the basic model [49].

MAP infection dynamics

The infection compartments in the milking herd were divided into four categories: susceptible
(X4), latent (H), low shedding (Y;), and high shedding (Y5). In calf rearing housing, there
were two infection categories: susceptible (X¢) and infected (Y¢). In heifer rearing housing,
there were also two infection categories: susceptible (Xy) and infected (Yy). We included six
different transmission routes: adult-to-adult, adult-to-calf (vertical transmission), adult-to-calf
(horizontal transmission), environmental contamination, calf-to-calf, and heifer-to-heifer.
The detailed infection structure is shown in Fig 1.

In the milking herd group, adult animals could be infected by low and high shedding adults.
The probability of fecal-oral transmission for adult animals can be given by:

(ﬁ irec + Benvironmen )
Inf ot = ﬁA( dred N :
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Fig 1. A flow diagram of animal movements among infection categories for the adult, calves, and heifers within the herd. Each horizontal gray box classifies the
animals according to their initial age group. The green and red boxes define the susceptible and infected states, respectively, for each animal in the three age categories.
The probabilities of exit at each time point from susceptible to latent, latent to low shedding and low shedding to high shedding animals are s;, h;, and y;, respectively.
Vertical transmission probabilities from latent, low shedding and high shedding animals are Vy, Vy;, and V,,, respectively. Horizontal transmission probabilities to
calves from low shedding and high shedding animals are Hy; and Hy,, respectively. The probability an animal gets infected by the environment is Benyironment- Calf-to-
calf and heifer-to-heifer transmission probabilities are C;,rand Y, respectively. Stochastic death/sale probabilities for adult, calves, and heifers are ,, ., and py,
respectively. u is the replacement animals coming from heifer compartment upon completion of two years.

https://doi.org/10.1371/journal.pone.0203177.g001

ﬂdirect = ﬁYl Y, + BYQ Y,

= U(0,1)

Benvi‘wnment

Susceptible adult animals in the milking herd compartment were susceptible to MAP infection
by contact with low shedding (Y) and high shedding (Y>) animals with transmission rates of f3,,
and BY2 , respectively. B is the adult-to-adult transmission coefficient, B,,yironment is the MAP con-
tamination risk from the environment and N is the total number of animals in the milking herd,
N = X4+H+Y;+Y>. The horizontal infection probability to calves can be determined by

Bdirec + ﬁenvironmen
Inf;;dult—calf = ﬁa < : N :

c
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[, is the horizontal transmission coefficient for an adult to newborn calves and N. is the total
number of calves at every day, N. = Xc + Y.. A calf can also become infected vertically (i.e., in
utero infection) by an adult and it is modelled using the certain proportions [30].

A calf stays in calf rearing housing for the first 60 days after birth. The probability of direct
transmission was calculated as

Yc + ﬂenvironmen
Inf;a[f—culf = o+ :Bc (t>

N

c

B, is the horizontal calf-to-calf transmission coefficient, N. is the total number of calves at each
day, X_ is susceptible calves, Y. is infected calves. During the first day after birth, a calf may
also be infected horizontally by infected adults present in the maternity pen or vertically by an
infected dam.

Susceptible calves became susceptible heifers and infected calves became infected heifers.
Infected heifers could infect susceptible heifers by the heifer-to-heifer transmission path

Y, A Benvironment
Inﬁlexferfhmfer B, ( NXH )
By, is the horizontal heifer-to-heifer transmission coefficient, and the total number of heifers is
Ny, = Xy + Y. After one year, the infected heifers became latent heifers and eventually
entered the milking herd as latent adults. For simplifying the model, we assumed that heifer
remains in the heifer rereading housing are transiently shedding while they ended up in the
adult herd as latent animals.

Observed herd data

The longitudinal dataset was obtained from a longitudinal study of three commercial dairy
farms in the northeastern US: farm A in New York State, farm B in Pennsylvania, and farm C
in Vermont [24,50]. All three farms participated in the Regional Dairy Quality Management
Alliance (RDQMA) project, which was a multistate research program conducted under a
cooperative research agreement between the USDA Agricultural Research Service, and four
universities: Cornell University, Pennsylvania State University, University of Pennsylvania,
and University of Vermont. The project consisted of longitudinal data collection for endemic
infectious diseases of public and animal health concern in dairy herds. For a more complete
description, including information on farms, samplings, and microbial analyses, see Pradhan
et al. [50]. Briefly, the milking herds consisted of 330, 100, and 140 cows on farms A, B, and C,
respectively. Sampling commenced in February, March, and November 2004 on farms A, B,
and C, respectively, and continued for approximately 7 years, until 2010. The project design
included a biannual collection of individual fecal samples and a quarterly collection of individ-
ual serum samples from all milking and non-lactating cows. Additionally, culled cows were
tracked as much as possible from the farm to the slaughterhouse, where four gastrointestinal
tissues and a fecal sample were collected with the cooperation of USDA Food Safety and
Inspection Service personnel. The harvested tissues included two lymph nodes located at the
ileocecal junction and two pieces of ileum, one taken from 20 cm proximal to the ileocecal
valve and the other taken from very near the ileocecal valve. In addition to the sampling of ani-
mals, the farm environment was sampled in approximately 20 locations on a biannual basis.
All fecal and environmental samples were tested by 4-tube culture for the presence of viable
MAP organisms, reported as colony-forming units per tube. All serum samples were tested
using the ParaCheck ELISA (Prionics USA Inc., La Vista, NE) for antibody reactions to MAP
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antigens. On each of the farms, demographic data, production data and herd management
information were collected. Precise demographic data included birth date, birth location, calv-
ing dates, fertility data, animal location data (pen status at any point in time), dry-off dates,
culling information and cull dates. These demographic data were collected for each animal
present on the farms. All infection data, strain typing data, herd management, demographic,
and production data were maintained in a relational database.

Model parameters

The parameterization of the base dairy herd model is described in Al-Mamun et al. [37,51].
Initial infection parameter values were updated according to Mitchell et al. 2015 [47]. Table 1
provides the base parameters for the initial MAP transmission before fitting the model to the
RDQMA herds.

Model fitting method

The goal of the model-fitting exercise was to estimate key parameters in order to produce results
consistent with the epidemiology observed on the three farms. Our fitting exercise was two-fold:
first, we fitted our base dairy herd models with farm-specific parameters (total population and
milk yield), then we fitted the model predicted apparent prevalence results based on antemortem
ELISA and fecal testing and postmortem tissue and fecal testing results for the farm. To assess
the goodness-of-fit we sampled from the defined parameter ranges in multiple rounds and ran
the three in silico dairy herds. The model fitting was done using a nonlinear fitting method
named Nelder-Mead Simplex Method [52], which is used for unconstrained optimization.
While fitting the milk yield and apparent prevalence, the best-fit parameters were extracted.

To determine the specific range for each parameter, we used multidimensional parameter
space searching method. The point estimate of each parameter was taken as a mean value and,
using Latin Hypercube Sampling, 100,000 parameter combinations were generated spanning
the specified range +75% of the mean values. The searching was done in two stages. In the first
stage, we set a broad range to identify the particular regions of the parameter range and chose
the best 10,000 (10%) parameter sets. In the next stage, we ran the simulation with 10% param-
eter sets to compare with the best fit curve by minimizing the sum of square error. The param-
eter ranges presented in the results section were calculated from the top 1% simulations.

Intervention strategies

Once the three in silico herds were stable using fitted values, we tested different proposed inter-
vention strategies. We chose risk-based testing and culling strategies suggested by Al-Mamun

Table 1. Base parameter values of Mycobacterium avium subsp. paratuberculosis (MAP) infection within a dairy herd.

Symbols Description Initial value References

Vi The proportion of calves from latent animals infected at birth 0.15 [30]

Vi The proportion of calves from low-shedding animals infected at birth 0.15 [30]

Vy2 The proportion of calves from high-shedding animals infected at birth 0.17 [30]

Ba Adult-to-adult transmission coefficient 0.05 [37]

B. Adult-to-calf transmission coefficient 0.383 [37]

B. Calf-to-calf transmission coefficient 0.0025 [37]

B Heifer-to-heifer transmission coefficient 0.001 Calibrated in the model
ﬁyl Transmission rate between low shedders (Y;) and susceptible (X4) 2/year Calibrated in the model
ﬁyz Transmission rate between high shedders (Y,) and susceptible (X,) 20/year Calibrated in the model

https://doi.org/10.1371/journal.pone.0203177.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0203177 December 14, 2018 6/18


https://doi.org/10.1371/journal.pone.0203177.t001
https://doi.org/10.1371/journal.pone.0203177

®PLOS | one

A data-driven infectious disease model

etal. [37]. In brief, all cows that tested negative throughout testing were marked as low risk or
green cows. The cows that tested positive were divided into two groups: yellow and red. Red
animals had at least 2 positive tests out of the last 4 tests and yellow cows had one positive test.
We proposed two controls: control I, culling red animals straightway (aggressive culling); and
control I, culling only red animal with a delay of 305 DIM (delayed culling). The simulations
results were then compared against the observed pre-fitted data from the three herds using
three intervention strategies: no control, control I, control II.

Simulation background

First, the base dairy herd model was initiated with a certain proportion of adult animals for
farms A (330), B (100) and C (140). Second, after a 2 years burn-in period the model was run
for 7 more years to resemble the observations of the real herds. During the 2 years burn-in
period, each farm was assumed to be self-sufficient in producing their own replacement, so
that no animal purchase from outside was needed. The model was initiated with a pre-deter-
mined distribution of animals with different parities. At each time step, the algorithm first
determined the group of animals. If it found adult animals, it checked reproductive status (vol-
untary waiting period (VWP), waiting to be inseminated, and pregnant) and milk yield status.
Any cow on the 280 days of pregnancy was assumed to calve. For a newborn calf, the stillbirth
probability was checked; if the calf was not stillborn, it was flagged as a calf. Only female calves
were kept in the herd, and male calves were removed immediately after birth. Once an adult
animal calved, it transitioned to VWP status and continued in the milking herd loop until it
was removed due to culling or death. Mortality was allowed in the calf rearing loop; otherwise,
calves were transferred into the heifer loop at the 61st day of age. In the heifer loop, heifers
were inseminated at the 400 days of age in order to become pregnant, so that they would calve
at the 680 days of age. When heifers were ready to calve for the first time, they transitioned to
the milking herd in the model. The model was fitted for the 7 years data for each farm. Third,
for testing intervention strategies, each model was fitted to the first 4 years of data- that is
called pre-intervention fit, and then the intervention was tested in 2 phases. In the first phase,
3 years and then extended more 2 years to see how the suggested strategies result in long-term.
The base model was developed as custom codes in MATLAB and other data analysis were
done using R.

Results

The purpose of the fitting exercise was to obtain a better fit to the estimates of three herds
prior fitting to the apparent prevalence. The model predicted total number of animals (adult,
calves, and heifers) closely resembles the data from the three real farms (shown in Table 2).

Fig 2 shows the concordance between predicted and observed milk yield data from three
herds. It is evident that the models predicted milk yield estimations matched with the observed
milk yield from three northeastern herds. The best fit model predictions to the observed milk
yield curve for parity 1 and parity >2 are shown in supplementary S1 Fig. The best fitting lines
also describe that the model was able to capture inherent randomness from the data into the
model. The estimation of the critical parameters g, b, ¢, and f; of the modified lactation curve
are presented in Table 3.

Model fitting exercise for disease parameters

Table 4 represents the observed apparent prevalence and apparent incidence and the tracking
of the animals in the next biannual testing for three farms for seven years, 2004-2010. The
observed prevalence shows zero infected animals in the last half of 2010, for the sake of
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Table 2. The comparison of observed and predicted values from three in silico farms in terms of a total number of
animals, and average daily milk yield (in kg) for 305 days, presented as mean (95% confidence interval).

Total number of animals Milk yield: parity 1 Milk yield: parity > 2

Herd A
Observed
Predicted

Herd B
Observed
Predicted

Herd C
Observed
Predicted

720 (708-754)
714 (693-737)

194 (102-230)
200 (182-219)

262 (116-339)
221 (184-257)

36.07 (29.61-40.73)
36.15 (30.44-40.73)

33.38 (24.34-40.35)
32.97 (26.51-38.31)

27.49 (19.03-34.68)
27.16 (20.23-32.98)

39.48 (27.11-49.86)
39.49 (27.56-50.18)

34.52 (17.42-47.40)
34.97 (21.86-48.29)

27.49 (19.03-34.68)
27.90 (17.12-38.06)

https://doi.org/10.1371/journal.pone.0203177.1002

persistence scenario we replace that with the previous quarter value. During our simulation,
we normalized the prevalence with the previous half of the year so that it remains consistent
for our simulation. We simulated the three in silico farms to fit with the observed apparent
prevalence data from herd A, B, and C.

Fig 3 shows the model predicted prevalence with a 95% confidence interval while fitting
against the observed prevalence. It should be noted that our model confidence interval slightly
overpredicts the prevalence of herd B, but for other two herds, it forecasts the best fitting.
Through this model fitting exercise, our aim was to estimate the critical infection parameters
for each herd, so that we can suggest herd specific intervention strategies.

Estimated parameters

Table 5 provides the best fit estimates of herd-specific infection parameters for three
northeastern dairy herds. Among the three herds, the model suggested that dam-to
daughter transmission routes were the major transmission routes with the coefficient (3,)
values of 0.4046, 0.1781 and 0.825 for farm A, B, and C, respectively. Environmental con-
tamination (Benvironmen:) Was the second major transmission routes while adult-to-adult
transmission route was ranked third. Interestingly, we found that the importance of adult-
to-calf transmission was highest in herd C, in which the initial number of latent animals
were highest in numbers among the three herds. Based on the best 1% parameter sets,
herd C again had the highest number of latent animals present (shown in supplementary
S1 Table).

It is also noticeable that herd A has the highest adult-to-adult transmission probability
among the three farms. Also, the initial starting distribution of the infected animals was very
important for the fitting. It is seen that herd C start with the highest proportion of latent (73%)
and low shedding (31%) animals among the three farms. The best-fitted parameters set is
shown in the supplementary table (shown in supplementary S1 Table).

Intervention strategies

Once the three in silico herds were obtained from the fitting exercises, our next aim was to test
the risk-based test and culling policy for each farm. Fig 4 presents the summary of the pre-
intervention, post-intervention, and extended intervention results to the three fitted dairy
herds. The results clearly show that the suggested intervention policy reduces the overall
apparent prevalence for three herds, but it is noticeable that for high endemic herds the risk-
based culling was comparatively less effective than the low endemic herds. To investigate
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Fig 2. The comparison of observed and model predicted milk yield distribution for 1% simulation using best-fit parameters for the milk yield.
In the box plot, the bottom and top end of the bars are minimum and maximum values respectively, the top of the box is the 75th percentile, the
bottom of the box is the 25th percentile, and the horizontal line within the box is median; outliers are presented as a solid black circle and the density
of the milk yield is presented by the width of the violin.

https://doi.org/10.1371/journal.pone.0203177.9002

further, we extended our intervention 2 years beyond the observations, but we did not see any
elimination of MAP infection for the risk-based culling policy with control II. Culling red ani-
mals immediately (control I) was the best policy for all herds to decrease prevalence. Further-
more, we also calculated the number of years taken by the model to reduce the prevalence by
25% and 5% while two control programs were implemented after the pre-intervention period
for three farms (shown in S2 Fig).
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Table 3. The estimated parameters from the fitting exercise for the modified milk yield function for three farms A, B, and C.

a b c Herd specific parameter (f;)
Farm A-Parity 1 17.87 0.21 0.0020 3.59
Farm A-Parity>2 25.23 0.20 0.0033 5.19
Farm B-Parity 1 16.09 0.19 0.0020 6.60
Farm B-Parity>2 23.38 0.20 0.0039 8.33
Farm C-Parity 1 15.25 0.19 0.0027 6.55
Farm C-Parity>2 16.50 0.22 0.0040 9.00

https://doi.org/10.1371/journal.pone.0203177.t1003

Discussion and conclusion

Paratuberculosis is endemic in the bovine population in the US, which makes elimination
unlikely at this time. When elimination is not possible, we have to rely on implementing the
best herd-specific control strategies. Previous mathematical modeling studies show variable
results for investigating infection dynamics [28,30,32], test-and-culling strategies [30,53], vac-
cination [29,54,55], and intermittent MAP shedding [35,47]. None of these combine the indi-
vidual animal’s information with herd management policy while fitting the model to real herd

Table 4. The calculation of apparent prevalence and apparent incidence and the tracking of the animals in the next testing in bi-annually phase for three farms

(2004-2010).

Year 2004 2005 2006 2007 2008 2009 2010

Test phase 2 3 4 6 8 10 11 12 13 14

Herd A

Total positive cows * 14 25 34 28 34 32 21 23 24 17 14 9 7 0
Animals tested 315 330 364 349 354 364 338 332 337 347 341 347 296 239
Apparent prevalence 4.4 7.6 9.3 8.0 9.6 8.8 6.2 6.9 7.1 4.9 4.1 2.6 2.4 0.0
New cases” 14 16 18 12 13 13 7 10 11 6 5 2 0 0
Cow-years at risk® 239 293 284 272 276 280 198
Apparent incidence? 0.13 0.10 0.09 0.06 0.06 0.02 0

Herd B
Total positive cows 9 8 6 3 6 5 4 3 3 2 5 5 1 0
Animals tested 106 122 128 128 113 113 115 114 111 109 113 109 82 1
Apparent prevalence 8.5 6.6 4.7 2.3 5.3 4.4 3.5 2.6 2.7 1.8 4.4 4.6 1.2 0.0
New cases 9 1 2 0 5 4 1 0 1 1 4 1 0
Cow-years at risk 72 99 95 94 93 83 37
Apparent incidence 0.14 0.02 0.10 0.01 0.02 0.06 0

Herd C
Total positive cows 0 17 26 23 19 22 18 20 18 15 13 8 7 0
Animals tested 0 121 145 149 178 161 145 155 157 145 142 117 102 0
Apparent prevalence NA 14.0 17.9 15.4 10.7 13.7 12.4 12.9 11.5 10.3 9.2 6.8 6.9 NA
New cases 0 17 9 7 5 9 5 4 4 5 2 2 1 0
Cow-years at risk 13 114 123 110 117 108 33
Apparent incidence 1.27 0.14 0.11 0.08 0.08 0.04 0.03

*Test positive cows by considering enzyme-linked immunosorbent assay (ELISA) testing, fecal testing and tissue testing.

*Number of cows tested positive for the first time

“Observation time (in years) from entry in the study (at the first testing) until each cow tested positive or left the study (by culling, i.e. the infection status of the cow is

right censored)

INew cases per year / cow-years at risk

https://doi.org/10.1371/journal.pone.0203177.t1004
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Fig 3. The fitting results of three in silico herds A (top), B (middle), and C (bottom) compared to the observed apparent prevalence for 7 years by biannual
sampling. The shaded region shows the 95% confidence interval of the best 1% simulation runs.

https://doi.org/10.1371/journal.pone.0203177.9003

data. To enhance this effort, IBM techniques can play an important role in modeling decisions
for individual animal in an endemic herd. However, implementing the IBM results in real
herds require realistic estimation of the herd and infection-specific parameters to test different
intervention strategies. This paper presents an IBM framework of MAP where the model pre-
dicted infection dynamics are fit to and validated by the observed datasets conducted in three
Northeastern US dairy herds. The fitting results show that the IBM is capable of reproducing
the observed milk yield of each herd and estimating key herd-related parameters. Next, the
model estimates critical transmission parameters for three herds and provides the best fit to
the observed apparent prevalence data. Finally, we applied risk-based test and culling interven-
tion strategies to the best fitted in silico herd models, showing that suggested interventions
may be more beneficial for low prevalence herds than for moderate prevalence herds.

Precise information about the animal’s daily life events, such as age, milk yield, parity status,
infection status, clinical signs, and adult, calf and heifer rearing management policies may
assist to design real-world control strategies. Many MAP infected animals remain subclinically
affected at the time of the initial infection, so precise information on the infection status of
animals, combined with their economic status, is valuable for implementing effective and

Table 5. The values of fitted parameters for three farms A, B, and C.

Parameters Herd A Herd B Herd C
Adult to adult transmission coefficient (84) 0.0069 0.0023 0.0005

Adult to calf transmission coefficient (8,) 0.40 0.18 0.86
Environmental transmission coefficient (B.,.,ironment) 0.087 0.071 0.016

Calf to calf transmission coefficient (8,) 5.3x107¢ 3.61x107% 5.2x107%

Heifer to heifer transmission coefficient (8y,) 4.36x107% 1.18x107%° 1.98x107%

Initial Latent animals (H;) 18 12 81

Initial low shedding animals (Y, ) 15 2 12

Initial high shedding animals (Y, ) 22 8 9

https://doi.org/10.1371/journal.pone.0203177.t1005
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Fig 4. The apparent prevalence during the pre- and post-intervention period during the simulation of three in silico herds with two control strategies. Control I:
culling red animals immediately and control II: culling only red animal with a delay of 305 days in milk. The two control measures are simulated in separating runs of
the three in silico herds.

https://doi.org/10.1371/journal.pone.0203177.9004

economically viable control strategies. The base herd fitting results suggest that the IBM recre-
ates the observed animal distribution of the real herds (shown in Table 1). It also captures the
observed milk yield curves and provides the estimates of herd-specific milk yield parameters.
This feature is very important to evaluate the economic efficacy of the implemented interven-
tions [56]. Lower milk yield is an important factor in the decision to cull an animal, but when
culling an animal due to PTB test results is reccommended, the effect on milk yield is not neces-
sarily understood [57]. This leads to a lack of interest, on behalf of the herd manager, to cull
based on test results alone. We observed this in the RDQMA herds, where only 0.01% of cull-
ing decisions were listed as being due to PTB, and all of those were in high-shedding animals.
Furthermore, previous studies show that low- and high-path animals produce more milk
before their first positive test than always-negative animals, especially high-path animals
[14,35,58]. Mean milk production decreases after a first positive test, although non-progressing
animals recover some productivity over time [57,58]. To account the overall impact of milk
yield on culling, we used threshold values of milk yield for parity 1 and 2 for each farm and cal-
culated median milk yield values for each parity from observed data.

The in silico dairy herd models reconfirm the apparent prevalence trends of the RDQMA
herds (shown in Fig 3). In reality, calculation of the real-time prevalence is a complex process
because such fine-grained testing detail is rarely available immediately. Moreover, different
testing methods and variable test sensitivities make the task more difficult. Here, we used ante-
mortem ELISA, fecal testing and postmortem tissue and fecal testing results to determine the
test positive animals. For antemortem fecal culture tests, the sensitivity is determined to be 23—
29% for infected cattle and 70-74% for infectious cattle [24]. At the slaughterhouse, the histol-
ogy of biopsies yields sensitivity of 90 + 5% and specificity of 100% and tissue culture yields
sensitivity of 60% and specificity of 100% [59]. In comparison, ELISA tests used by the
RDQMA study provide 20% sensitivity for infected cattle and 96% specificity; these numbers
are aligned with the previous reports by Nielsen and Toft [60]. For simplicity, we chose a range
of 25-35% sensitivity for infected animals and 96% specificity. It is one of the limitations of
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our model that we chose combined sensitivity and specificity estimates, whereas real herds
may choose among three different testing strategies (fecal culture, ELISA, and PCR). With
fecal culture, the results may take up to 3 months. Because of the time delay, many farmers rely
on imperfect ELISA testing. Testing practices and recommendations vary in different geo-
graphical regions, with some finding that strategies like adaptive test scheme, age-specific sen-
sitivities, and frequent testing can improve control. Recently, a simulation model built for the
standard Danish dairy herd suggested an adaptive test scheme [8]. The age-specific test sensi-
tivities were calculated from the test-records of 18,972 Danish dairy cows with MAP specific
IgG antibodies on their final test-record [61]. However, care should be taken because using fre-
quent testing may result in culling of many false positive animals [47].

To control PTB, it is important to determine which transmission routes are playing a major
role in MAP transmission and persistence in the farm. Traditionally, the dam-to-daughter
route is considered the primary route for transmitting MAP, but it can vary due to herd man-
agement policies (8). It is difficult to estimate this parameter directly from the epidemiological
data due to imperfect testing and the wide variety of management policies. The role of envi-
ronmental contamination is also difficult to measure from the epidemiological data, as MAP is
pervasive within a dairy herd. However, our model suggests that dam-to-daughter transmis-
sion is indeed the primary transmission route, while environmental transmission is secondary
route, in all three RDQMA herds (shown in Table 5). In our longitudinal data, we have the
results of culturing environmental samples collected quarterly from several locations from
farms. The culture results suggest that manure storage areas and shared alleyways were most
likely to be positive for three herds [59], but no relationship was found between non-pen envi-
ronmental sample status and the distance between shedding animals and the sample’s location,
and neighboring pens did not significantly affect the results of the pen-level analysis. In our
model, we included B,,,yironmen: DY using a probability distribution for the sake of simplicity. A
recent mathematical study presented a theoretical method to quantify the level of environmen-
tal contamination through fecal-culture [62]. To quantify the precise role of different environ-
ments, further investigation of infection sources may be needed, potentially by examining the
pathogens’ genomic sequencing data. Our model is adaptive in nature and can include a rigor-
ous assessment of environmental contamination once data become available.

To date, the best-suggested control strategies against MAP are test and cull strategies. How-
ever, targeted test and cull requires combined information of individual animal, herd manage-
ment, and hygiene policy. In a previous effort, we suggested risk-based culling strategies with
four different options: aggressive culling, culling open red cows after 305 DIM, culling dam
and offspring, and culling dam but not the offspring and we tested these intervention strategies
along with different hygiene conditions on endemic herds [37]. In this study, we further inves-
tigated two risk-based control strategies: aggressive culling and culling open red cows after 305
DIM on three pre-fitted herds. We found that Control I resulted in the probability of PTB
elimination being 0.24 after three years and 0.47 after five years in a low endemic herd (farm
B). We also found that culling of open red cows after 305 DIM resulted in the probability of
PTB elimination being 0.11 in three years and 0.24 after five years. Previous modeling studies
also predict PTB elimination in low endemic herds [31,32,36,46,47]. In high endemic herds
(such as farm A), however, we found the probability of PTB elimination to be only 0.06 after 5
years using Control I, and we did not find any elimination for farms C and A when using Con-
trol IT over five years.

For moderate and higher endemic herds, farmers will likely want to focus on reducing prev-
alence, rather than elimination, and it is important to simulate how long it takes to reduce the
prevalence to below a certain level. S2 Fig shows that a low endemic herd is likely to reach 5%
of initial prevalence within two years for Control II, while a high endemic herd needs extended
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time to reach to that point, more than ten years in some cases. These suggest that culling high
shedding animals may not provide elimination in high endemic herds, although it can lower
the prevalence. Kirkby et al. showed that serial testing, along with hygiene, play a critical role
in the PTB elimination process in Danish dairy herds, but these may not be economically justi-
fiable [8,32,36]. These models were parameterized specifically for Danish conditions, so cau-
tion should be taken in transferring conclusions to other countries. Control activities are not
uniformly coordinated nationally and internationally due to the variation in different farm
management policies and government programs. It is important to note that our current
model does not include any economic justification of the suggested control strategies, but the
same base model has previously been used to show the economic justification of culling in case
of the MAP in a separate study [56].

In conclusion, an important aspect of the model building is to validate the model with real-
life data. In this study, we present an IBM framework of infectious disease in livestock opera-
tions and validate it using a longitudinal dataset from three northeastern dairy herds. The
assessment of model predictions has lead us to the conclusion that the evaluation of modeling
results is still a combination of intuitive model results, validation of the model with quality
data, assumptions integrated into the modeling process, and estimation of key critical parame-
ters. Moreover, this study opens multiple paths for further investigations. The extended model
can include the impact of MAP infection on milk yield while including the economics of milk
production for these three farms. Another extension of the model may include the clinical and
molecular data of the infected animals, but adding molecular data requires further quantifica-
tion of who infects whom (62,63). The current model is adaptive in nature, allowing us to add
strain-specific data for each individual animal. This framework can be adapted for other infec-
tious diseases to quantify the importance of key transmission routes and individual-level data
to population-level phenomena, and to make decision based on implemented intervention
policies. In summary, the quality of the conclusions drawn from model studies is closely linked
to the quality of the data used for estimation of the parameters and model validation. Models
validated with real-world data are more likely to produce useful and valid results.

Supporting information

S1 Table. The best 1% parameter sets were ranked from the parameter searching space.
(DOCX)

S1 Fig. The model predicted fitted to the observed milk yield for 360 days in milk for farm
A, B, and C. The milk yield was calculated using equation shown in the method section.
(TIF)

S2 Fig. The model predicted median number of years to reduce the apparent prevalence by
25% (top panel) and 5% (bottom panel) calculated from top 1% simulations with best set
of parameters while implementing two control scheme I: Aggressive culling and control II:
Delayed culling after the pre-intervention fit for the farms A, B, and C.

(TIF)
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