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Abstract

Objectives: To determine the prognostic significance of spatial proximity of lung cancer cells 

and specific immune cells in the tumor microenvironment.

Materials and Methods: We probed formalin-fixed, paraffin-embedded (FFPE) tissue 

microarrays using a novel tyramide signal amplification multiplexing technique labelling CD8, 

CD4, Foxp3, and CD68+ cells. Each multiplex stained immunohistochemistry slide was digitally 

processed by Vectra INFORMS software, and an X- and Y-coordinate assigned to each labeled cell 

type. The abundance and spatial location of each cell type and their proximity to one another was 

analyzed using a novel application of the G-cross spatial distance distribution method which 

computes the probability of finding at least one immune cell of any given type within a r µm radius 

of a tumor cell. Cox proportional hazards multiple regression was used for multivariate analysis of 

the influence of proximity of lymphocyte types.

Results: Pathologic tumor specimens from 120 NSCLC patients with pathologic tumor stage I-

III disease were analyzed. On univariate analysis, age (P=0.0007) and number of positive nodes 
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(P=0.0014) were associated with overall survival. Greater area under the curve (AUC) of the 

Gcross function for tumor cell-Treg interactions was significantly associated with worse survival 

adjusting for age and number of positive nodes (HR 1.52 (1.11–2.07), P=0.009). Greater G-cross 

AUC for T-reg-CD8 was significantly associated with better survival adjusting for age and number 

of positive lymph nodes (HR 0.96 (0.92–0.99), P=0.042).

Conclusion: Increased infiltration of regulatory T cells into core tumor regions is an independent 

predictor of worse overall survival in NSCLC. However, increased infiltration of CD8+ cytotoxic 

T cells among regulatory T cells seems to mitigate this effect and was significantly associated with 

better survival. Validation of the G-cross method of measuring spatial proximity between tumor 

and immune cell types and exploration of its use as a prognostic factor in lung cancer treatment is 

warranted.
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INTRODUCTION

The immune microenvironment plays a critical role in the antitumor response against lung 

cancer.1–3 Further characterization of T-cell mediated antitumor responses is imminently 

necessary to understand the heterogeneity of response to immune checkpoint inhibitors 

which can lead to a substantial durable response and prolong survival, but only in 10–20% 

of lung cancer patients.4

There have been several recent attempts to study the type and distribution of tumor 

infiltrating lymphocytes (TILs) and their relationship to disease prognosis.5–13 A recent 

study from the Lung Adjuvant Cisplatin Evaluation Biomarker group identified intense 

tumor lymphocytic infiltration, comprising only 9% of samples, as a favorable prognostic 

immunophenotype for survival in resected non-small cell lung cancer.14 With regard to 

specific cell types, CD8+ cytotoxic T cells are immunogenic and directly involved in tumor-

directed adaptive immunity, and a high CD8+ TIL rate is associated with favorable cancer 

prognosis.6,15–18 Conversely, Foxp3+ regulatory T cells (Tregs) are a subclass of CD4+ T 

cells with immunosuppressive characteristics.19–21 However, the significance of Tregs 

within the tumor microenvironment has been somewhat controversial, with studies 

demonstrating both poor prognosis22–25 as well as better locoregional control and prognosis.
26–29

Most previous attempts to study TILs have used simpler methods to analyze lymphocyte 

number such as a numerical count of lymphocytes per slide but lacked spatial information 

about precise cell location, intercellular interactions, and core tumor vs. invasive margin 

location. The lack of that information could account for conflicting findings regarding the 

prognostic significance of Tregs. Studies have shown that there is additional value and 

information in going beyond simple cell counts towards spatial analysis based on distances 

between two immune cell types.11,30
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In this study, we apply a method of spatial analysis, based on the cross-type nearest neighbor 

distance distribution function (G-cross),31 to account for spatial relationships between tumor 

cells and specific types of T cells. This method of analysis is a novel application of spatial 

modelling previously used in ecology to reveal information on plant and animal interactions, 

population dynamics, and competition.32,33 Specifically, we use the G-cross method to 

determine whether a quantitative measure of spatial proximity between tumor and T cells as 

well as between different types of T cells can independently predict survival in patients with 

resected lung cancer.

MATERIALS AND METHODS

Patients

This retrospective, institutional review board-approved study included 120 patients with 

NSCLC who were diagnosed from 1998 to 2009 and treated at a single institution. All 

patients included had non-metastatic, pathologically confirmed diagnosis of NSCLC and 

underwent surgery followed by adjuvant radiation treatment with or without adjuvant 

chemotherapy. Clinical and pathologic characteristics including age, performance status, 

smoking history, tumor histology, pathologic tumor stage, tumor and lymph node size and 

involvement, and evidence of extracapsular extension, perineural and lymphovascular 

invasion were extracted.

Tissue Multiplex Immunohistochemistry

Immunofluorescent staining was performed using the opal multiplex immuno-fluorescent 

system (Perkin Elmer, Hopkinton, MA). Briefly, TMA slides were deparaffinized and tissues 

were fixed with 10% neutral buffered formalin. Heat- induced epitope retrieval (HIER) was 

performed in a conventional microwave oven using citrate buffer (pH 6.0). Each section was 

subjected to six sequential rounds of staining (pan-cytokeratin, DAPI, CD8, CD4, Foxp3, 

and CD68). Each round of staining included a protein block followed by staining with 

primary antibody and its corresponding secondary HRP- conjugated polymer. Signal 

amplification was achieved by using a specific TSA (Tyramide Signal amplification) 

solution for each antibody. Following this covalent reaction between the labeled tyramide 

and the tissue, the TMA slides were further subjected to HIER to remove unbound 

antibodies before the slides were stained with the next antibody. After all five sequential 

antibody staining, slides were counterstained with spectral DAPI (Perkin Elmer, Hopkinton, 

MA) and mounted with vectashield fluorescence mounting medium (Vector Labs, 

Burlingame, CA). Multiplex stained TMA slides were imaged using Vectra multispectral 

imaging system (Perkin Elmer, Hopkinton, MA) and the images were analyzed using inform 

software (Perkin Elmer, Hopkinton, MA)

Tumor and Immune Cell Localization Method

Each multiplex stained immunohistochemistry slide was digitally processed by Vectra 

INFORMS software, and an X- and Y-coordinate assigned to each labeled cell type. Cells 

that stained positive for each marker type were represented by different colors.
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Spatial Analysis Computational Method: The G-cross function

The G-cross function computes the probability distribution of immune cells nearest to tumor 

cells within any given distance. Specifically, the G-cross is a spatial distance distribution 

metric that represents the probability of finding at least one given immune cell of any given 

type within a r µm radius of any tumor cell. These probability distributions can be applied to 

quantify relative proximity of any two types of cells. Therefore, the G-cross function is a 

quantitative surrogate of immune infiltration, as it can differentiate between immune cells 

that are close to but clustered away from tumor cells vs. those that are densely co-located 

with them (Figures 1–2).

Mathematically, the G-cross function is expressed as follows:

Gxy r = 1 − e
−λyπr2

The subscripts ‘x’ and ‘y’ indicate that we compute the spatial distribution of cells of type 

‘y’ relative to cells of type ‘x’. The term λy is the overall density of cells of type ‘y’ in the 

slide. The area under the curve (AUC) of the G-cross function above represents the level of 

infiltration of cell ‘y’ within a given distance from cells of type ‘x’.

Differentiation of Core Tumor and Invasive Margin Regions

The presence of different immune cells in the core tumor region as opposed to the tumor 

periphery, has been shown to impact disease prognosis differently.

We use an automated approach to estimate core tumor vs. invasive margin regions using a 

data-driven approach: kernel density estimation.35,36 We defined the core tumor region as 

the central region containing the majority, or approximately 60% of tumor cells, and the 

invasive margin as the scattered cells outside this perimeter (Supplementary Figure 1). The 

estimation technique is based on the technique previously described by Bowman & Azzalini.
37 We then estimate the G-cross function separately for the core tumor and invasive margin 

regions. The AUC was computed over a spatial distance of r = 0 to r = 20 μm.

Statistical Analysis

Assessment of the correlation between G-cross AUC scores and other clinicopathologic 

factors were performed by using Spearman rank order correlation between continuous 

variables, Kruskal Wallis method between continuous and categorical variables, and Fisher 

test between categorical variables. P-values were adjusted for multiple testing using the 

Benjamini and Hochberg method.38 Clinical factors including patient age, sex, performance 

status, smoking history, tumor histology, tumor differentiation, pathologic disease stage, 

number of positive lymph nodes, lymphovascular space invasion, and extracapsular 

extension were also tested for association with overall survival using univariate Cox 

regression analysis. Cox proportional hazard multiple regression was used to model the 

influence of proximity of lymphocyte types using G-cross AUC scores on overall survival 

adjusting for significant clinical variables identified on univariate analysis. Survival and 

multivariate analyses were conducted using R (R Core Team, Vienna, Austria). 
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Computational code for calculating G-cross AUC from G-cross curves and core tumoral-

invasive margin segregation, was written and executed in MATLAB 2014a (The MathWorks, 

Natick, MA).

RESULTS

G-cross as a quantitative measure of qualitative cell infiltration

One hundred and twenty NSCLC patients with pathologic tumor stage I-III disease and their 

corresponding pathologic tumor specimens were included in the analysis. Patient 

demographic and tumor clinicopathological characteristics are shown in Table 1. The G-

cross function was a robust quantitative surrogate of qualitative immune cell infiltration 

patterns. Computation of the area under the G-cross curves for slides with differing 

qualitative visual patterns of cell-cell infiltration were associated with unique G-cross 

signatures (Figure 2).

G-cross association with tumor pathologic characteristics

The correlation coefficients between G-cross AUC scores and tumor pathologic factors in 

this cohort are shown in Table 2, along with adjusted P-values. None of the G-cross AUC 

variables were significantly correlated with pathologic factors including tumor histology, 

tumor differentiation, tumor size, number of positive lymph nodes, pathologic tumor stage, 

perineural invasion, lymphovascular space invasion, and extracapsular extension.

Survival Analyses

On univariate analysis, age, number of positive nodes, and tumor differentiation were 

associated with overall survival (Table 3). Multivariable models adjusting for age and 

number of positive nodes identified Tumor: FoxP3 and CD8: FoxP3 G-cross AUC as 

significant predictors of overall survival (Table 4). Greater G-cross AUC for tumor cell-Treg 

interactions was significantly associated with worse survival adjusting for age and number of 

positive nodes (HR 1.52 (1.11–2.07), P=0.009). Greater G-cross AUC for T-reg-CD8 was 

also significantly associated with better survival adjusting for age and number of positive 

lymph nodes (HR 0.96 (0.92–0.99), P=0.042). Other tumor-immune cell interactions were 

not significantly associated with survival (Table 4).

G-cross analysis of core tumor and invasive margin regions

The tumor-T reg interaction was significantly associated with overall survival in core tumor 

(HR = 1.48, 95% CI 1.13–1.94, P = 0.003), but not in the invasive margin region (HR = 

1.14, 95% CI 0.96–1.36, P = 0.09). The Treg-CD8 interaction was significantly associated 

with OS in the invasive margin region (HR = 0.99, 95% CI 0.98–0.99 P = 0.03), but not in 

the core tumor (HR = 0.99, 95% CI 0.98–1.01, P = 0.2).

DISCUSSION

A detailed understanding of the tumor immune environment is needed in order to 

characterize the anti-tumor immune response in lung cancer, particularly in the era of 

immunotherapy. Considering spatial relationships between tumor and immune cells and not 

Barua et al. Page 5

Lung Cancer. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



only raw immune cell counts is an essential step towards our understanding and may provide 

insight into new prognostic indicators for treatment response. In our study, we show that the 

G-cross method can be used as a quantitative descriptor of tumor immune cell infiltration, 

accounting for the spatial distribution of specific cells of interest. Our data shows that 

increased infiltration of regulatory T cells into core tumor regions (as measured by the area 

under the G-cross curve computed for tumor: Treg interaction between r = 0 µm and r = 20 

µm) is an independent predictor of worse overall survival. However, increased infiltration of 

CD8+ cytotoxic T cells among regulatory T cells (as measured by the G-cross AUC for T-

reg:CD8 between r = 0 µm and r = 20 µm) seems to mitigate this effect and was significantly 

associated with better survival. Additionally, we were able to separately evaluate cell-cell 

interactions in the core tumor region and invasive tumor margin and found that increased 

tumor-T regulatory cell interaction in the core but not in the periphery was associated with 

worse overall survival.

Our data is consistent with previous studies indicating that regulatory T cells and CD8+ 

cytotoxic T cells in the tumor microenvironment are prognostic for clinical outcome in lung 

cancer. A meta-analysis of the prognostic value of tumor-infiltrating lymphocytes in lung 

cancer identified that overall, high levels of CD8+ cells within the tumor or tumor stroma 

was associated with improved OS.15 Peritumoral CD4+ was associated with improved OS 

but intratumoral counts were not.15 A high density of Foxp3+ regulatory T cells in the tumor 

stroma was associated with worse progression free survival and was a negative prognostic 

factor.15 An analysis of 129 pathologic specimens from patients with stage II/III surgically 

resected lung cancer identified higher CD8 cell concentration, CD45RO+ memory T cell 

concentration, and CD57+ effector T cell concentration in the peritumoral stroma as factors 

associated with improved OS.39 Elevated intratumoral CD8 cell and FOXP3 cell 

concentration were independently associated with favorable OS.39 However, the precise 

relationship between Tregs, tumor, and survival has been controversial. For example, a study 

of TILs in 80 patients with resected NSCLC identified a high number of tumor stroma 

infiltrating Foxp3+ Tregs was associated with improved OS.16

Recent studies have demonstrated that the spatial context of the tumor microenvironment 

may hold additional prognostic value.30,34 Most prior studies reporting on TILs use methods 

requiring manual demarcation of regions of interest for computing spatial statistics. 

Furthermore, the considered parameters are simplistic, using measures such as count, cell 

density, or a subjective gestalt assessment of infiltration by a pathologist.6,11,14 Specifically, 

the spatial context of immune cells has been shown to be critical for cancer development.
5,6,9–13 For example, the count of CD8+ cells in distant stromal regions was shown to be an 

independent predictor of breast cancer-specific survival.6 A high density of CD3+ cells in 

the invasive margin has been shown to be significantly associated with disease-free survival 

in colorectal cancer.11 Studies have shown that there is additional value and information in 

going beyond simple cell counts, towards spatial analysis based on tumor-vessel distances,40 

and distances between two immune cell types.30 Furthermore, Feichtenbeiner et al., showed 

that high intraepithelial infiltration of CD8(+) and FoxP3(+) cells was associated with the 

improved 10-year metastasis-free survival, indicating the potential power of spatial analysis 

in prognosis.30 Recent advances in the fields of image analysis, computer vision, and 
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machine learning is transforming histopathology.41–43 We used a digital histopathology 

platform to identify the precise cell location and phenotype to analyze spatial proximity.

Our study shows the feasibility of using a fully automated, quantitative approach to studying 

spatial relationships between cells using the G-cross framework, which accounts for the 

heterogeneity in the spatial distribution of tumor cells and immune cells. Applying a 

computational framework with origins in the study of complex inter-species interactions in 

ecosystems, we are able to quantitatively capture cell infiltration with compelling visual 

agreement. Cells that are highly infiltrative among tumor cells have sharply-rising G-cross 

curves and greater G-cross AUC. On the other hand, cells that are dispersed and non-

infiltrated among tumor cells have slow-rising G-cross curves and low G-cross AUC. We 

found that the area under the G-cross curve has prognostic value, computed over an 

interaction distance of 20 μm.

We found that close proximity of regulatory T cells with core tumor cells or highly 

infiltrative T regs has a significant negative association with survival and that this effect can 

be partially mediated increased proximity to CD8+ cells. Tregs mediate the magnitude of the 

adaptive immune response to foreign antigens and are specialized for immune suppression.20 

Tregs inhibit anti-tumor immune surveillance in normal individuals and in cancer patients 

via suppression mechanisms that include secretion of inhibitory cytokines such as IL10 and 

TGFb and direct cytolysis of natural killer and cytotoxic T cells.20,44 Removal of Tregs can 

enable effective anti-tumor immune reactivity in animals with otherwise ineffective anti-

tumor responses.45 Interestingly, the direct cytolytic effect of Tregs on natural killer cells 

and CD8+ lymphocytes via granzyme-B and perforin suggests that Tregs act in a contact-

dependent manner.46 This suggests that precise analysis of very small cell-cell distances is 

very important in studying immune mediated responses involving Tregs. We hypothesize 

that increased number and proximity of CD8+ cells to Tregs in the core tumor region can 

somewhat overwhelm the regulatory function of Tregs and thus be associated with better 

prognosis.

A recent study suggests that NSCLC resected patients with high CD+ lymphocytes lacking 

PD-1 inhibitory receptor had longer overall survival and better response to treatment with 

nivolumab.47 Future directions include staining for PD-1 and subdividing the CD8+ cell 

population into PD-L1+ and PD-L1- components, and the tumor population into PD-L1+ 

and a PD-L1-components, and analyzing the difference in spatial interactions between these 

sub-categories. This would enable characterization of the infiltrative behavior of T 

lymphocytes as a function of their PD-1 expression and potentially further differentiate 

disease prognosis.

Several limitations apply to our study. First, while we use spatial proximity (approximating 

20 µm spatial distance as cell-cell abutment) as a proxy for function, we realize that this is 

just one parameter and does not capture the full extent and magnitude of intercellular 

interactions. Second, while all patients in this study underwent resection and radiotherapy 

for NSCLC lung cancer, we recognize that this is a heterogeneous cohort. Validation of our 

findings is therefore warranted in other NSCLC patient cohorts. Lastly, while the multiplex 

staining herein is a routine method for research and standard within Cancer Immune 
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Monitoring and Analysis Centers (CIMAC), adoption into routine clinical practice will take 

further validation and development. However, the G-cross analysis framework itself can be 

easily applied once staining has been performed as it uses the spatial information of different 

cell types as input, regardless of staining or imaging technique. Furthermore, the G-cross 

analysis was written using the freely available R software, making it easy to install and use.

In summary, the current study shows that increased infiltration of regulatory T cells into core 

tumor regions is an independent predictor of worse overall survival in non-small cell lung 

cancer patients. However, increased infiltration of CD8+ cytotoxic T cells among regulatory 

T cells seems to mitigate this effect and was significantly associated with better survival. 

Validation of the G-cross method of measuring spatial proximity between tumor and 

immune cell types and exploration of its use as a prognostic factor in lung cancer treatment 

with or without immunotherapy is warranted. This study offers new insights into the nature 

of NSCLC immunity with potential for harnessing this information towards effective 

immunomodulatory strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Nearest neighbor spatial models show relationships between tumor and 

immune cells

• Tumor and T regulatory cell spatial proximity predicts worse lung cancer 

survival

• Spatial proximity of CD8 to T regulatory cells predicts better lung cancer 

survival

• Tumor-immune cell spatial modeling helps our understanding of individual 

responses
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Figure 1: 
The G-cross function quantitatively differentiates between scenarios (a) and (b) representing 

infiltrative cells (dark blue circles) densely co-located with tumor cells (triangle) (a) vs. non-

infiltrative cells close to but clustered away from tumor cells (b) within a 20 μm radius. A 

simple count of number of immune cells within a 20 μm radius of the tumor cell cannot 

distinguish between the different intercellular spatial relationships in (a) and (b). The 

corresponding area under the G-cross curves (AUC) for scenario (a) vs (b) is much greater in 

scenario (a), clearly differentiating the levels of infiltration visually observed.
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Figure 2: 
The G-cross function is a quantitative measure of qualitative immune cell infiltration. Here, 

by computing the area under the G-cross curves for yellow and blue cells in slides A, B, and 

C, we quantify the infiltration of the yellow cells into the blue cells on each respective slide. 

These examples demonstrate different levels of yellow: blue cell infiltration: (A) high, (B) 

medium, and (C) low. Corresponding G-cross curves rise sharply in (A), moderately in (B), 

and slowly in (C). Each infiltration type A, B, and C is associated with a unique G-cross 

signature.
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Table 1.

Baseline patient, tumor, and treatment characteristics

Characteristic No. of Pts (n = 120)

Median age at diagnosis, years (range) 63 (34–89)

Gender

 Male 52 (43%)

 Female 68 (57%)

Karnofsky performance status, median (range) 80 (50–100)

Smoking history

 None, n (%) 20 (17%)

 Current or former smoker, n (%) 100 (83%)

Pathologic tumor stage, n (%)

 Stage IA 2 (2%)

 Stage IB 3 (3%)

 Stage IIA 2 (2%)

 Stage IIB 11 (9%)

 Stage IIIA 82 (68%)

 Stage IIIB 20 (17%)

Tumor Histology, n (%)

 Squamous 35 (29%)

 Adenocarcinoma 72 (60%)

 NSCLC, NOS 12 (10%)

 Sarcomatoid 1 (1%)

Tumor differentiation, n (%)

 Well 12 (10%)

 Moderate 48 (40%)

 Poor 60 (50%)

LVSI, n (%)

 Yes 32 (27%)

 No 88 (73%)

Adjuvant chemotherapy treatment, n (%)

 Yes 32 (27%)

 No 88 (73%)

Abbreviations: LVSI = lymphovascular space invasion.
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Table 3.

Univariate Cox regression of clinicopathologic and treatment factors associated with overall survival

Characteristic HR 95% CI P value

Age 1.04 1.02–1.07 0.0007

Gender 1.26 0.78–2.0 0.34

KPS 1.003 0.98–1.03 0.81

Positive smoking history 1.002 0.99–1.01 0.70

Pathologic tumor stage
 I
 II
 III

1
1.65
1.13

-
0.46–5.88
0.36–3.64

-
0.44
0.83

Tumor histology
 Adenocarcinoma
 Squamous
 NSCLC, NOS
 Sarcomatoid

1
0.9
0.86
0.64

-
0.53–1.52
0.4–1.84
0.09–4.73

-
0.68
0.70
0.67

Tumor differentiation
 Well
 Moderate
 Poor

1
0.55
0.36

-
0.27–1.12
0.18–0.75

-
0.10
0.006

Number of positive lymph nodes 1.13 1.05–1.21 0.0014

Perineural invasion 1.85 0.67–5.11 0.24

LVSI 0.89 0.51–1.53 0.67

ECE 1.10 0.50–2.42 0.81

Adjuvant chemotherapy treatment 0.72 0.46–1.15 0.17

Boldface type indicates statistical significance on univariate analysis.

Abbreviations: KPS = Karnofsky performance status, LVSI = Lymphovascular space invasion, ECE = Extracapsular extension, HR = hazard ratio, 
CI = confidence interval.
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Table 4.

Multivariate Cox regression of G-cross AUC scores and clinical factors with overall survival

Characteristic HR 95% CI P value

Age 1.04 1.01–1.06 0.002

Number of positive lymph nodes 1.18 1.08–1.29 0.0002

Tumor: CD8 (G-cross) 0.96 0.87–1.06 0.42

Tumor: CD68 (G-cross) 0.91 0.78–1.06 0.24

Tumor: CD4 (G-cross) 0.96 0.83–1.12 0.60

Tumor: FoxP3 (G-cross) 1.52 1.11–2.07 0.009

CD8: FoxP3 (G-cross) 0.96 0.92–0.99 0.042

Tumor: CD8+CD68 (G-cross) 0.95 0.88–1.03 0.23

Tumor: CD8+CD4 (G-cross) 0.97 0.89–1.05 0.40

Tumor: CD8+FoxP3 (G-cross) 0.99 0.90–1.08 0.77

Tumor: CD4+CD68 (G-cross) 0.95 0.86–1.05 0.33

Tumor: FoxP3+CD68 (G-cross) 0.98 0.86–1.11 0.71

Tumor: FoxP3+CD4 (G-cross) 0.99 0.90–1.15 0.81

Boldface type indicates statistical significance on multivariate analysis.

Abbreviations: AUC = area under the curve, HR = hazard ratio, CI = confidence interval.
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