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Abstract

Systems biology provides an effective approach to decipher, predict, and ultimately manipulate the 

complex and inter-connected networks that regulate the immune system. Advances in high-

throughput, multiplexed experimental techniques have increased the availability of proteomic and 

transcriptomic immunological datasets, and as a result, have also accelerated the development of 

new data-driven computational algorithms to extract biological insight from these data. This 

review highlights how data-driven statistical models have been used to characterize immune cell 

subsets and their functions, to map the signaling and intercellular networks that regulate immune 

responses, and to connect immune cell states to disease outcomes to generate hypotheses for novel 

therapeutic strategies. We focus on recent advances in evaluating immune cell responses following 

viral infection and in the tumor microenvironment, which hold promise for improving vaccines, 

antiviral and cancer immunotherapy.

Graphical abstract

*Correspondence: kathryn.miller-jensen@yale.edu.
+These authors contributed equally to this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Biotechnol. Author manuscript; available in PMC 2019 August 01.

Published in final edited form as:
Curr Opin Biotechnol. 2018 August ; 52: 109–115. doi:10.1016/j.copbio.2018.03.009.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multiplexed experimental technologies are accelerating data-driven 

systems immunology

Systems biology seeks to understand how elements of a protein or cellular network interact 

to produce diverse biological outcomes. Systems approaches that combine high-resolution 

multiplexed experimental measurements and computational analyses are especially 

advantageous when studying the immune system, a dynamic network of heterogeneous cell 

types and non-linear, interconnected signaling pathways [1]. To comprehensively 

characterize complex cellular behaviors, systems biology relies on multiplexed 

measurements of signaling and transcription in cell populations or single cells over time and 

in response to perturbations. Because phenotypic heterogeneity between immune cell types 

and within immune cell subsets is critical for immune function, the rapid increase in single-

cell data collection in particular has catalyzed the growth of systems immunology [2–4].

Experimental techniques include RNA-sequencing, bead-based immunoassays, microwell 

assays [5,6], flow cytometry, and mass cytometry [7], and each approach has advantages and 

disadvantages. For example, mass cytometry (or cytometry by time-of-flight, CyTOF) 

enables multiplexed measurements of more than 40 proteins in thousands of single cell but 

requires pre-determined antibody panels [7]. In contrast, single-cell RNA-sequencing 

(scRNA-seq) measures thousands of transcripts for a more comprehensive and unbiased 

approach, but the measurements are more susceptible to experimental noise, particularly for 

low-abundance transcripts [2]. These differences must be considered when developing 

methods to generate biological insights from high-dimensional datasets.

Data-driven statistical algorithms for extracting information from large datasets (Table 1) 

have paralleled recent advances in multiplexed measurements, especially in single cells. 

Data-driven modeling uses mathematical analyses and computational algorithms to infer 

biological relationships. Computational data-driven approaches can be implemented even 

when knowledge of the underlying immune response mechanism is incomplete, as is often 

the case. The biological insights gained from data-driven modeling depend on the types of 

measurements available and the biological relationships being tested [8]. For example, data-

driven models can be used to characterize immune cells by their associated phenotypes and 
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functions, map signaling network influences intracellular and extracellularly, or connect 
biological states with outcomes such as disease status (Figure 1). This review highlights 

recent examples of data-driven systems modeling that characterize, map, or connect 

components of the immune system, with a focus on applications in virus-host interactions 

and cancer immunotherapy.

Characterization of immune cell subsets and their functions

To characterize immune cell heterogeneity across functional subsets of the immune system, 

many researchers have interpreted high-dimensional protein measurements using 

dimensionality reduction techniques. Newell et al. measured surface markers and 

combinatorial cytokine expression of CD8+ T cells–critical effector cells of the adaptive 

immune system–by mass cytometry. They then used principal component analysis (PCA), a 

linear transformation of the data that maps cells onto lower dimensional axes of maximum 

covariance, to separate naïve, central memory, and effector memory CD8+ T cells and 

identified new functional features associated with these subtypes [9]. Amir et al. robustly 

separated distinct immune cell types in leukemic bone marrow by visualizing mass 

cytometry data with t-distributed stochastic neighbor embedding (t-SNE) [10], a non-linear 

dimensionality reduction algorithm that preserves local structure when mapping the high-

dimensional space in two or three dimensions [11].

Functional heterogeneity also exists within a single immune cell type, as seen in natural 

killer (NK) cells and B cells, two populations critical for immune defense. To understand 

how both genetic and environmental components contribute to NK cell diversity, NK cells 

were isolated from monozygotic twins, characterized by 37-dimensional mass cytometry, 

and clustered using spanning-tree progression analysis of density-normalized events 

(SPADE) [12]. SPADE was a useful way to visualize how genetics and environment shape 

NK cell diversity because the algorithm emphasizes rare subpopulations, groups cells with 

similar phenotypes, and links clusters with weighted edges to identify relationships [13]. In a 

similar example, clustering of mass cytometry data tracking B-cell differentiation during 

rotavirus infection identified diverse mucosal trafficking phenotypes associated with 

humoral B-cell memory to the pathogen [14].

Given the growing number of dimensionality reduction and clustering techniques available 

to visualize and separate immune cell subsets, it is reasonable to ask how they perform 

relative to each other. Wong et al. characterized surface and functional markers of CD4+ T 

helper (TH) cells, a subset of T cells that promote adaptive immunity by activating B cells 

and cytotoxic CD8+ T cells [15]. They found that t-SNE outperformed PCA for separating 

known TH cell subsets; but isometric feature mapping (ISOMAP) [16], a method to visualize 

the relative similarities between subsets by mapping non-linear distances, was better at 

capturing how TH cells progressed phenotypically over time [15].

A challenge in systems immunology is comparing newly discovered features of immune cell 

populations that were characterized in studies using different measurements and data-driven 

statistical methods. The robustness of these discoveries depends on the experimental method 

used and the number of dimensions measured: as more parameters are measured, clustering 
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and low-dimensionality projections sometimes become less stable due to increased data 

noise, and thus approaches for accurate, stable comparisons across high-dimensional studies 

are needed. To address this, Spitzer et al. developed a data-driven reference map, termed 

Scaffold map, by clustering single-cell data from murine bone marrow using force-directed 

graphs around “landmark nodes” of commonly recognized immune subsets. They then 

identified changes in immune composition across studies by comparing this reference map 

to Scaffold maps of different tissues and species across mass cytometry and archived flow 

cytometry data [17]. Such frameworks are essential for establishing a reference point to 

examine changes in immune composition associated with disease [18].

Some studies combine dimensionality reduction and data visualization with clustering to 

characterize distinct immune cell types within healthy and diseased microenvironments. For 

example, Tirosh et al. profiled malignant, immune, stromal and endothelial cells in 

metastatic melanoma patients using scRNA-seq, and used an algorithm called DBScan, 

which analyzes the density rather than the distance between data points to identify clusters 

of arbitrary shapes. They first used DBscan to cluster the data after dimensionality reduction 

using t-SNE, and then used PCA to identify subgroups within these clusters. Together, these 

methods characterized heterogeneous immune phenotypes and identified exhausted tumor-

infiltrating T cells in melanoma tumors [19]. Zheng et al. combined t-SNE visualization with 

an unsupervised clustering algorithm called SC3, which returns robust and stable clusters by 

combining multiple clustering solutions to reach a consensus clustered dataset – an approach 

designed to address the instability of high-dimensional measurements. This analysis 

identified an enrichment of exhausted CD8+ T cells and inhibitory regulatory T cells in liver 

tumors relative to healthy liver, as well as potential regulatory genes enriched in these 

immune subsets [20]. These types of systems-level classifications will aid the design of 

novel cancer immunotherapies.

Mapping signaling network influences and network connectivity

Data-driven modeling can also map intracellular signaling and transcriptional networks or 

extracellular cell-cell interaction networks that regulate immune cell responses. Importantly, 

multiplexed measurements in single cells provide the thousands of observations typically 

required to mathematically extract network connectivity. To generate hypotheses for how 

dependencies between proteins change under different conditions, Krishnaswamy et al. 
developed conditional-density rescaled visualization (DREVI), a technique that emphasizes 

rare events (e.g., rare cells) by normalizing events based on conditional density, and then 

further analyzes mutual information between variables (e.g., proteins) in the rescaled data 

(DREMI) [21]. They applied these techniques to single-cell mass cytometry measurements 

of signaling network activation in naïve and antigen-exposed CD4+ T cells to show that 

DREVI effectively reconstructed signal response functions between T-cell signaling 

proteins, and DREMI quantified how signaling dependencies change in naïve versus 

antigen-exposed T cells [21]. In type 1 diabetic mice, DREVI analysis of T cell signaling 

revealed that small impairments in signaling activation proximal to the T cell receptor are 

amplified to produce larger defects at downstream signaling nodes [22].
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A promising approach to map out immune signaling networks relies on taking high-

dimensional measurements following targeted perturbations and then using data-driven 

approaches to identify network-level changes. For example, Martins et al. measured high-

dimensional gene expression variation in monocytes after stimulation with cytokine 

perturbations representing different environmental contexts. By performing multiplexed 

qPCR on single cells and small cell groups, they were able to overcome “drop-out noise” for 

transcripts with lower abundance and calculate the propagation of cell-to-cell variation 

across multiple genes to uncover novel regulatory gene networks in macrophages that 

modulate noise to adapt to distinct environments [23]. Another study combined single-cell 

RNA-seq with CRISPR-pooled screens to measure how genetic perturbations affect 

transcriptome-wide regulatory circuits in single cells [24]. They identified unique cell 

phenotypes using dimensionality reduction and clustering with Phenograph [25], an 

unsupervised clustering algorithm that identifies nearest neighbors in high-dimensional 

space, and linked these phenotypes to their respective genotypes from the CRISPR screen. 

Similarly, Xue et al. used RNA-seq to measure macrophage transcriptomes after treatment 

with diverse stimuli, and used a combination of co-expression analysis, hierarchical 

clustering and self-organizing maps (SOM)–an unsupervised dimensionality reduction 

algorithm that projects and clusters data as a discrete lower-dimensional map–to identify 

stimulus-specific gene network programs [26].

To analyze how extracellular signaling networks regulated immune responses, our lab used 

Gaussian graphical modeling (GGM) to calculate partial correlations between proteins 

secreted by isolated macrophages, and reconstructed autocrine and paracrine signaling 

networks that drive the inflammatory stimulus response [27]. Another study characterized 

communication between the innate and adaptive immune systems by co-culturing monocytes 

and T cells and implementing self-organizing maps to uncover cytokines regulated by 

intercellular communication [28]. To dissect cell-to-cell communication across the entire 

immune system, Rieckmann et al. characterized human hematopoietic populations with 

mass spectrometry, and computed interaction network maps of “sender” and “receiver” cells 

by connecting the corresponding receptor-ligand expression levels between different cell 

populations [29]. Thus, data-driven modeling can identify networks and pathway 

connectivity in broad immunological settings.

Connecting immune cell states and composition with outcomes

Data-driven modeling can also be used to connect biological states to clinically important 

outcomes, such as disease progression or therapeutic response, as illustrated below with 

examples drawn from virus-host interactions and cancer immunotherapy.

Connecting immune cell states to various aspects of infection

Connecting systems-level changes in host cell signaling or gene expression patterns with the 

state or severity of viral infection can increase understanding of viral pathogenesis. Data-

driven models have been used to connect alterations in neutrophil, NK cell, macrophage, and 

T cell function with increased susceptibility to viral infection [30–34]. Sen et al. developed a 

distance-based algorithm called SLIDE that quantifies the similarity between a virally-
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infected cell and its most closely-related uninfected cell in multi-dimensional space [35]. 

Cavrois et al. used SLIDE to analyze differential surface marker levels between infected and 

uninfected memory T cells measured by mass cytometry and defined signatures of HIV-

susceptible cells, termed ‘predicted precursors’ of infected cells [36].

Data-driven algorithms can also identify molecular or cellular signatures associated with 

virus manipulation of the host system. Using t-SNE visualization of cytokine and cell 

surface marker data measured by mass cytometry, Hamlin et al. showed that dengue virus 

alters the dynamics of cytokine production and primes the immune response to promote 

viremia rather than clearance [37]. Clustering analysis performed on whole proteome mass 

spectrometry profiles showed that HIV-infected patient CD4+ T cells on anti-retroviral 

therapy exhibited decreases in toll-like receptor 4 and type 1 interferon signaling relative to 

paired uninfected CD4+ T cell data [38]. To classify HIV+, T-cell depleted, and healthy 

PBMC samples, partial least squares discriminant analysis (PLS-DA)– which identifies 

linear combinations of variables to maximally separate known biological states –identified 

classification signatures based on measurements of 16 cytokines and chemokines, and then 

the underlying molecular changes could be associated with each group [39]. In a study from 

our lab, we measured phospho-signaling differences in uninfected and latent HIV-infected T 

cells and used PLS-DA to define signatures that predicted infection status and then identified 

changes in stress kinase signaling as a novel target for preferential infected-cell killing [40]. 

Comparing total immune cell composition in healthy and infected donors, SPADE and t-

SNE analyses performed on 26-parameter mass cytometry data demonstrated that infected 

patients had a higher fraction of highly differentiated effector memory cells following HIV 

infection and ART treatment in comparison to healthy donors [41]. Overall, systems 

immunology studies of virus-host immune interactions have generated new hypotheses 

about mechanisms of viral pathogenesis and potential strategies to combat viral infection.

Connecting immune cell states to cancer

Data-driven approaches can also be used to generate immunological signatures from patient 

data that are predictive of clinical outcomes, a key goal in cancer immunology. Chevrier et 
al. used mass cytometry to profile tumors from renal carcinoma patients and found 

Phenograph-defined clusters of T cells and macrophages that correlated with progression-

free survival [42]. A recent study by Krieg et al. used FlowSOM [43], a self-organizing map 

algorithm, and CellCnn [44], an algorithm that uses neural networks to detect rare cell 

populations associated with disease, to identify unique monocyte populations predictive of a 

clinical response to anti-PD-1 immunotherapy [45]. Together, these studies show that 

immune cells or system states can be connected in a predictive manner to biological and 

clinical outcomes.

Another goal is to identify immune populations correlated with disease progression that may 

become novel targets for immunotherapy. For example, patient-derived immune cells in 

tumor, non-involved lung tissue, and blood compartments were profiled using mass 

cytometry, and immune composition was defined using Phenograph clustering, which 

highlighted changes associated early lung adenocarcinoma progression and identified tumor-

infiltrating myeloid cells as potential therapeutic targets [46]. Spitzer et al. used mass 
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cytometry and Scaffold maps to characterize immune composition across successful and 

failed immunotherapy treatments and connect peripheral CD4+ T cells to systemic immune 

responses required for tumor rejection [18]. Together, these systems-level studies uncovered 

key immune populations and potential therapeutic targets associated with disease.

Systems-level approaches also provide insights into mechanisms underlying cancer 

immunotherapy efficacy, which remain largely unknown. Infiltrating T cells from human 

and mouse melanomas were profiled by mass cytometry following treatment with immune 

checkpoint inhibitors anti-CTLA-4 and anti-PD-1, and condensed via clustering and PCA to 

reveal conserved and unique mechanisms for both immunotherapies [47]. In an example 

from our lab, we used microwell assays to characterize functional “secretome” changes in 

tumor-associated monocytes and macrophages (TAMs) following combination 

immunotherapy in melanoma [48]. Phenograph clustering of the secretome identified 

changes in TAM subsets, including the emergence of a novel TAM subset that secretes 

inflammatory cytokines with anti-tumor activity. Taken together, these studies demonstrate 

how systems-level profiling is uncovering new strategies to redirect the immune system for 

therapeutic benefit.

Conclusion

Systems immunology is poised for rapid growth. As the field matures, common analytical 

methods such as t-SNE have risen as consensus algorithms for non-linear single-cell data 

visualization, while new methods are being introduced to address data challenges that still 

limit biological interpretation. For example, new computational methods are being 

developed to address “drop-out noise” in single-cell RNA-seq data [49], to identify 

underlying data structures that are continuous and non-linear [50], and to speed up 

computation time [51]. Other challenges still to be addressed include integrating across 

different types of data sets: incorporating single-cell data with measurements collected in 

cell populations; and incorporating prior biological knowledge, such as time series and dose 

responses, to extract more biological insight from the same data set. In the next few years, 

we expect to see systems immunology studies move towards mechanistic discovery by 

combining data-driven approaches with hypothesis-driven modeling. By using data-driven 

modeling to generate a global view of the immune network and hypothesis-driven modeling 

to test specific mechanisms within the network, systems immunology will uncover new 

strategies to engineer the immune system and combat disease.

Acknowledgments

We would like to thank all the members of the Miller-Jensen lab for helpful comments and discussion. This work 
was supported by the National Institutes of Health (R01 GM123011-01 and R21 AI132013-01A1 to K.M.-J.).

References

1. Wong HS, Germain RN. Robust control of the adaptive immune system. Semin Immunol. 2017; doi: 
10.1016/j.smim.2017.12.009

2. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev 
Immunol. 2017; 18:35–45. [PubMed: 28787399] 

Fong et al. Page 7

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Di Palma S, Bodenmiller B. Unraveling cell populations in tumors by single-cell mass cytometry. 
Curr Opin Biotechnol. 2015; 31:122–129. [PubMed: 25123841] 

4. Chattopadhyay PK, Gierahn TM, Roederer M, Love JC. Single-cell technologies for monitoring 
immune systems. Nat Immunol. 2014; 15:128–135. [PubMed: 24448570] 

5. Varadarajan N, Julg B, Yamanaka YJ, Chen H, Ogunniyi AO, McAndrew E, Porter LC, Piechocka-
Trocha A, Hill BJ, Douek DC, et al. A high-throughput single-cell analysis of human CD8+ T cell 
functions reveals discordance for cytokine secretion and cytolysis. J Clin Invest. 2011; 121:4322–
4331. [PubMed: 21965332] 

6. Lu Y, Chen JJ, Mu L, Xue Q, Wu Y, Wu P-H, Li J, Vortmeyer AO, Miller-Jensen K, Wirtz D, et al. 
High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal 
Chem. 2013; 85:2548–56. [PubMed: 23339603] 

7. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick 
JE, Tanner SD. Mass cytometry: Technique for real time single cell multitarget immunoassay based 
on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem. 2009; 81:6813–6822. 
[PubMed: 19601617] 

8. Benedict, KF, Lauffenburger, DA. Insights into Proteomic Immune Cell Signaling and 
Communication via Data-Driven Modeling. In: Katze, M, editorSystems Biology Current Topics in 
Microbiology and Immunology. Springer; Berlin Heidelberg: 2012–201–233. 

9. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. Cytometry by Time-of-Flight Shows 
Combinatorial Cytokine Expression and Virus-Specific Cell Niches within a Continuum of CD8 + T 
Cell Phenotypes. Immunity. 2012; 36:142–152. [PubMed: 22265676] 

10. Amir ED, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, 
Krishnaswamy S, Nolan GP, Pe’er D. viSNE enables visualization of high dimensional single-cell 
data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013; 31:545–52. 
[PubMed: 23685480] 

11. Van Der Maaten LJP, Hinton GE. Visualizing Data using t-SNE. J Mach Learn Res. 2008; 9:2579–
2605.

12. Qiu P, Simonds EF, Bendall SC, Gibbs KD, Bruggner RV, Linderman MD, Sachs K, Nolan GP, 
Plevritis SK. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. 
Nat Biotechnol. 2011; 29:886–893. [PubMed: 21964415] 

13. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, Dekker CL, 
Mackey S, Maecker H, Swan GE, et al. Genetic and Environmental Determinants of Human NK 
Cell Diversity Revealed by Mass Cytometry. Sci Transl Med. 2013; 5:208ra145–208ra145.

14. Nair N, Newell EW, Vollmers C, Quake SR, Morton JM, Davis MM, He XS, Greenberg HB. High-
dimensional immune profiling of total and rotavirus VP6-specific intestinal and circulating B cells 
by mass cytometry. Mucosal Immunol. 2016; 9:68–82. [PubMed: 25899688] 

15••. Wong MT, Chen J, Narayanan S, Lin W, Anicete R, Kiaang HTK, De Lafaille MAC, Poidinger 
M, Newell EW. Mapping the Diversity of Follicular Helper T Cells in Human Blood and Tonsils 
Using High-Dimensional Mass Cytometry Analysis. Cell Rep. 2015; 11:1822–1833. [PubMed: 
26074076] 

16. Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear 
dimensionality reduction. Science. 2000; 290:2319–23. [PubMed: 11125149] 

17••. Spitzer MH, Gherardini PF, Fragiadakis GK, Bhattacharya N, Yuan RT, Hotson AN, Finck R, 
Carmi Y, Zunder ER, Fantl WJ, et al. An interactive reference framework for modeling a 
dynamic immune system. Science. 2015; 349:1259425–1259425. [PubMed: 26160952] 

18•. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, Gherardini PF, 
Prestwood TR, Chabon J, Bendall SC, et al. Systemic Immunity Is Required for Effective Cancer 
Immunotherapy. Cell. 2017; 168:487–502.e15. [PubMed: 28111070] 

19. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, Rotem A, Rodman C, 
Lian C, Murphy G, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-
cell RNA-seq. Science. 2016; 352:189–196. [PubMed: 27124452] 

20. Zheng C, Zheng L, Yoo JK, Guo H, Zhang Y, Guo X, Kang B, Hu R, Huang JY, Zhang Q, et al. 
Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017; 
169:1342–1356.e16. [PubMed: 28622514] 

Fong et al. Page 8

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Krishnaswamy S, Spitzer MH, Mingueneau M, Bendall SC, Litvin O, Stone E, Pe’er D, Nolan GP. 
Conditional density-based analysis of T cell signaling in single-cell data. Science. 2014; 
346:1250689–1250689. [PubMed: 25342659] 

22•. Mingueneau M, Krishnaswamy S, Spitzer MH, Bendall SC, Stone EL, Hedrick SM, Pe’er D, 
Mathis D, Nolan GP, Benoist C. Single-cell mass cytometry of TCR signaling: Amplification of 
small initial differences results in low ERK activation in NOD mice. Proc Natl Acad Sci. 2014; 
111:16466–16471. [PubMed: 25362052] 

23. Martins AJ, Narayanan M, Prüstel T, Fixsen B, Park K, Gottschalk RA, Lu Y, Andrews-Pfannkoch 
C, Lau WW, Wendelsdorf KV, et al. Environment Tunes Propagation of Cell-to-Cell Variation in 
the Human Macrophage Gene Network. Cell Syst. 2017; 4:379–392.e12. [PubMed: 28365150] 

24. Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H, David E, Salame TM, Tanay A, van 
Oudenaarden A, Amit I. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with 
Single-Cell RNA-Seq. Cell. 2016; 167:1883–1896. [PubMed: 27984734] 

25. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir EAD, Tadmor MD, Litvin O, Fienberg HG, 
Jager A, Zunder ER, et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like 
Cells that Correlate with Prognosis. Cell. 2015; 162:184–197. [PubMed: 26095251] 

26. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, 
Schmidleithner L, et al. Transcriptome-based network analysis reveals a spectrum model of human 
macrophage activation. Immunity. 2014; 40:274–88. [PubMed: 24530056] 

27. Xue Q, Lu Y, Eisele MR, Sulistijo ES, Khan N, Fan R, Miller-Jensen K. Analysis of single-cell 
cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to 
TLR4 stimulation. Sci Signal. 2015; 8:ra59–ra59. [PubMed: 26082435] 

28. Schrier SB, Hill AS, Plana D, Lauffenburger DA. Synergistic Communication between CD4+ T 
Cells and Monocytes Impacts the Cytokine Environment. Sci Rep. 2016; 6:34942. [PubMed: 
27721433] 

29•. Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, Sallusto F, Shen-Orr SS, 
Lanzavecchia A, Mann M, et al. Social network architecture of human immune cells unveiled by 
quantitative proteomics. Nat Immunol. 2017; 18:583–593. [PubMed: 28263321] 

30. Whiting CC, Siebert J, Newman AM, Du H, Alizadeh AA, Goronzy J, Weyand CM, Krishnan E, 
Fathman CG, Maecker HT. Large-Scale and Comprehensive Immune Profiling and Functional 
Analysis of Normal Human Aging. PLoS One. 2015; 10:e0133627. [PubMed: 26197454] 

31. Yao, Y, Montgomery, RR. Role of Immune Aging in Susceptibility to West Nile Virus. In: Colpitts, 
TM, editorWest Nile Virus Methods in Molecular Biology. Springer; New York: 2016. 235–247. 

32. Yao Y, Strauss-Albee DM, Zhou JQ, Malawista A, Garcia MN, Murray KO, Blish CA, 
Montgomery RR. The natural killer cell response to West Nile virus in young and old individuals 
with or without a prior history of infection. PLoS One. 2017; 12:e0172625. [PubMed: 28235099] 

33. Strauss-Albee DM, Fukuyama J, Liang EC, Yao Y, Jarrell JA, Drake AL, Kinuthia J, Montgomery 
RR, John-Stewart G, Holmes S, et al. Human NK cell repertoire diversity reflects immune 
experience and correlates with viral susceptibility. Sci Transl Med. 2015; 7:297ra115–297ra115.

34. Gustafson CE, Qi Q, Hutter-Saunders J, Gupta S, Jadhav R, Newell E, Maecker H, Weyand CM, 
Goronzy JJ. Immune Checkpoint Function of CD85j in CD8 T Cell Differentiation and Aging. 
Front Immunol. 2017; 8:1–12. [PubMed: 28149297] 

35. Sen N, Mukherjee G, Sen A, Bendall SC, Sung P, Nolan GP, Arvin AM. Single-Cell Mass 
Cytometry Analysis of Human Tonsil T Cell Remodeling by Varicella Zoster Virus. Cell Rep. 
2014; 8:633–645. [PubMed: 25043183] 

36••. Cavrois M, Banerjee T, Mukherjee G, Raman N, Hussien R, Rodriguez BA, Vasquez J, Spitzer 
MH, Lazarus NH, Jones JJ, et al. Mass Cytometric Analysis of HIV Entry, Replication, and 
Remodeling in Tissue CD4+ T Cells. Cell Rep. 2017; 20:984–998. [PubMed: 28746881] 

37•. Hamlin RE, Rahman A, Pak TR, Maringer K, Mena I, Bernal-Rubio D, Potla U, Maestre AM, 
Fredericks AC, Amir ED, et al. High-dimensional CyTOF analysis of dengue virus–infected 
human DCs reveals distinct viral signatures. JCI Insight. 2017; 2:e92424.

38. Nemeth J, Vongrad V, Metzner KJ, Strouvelle VP, Weber R, Pedrioli P, Aebersold R, Günthard HF, 
Collins BC. In Vivo and in Vitro Proteome Analysis of Human Immunodeficiency Virus (HIV)-1-
infected, Human CD4 + T Cells. Mol Cell Proteomics. 2017; 16:S108–S123. [PubMed: 28223351] 

Fong et al. Page 9

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39•. Arnold KB, Szeto GL, Alter G, Irvine DJ, Lauffenburger DA. CD4+ T cell-dependent and CD4+ 
T cell-independent cytokine-chemokine network changes in the immune responses of HIV-
infected individuals. Sci Signal. 2015; 8:ra104–ra104. [PubMed: 26486173] 

40•. Fong LE, Sulistijo ES, Miller-Jensen K. Systems analysis of latent HIV reversal reveals altered 
stress kinase signaling and increased cell death in infected T cells. Sci Rep. 2017; 7:16179. 
[PubMed: 29170390] 

41. Corneau A, Cosma A, Even S, Katlama C, Le Grand R, Frachet V, Blanc C, Autran B. 
Comprehensive Mass Cytometry Analysis of Cell Cycle, Activation, and Coinhibitory Receptors 
Expression in CD4 T Cells from Healthy and HIV-Infected Individuals. Cytom Part B Clin Cytom. 
2017; 92:21–32.

42. Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett 
MAS, Moch H, et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell. 2017; 169:736–
749. [PubMed: 28475899] 

43. Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, Saeys Y. 
FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. 
Cytom Part A. 2015; 87:636–645.

44. Arvaniti E, Claassen M. Sensitive detection of rare disease-Associated cell subsets via 
representation learning. Nat Commun. 2017; 8:1–10. [PubMed: 28232747] 

45••. Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson 
MD, Levesque MP, Becher B. High-dimensional single-cell analysis predicts response to anti-
PD-1 immunotherapy. Nat Med. 2018; 24:144–153. [PubMed: 29309059] 

46. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, 
Becker CD, Levine JH, et al. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired 
Single-Cell Analyses. Cell. 2017; 169:750–765. [PubMed: 28475900] 

47. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang N-AAS, Andrews MC, Sharma P, Wang J, Wargo 
JA, Pe’er D, et al. Distinct Cellular Mechanisms Underlie Anti-CTLA-4 and Anti-PD-1 
Checkpoint Blockade. Cell. 2017; 170:1120–1133. [PubMed: 28803728] 

48•. Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, Du VY, Wang 
JX, Damsky W, Kuhlmann AL, et al. Myeloid-targeted immunotherapies act in synergy to induce 
inflammation and antitumor immunity. J Exp Med. 2018; 215

49. MAGIC. A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-
sequencing data. bioRxiv. 2017; doi: 10.1101/111591

50. Moon KR. Visualizing Transitions and Structure for High Dimensional Data Exploration. bioRxiv. 
2017; doi: 10.1101/120378

51. Amodio M, Srinivasan K. Exploring Single-Cell Data with Multitasking Deep Neural Networks. 
bioRxiv. 2017; doi: 10.1101/237065

52. Clark NR, Ma’ayan A. Introduction to Statistical Methods to Analyze Large Data Sets: Principal 
Components Analysis. Sci Signal. 2011; 4:tr3–tr3. [PubMed: 21917717] 

53. Janes KA, Yaffe MB. Data-driven modelling of signal-transduction networks. Nat Rev Mol Cell 
Biol. 2006; 7:820–8. [PubMed: 17057752] 

54. Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: Helping to make sense of 
high-dimensional immunology data. Nat Rev Immunol. 2016; 16:449–462. [PubMed: 27320317] 

55. Opgen-Rhein R, Strimmer K. From correlation to causation networks: a simple approximate 
learning algorithm and its application to high-dimensional plant gene expression data. BMC Syst 
Biol. 2007; 1:37. [PubMed: 17683609] 

56. Ester M, Kriegel H-P, Sander J, Xu X. A Density-Based Algorithm for Discovering Clusters in 
Large Spatial Databases with Noise Martin. Proceedings of the Second International Conference 
on Knowledge Discovery and Data Mining. 1996:226–231.

57. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, 
Barahona M, Green AR, et al. SC3: Consensus clustering of single-cell RNA-seq data. Nat 
Methods. 2017; 14:483–486. [PubMed: 28346451] 

Fong et al. Page 10

Curr Opin Biotechnol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights (target for each: 85 characters with spaces)

• New experimental techniques provide high-content data of immune system 

function.

• Data-driven computational approaches enable new insights from immune cell 

data.

• Recent applications characterize immune cell subsets and map network 

influences.

• Connecting immune states to disease states will uncover new strategies for 

therapy.
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Figure 1. 
Quantitative analyses shift the interpretation of large-scale systems datasets towards higher-

order biological and mechanistic insights. The collection of high-dimensional datasets (left) 

can be computationally analyzed to characterize immune cells by their associated 

phenotypes and functions, map intracellular and extracellular signaling network influences, 

and connect biological states with outcomes (for example, disease status) (middle). These 

findings can be translated to identify new therapeutic targets to prime the immune system for 

antiviral and anti-tumor responses.
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Table 1

Data-driven algorithms for high-dimensional analysis discussed in this review.

Method Description Ref.

PCA A linear dimensionality reduction method that maps data into a new coordinate system that 
captures the covariation in the data

[52]

PLS-DA A dimensionality reduction method that linearly links covarying signals to associated outcomes; 
can be used for classification and prediction

[53]

t-SNE t-distributed stochastic neighbor embedding is a nonlinear dimensionality reduction method used 
for visualizing high-dimensional data in 2D or 3D

[10,11]

Self-organizing maps A dimensionality reduction and unsupervised clustering method to visualize discrete populations 
on a map. FlowSOM is modified for flow- and mass- cytometry data.

[43,54]

SPADE A clustering method that hierarchically orders changes in marker expression to depict groups in a 
minimally spanning tree

[12]

Scaffold Maps A clustering method that visualizes cellular landscapes with pre-defined landmark populations [17]

PhenoGraph An unsupervised clustering method based on Louvain modularity often used to partition single-
cell data into subsets

[25]

CellCnn A clustering method based on convolutional neural networks that has been applied to detect rare 
cell populations associated with disease

[44]

ISOMAP A trajectory visualization method that can be used to model cellular phenotypic progression based 
on the geodesic distances between cells

[16]

DREVI, DREMI An inference method that applies conditional density estimation to visualize pairwise interactions 
and then calculates mutual information to score the strength of the interactions

[21]

SLIDE An inference method that calculates differences between nearest neighbor cells to identify 
remodeled signaling pathways

[35]

Gaussian Graphical Modeling A network inference method that quantifies partial correlations to define the dependence between 
variables.

[55]

DBScan A clustering method that uses a density-based algorithm to discover clusters in high-dimensional 
space.

[56]

SC3 A clustering method that combined multiple clustering solutions to reach a consensus clustering 
of single-cell RNA-seq data

[57]
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