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Comparison of three variant 
callers for human whole genome 
sequencing
Anna Supernat1, Oskar Valdimar Vidarsson2, Vidar M. Steen   3,4 & Tomasz Stokowy   2,3,4

Testing of patients with genetics-related disorders is in progress of shifting from single gene assays to 
gene panel sequencing, whole-exome sequencing (WES) and whole-genome sequencing (WGS). Since 
WGS is unquestionably becoming a new foundation for molecular analyses, we decided to compare 
three currently used tools for variant calling of human whole genome sequencing data. We tested 
DeepVariant, a new TensorFlow machine learning-based variant caller, and compared this tool to GATK 
4.0 and SpeedSeq, using 30×, 15× and 10× WGS data of the well-known NA12878 DNA reference 
sample. According to our comparison, the performance on SNV calling was almost similar in 30× data, 
with all three variant callers reaching F-Scores (i.e. harmonic mean of recall and precision) equal to 0.98. 
In contrast, DeepVariant was more precise in indel calling than GATK and SpeedSeq, as demonstrated 
by F-Scores of 0.94, 0.90 and 0.84, respectively. We conclude that the DeepVariant tool has great 
potential and usefulness for analysis of WGS data in medical genetics.

Next-generation sequencing (NGS) has revolutionized the way genetic laboratories and research groups operate 
and perform their genomic analyses. First, genetic testing of patients for hereditary disorders has shifted from 
single gene assays to gene panel sequencing, and then to whole-exome sequencing (WES) and whole-genome 
sequencing (WGS)1–3. Human WGS allows detection of disease causing variants in both protein encoding- and 
non-coding regions of the genome4, with the prospect of being gradually implemented as a major tool in precision 
medicine5.

An overview of the literature (Supplementary Information 1 and 2) highlights the most common applications 
of WGS in a medical setting (Fig. 1). WGS is nowadays used for a spectrum of genetics-related disorders: in par-
ticular monogenic disorders and genomic syndromes3 but also a wide range of diseases with complex inheritance, 
such as sporadic cancer6,7, heart diseases8, respiratory tract diseases9, diabetes10 and psychiatric conditions11. The 
number of original research articles in PubMed relevant for “human whole genome sequencing” constantly rises 
and nearly tripled in the last 5 years (Supplementary Information 3).

However, before human WGS can become fully integrated in routine clinical diagnostics, there is an urgent 
need to improve and standardize the bioinformatics methods that are used in the analysis of WGS data. In gen-
eral, the current workflow includes the following steps: quality control, alignment of raw data to a reference 
genome, variant calling (germline and/or somatic), annotation of variants, filtering of variants, data visualization 
and reporting (Fig. 2). With respect to the types of genetic variation, single nucleotide variants (SNVs) and short 
indels are commonly called, whereas structural variants (SVs) and copy number variants (CNVs) have proven 
more challenging to detect in WGS data12.

Most studies that apply WGS data to search for genetic causes of monogenic disorders conduct variant calling 
by the gold standard GATK pipeline13,14, supported by somatic variant callers in cancer studies15 (see Fig. 2). 
In this work we focus on single nucleotide variants, with the intention to evaluate structural and copy number 
variants in the future. Variant calling must be precise, adequate to WGS coverage and to the type of experiment. 
Despite recent advances in computational analysis, some parts of the workflow still require refinement. Among 
possible approaches towards improvement, utilization of deep learning seems to be very promising.
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The most accurate variant calls for 30× human WGS data was recently reported by the PrecisionFDA Truth 
Challenge (https://precision.fda.gov/challenges/truth/results). The DeepVariant tool16 won the challenge, obtain-
ing F-score values (i.e. harmonic mean of recall and precision) that reached 99.96% for single nucleotide variants 
(SNV) and 99.40% for short indels. This tool developed by the Google Brain team is the first variant calling 
method that applies the TensorFlow deep learning library17 to call variants in human genome sequencing data. 
To further explore the performance of this new tool, we decided to compare DeepVariant to two commonly 
used variant callers, namely the GATK 4.0 (the current gold standard pipeline)13 and SpeedSeq18 (a time efficient 
pipeline).

Results
The performance of the DeepVariant tool in variant calling of 30× WGS data from the NA12878 
DNA reference sample.  In order to further explore the findings of the PrecisionFDA Truth Challenge in a 
real-life setting, we decided to test the performance of DeepVariant on the well-known NA12878 reference sam-
ple (sequenced in our laboratory). The sequencing resulted in 764,040,251 reads that were aligned to the GRCh38.
p10 reference (99.06% of reads were aligned). The mean coverage was 34.15×, with 40.25% GC and 28.73 mean 
mapping quality. General sequencing error rate was 0.7% (733,229,674 base mismatches, 11,924,682 insertions 
and 11,666,609 deletions). The DeepVariant tool called and marked Passed Filter for a total of 4,544,442 variants, 
including 3,753,358 SNVs and indels: 375,878 short insertions, 399,843 short deletions (pure addition or removal 
of bases, according to RTG Tools manual) and 15,363 complex indels (for example length change between the 
reference and alternative alleles, but not pure), with transition to transversion ratio equal to 2.01 (Table 1).

Analysis of coding sequences of the genome.  Variants located within coding regions of the genome 
(called by the DeepVariant tool and filtered by positions of GRCh38.p10 to only include coding exons) were 
extracted for further evaluation. In summary, 100,687 coding variants were marked as Passed Filter, out of 
which 100,340 belonged to chromosomes and 347 to alternative GRCh38 contigs. Total count of coding variants 
included 86,145 SNVs, 7,092 short insertions, 7,256 short deletions and 194 other short indels, with transition to 
transversion ratio equal to 2.33.

Comparison of the DeepVariant, GATK and SpeedSeq tools for analysis of human WGS 
data.  DeepVariant, GATK 4.0 and SpeedSeq calls were compared to the set of NA12878 Genome in a 
Bottle high confidence GRCh38 variants (hosted by the National Institute of Standards and Technology, USA; 
NISTv3.3.2). NIST reference variants are the most reliable NA12878 variant calls available for analytical valida-
tion, thus we decided to use them in our evaluation.

Our analysis showed that DeepVariant called the highest total number of variants (4,544,442) compared to the 
two other interrogated tools (4,434,965 called by GATK and 4,324,047 by SpeedSeq). Still, the F-Score (i.e. har-
monic mean of recall and precision, 30×) for SNVs was almost the same for DeepVariant (0.981) as compared to 
GATK (0.978) and SpeedSeq (0.977) (Table 2). On the other hand, DeepVariant was clearly more precise (F-Score 
of 0.94) in indel calling as compared to GATK and SpeedSeq (F-Scores 0.90 and 0.84, respectively). These quality 
scores are backed up by the highest number of true positive indel calls (460,271) as well as the lowest number of 
false negative (39,426) and false positive indel calls (16,122), for DeepVariant, as presented in Table 2.

Figure 1.  Possible applications of human whole genome sequencing (WGS) with respect to the source of 
biological material. Abbreviations: FF – Fresh Frozen Tissue; FFPE – Formalin Fixed Paraffin Embedded; 
LCM – Laser Capture Microdissection; FACS – Fluorescence Activated Cell Sorting; HLA – Human Leukocyte 
Antigen; CTCs – Circulating Tumor Cells; cfDNA – Circulating Free DNA; ctDNA – Circulating Tumor DNA 
(*detectable also in other body fluids).

https://precision.fda.gov/challenges/truth/results
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With respect to the performance on WGS data with lower coverage (i.e. 15× and 10×), we observed that 
reduced coverage resulted in a marked drop of the quality of variant calling for all tools (Table 2). Independently 
of the coverage, DeepVariant was the most precise caller in all our comparisons. Indeed, the F-Scores of 
DeepVariant for 15× data were almost similar to SpeedSeq at 30×. Detailed interrogation of false positive and 
false negative variants indicated that out of the three tested variant callers, GATK was most prone to errors in low 
coverage regions, while DeepVariant was most robust in such regions (Supplementary Information 4).

According to our findings, base change and context of false positive variants seemed to depend on the caller, 
while false negative variants appeared in the regions of lower coverage. GATK calls more A > T, C > A, G > T and 
T > A substitutions, than expected from the distribution of such variants in the human genome (Supplementary 
Information 5). SpeedSeq calls more A > C, A > T, C > A, G > T, T > A and T > G substitutions, while false posi-
tive and false negative calls by DeepVariant seem to be independent with respect to the base change.

Discussion
In this study, we confirm the results of PrecisionFDA Truth Challenge, demonstrating that the new DeepVariant 
tool is currently the most accurate variant caller available and therefore has great potential for implementation 
in routine genome diagnostics. Interestingly, this TensorFlow machine learning-based method outperforms the 
latest version of GATK – a gold standard method that was first published in 201013. The DeepVariant algorithm 
takes pictures of aligned reads and then uses machine learning to decide about the presence and the type of each 
variant. This novel method is an interesting alternative to previously used approaches, which are mainly based on 
counting reads with alternative sequence in a certain genomic position (GATK, SpeedSeq and others).

The DeepVariant SNV and indel calling F1 performance scores obtained in our analysis are lower than those 
obtained in the FDA Challenge: 0.981 versus 0.999 and 0.94 versus 0.99, respectively. Raw data filtering and optimiza-
tion of caller parameters are essential for variant calling outcome19–21, and to provide a reliable benchmark we decided 
to follow the instructions that were available on the authors websites (links are listed in the Methods section). We pro-
vide all our raw data and variant calls along with source code available for scientific community discussion.

Figure 2.  Current gold standard workflow for analysis of whole genome sequencing data.

Sample NA12878 DeepVariant NA12878 GATK NA12878 SpeedSeq

Failed Filters 4,453,285 129,228 0

Passed Filters 4,544,442 4,434,965 4,324,047

SNPs 3,753,358 3,819,071 3,627,315

Short Insertions 375,878 293,187 263,120

Short Deletions 399,843 315,637 292,050

Other Complex Indels 15,363 7,070 49,685

Same as reference 0 0 2,546

SNP Transitions/Transversions 2.01 (3477625/1734085) 1.98 (3491448/1762615) 2.03 (3350062/1650203)

Total Het/Hom ratio 1.64 (2819897/1724545) 1.69 (2787845/1647120) 1.60 (2657943/1663558)

SNP Het/Hom ratio 1.58 (2296426/1456932) 1.66 (2385446/1433625) 1.64 (2255860/1371455)

Insertion Het/Hom Ratio 1.79 (241230/134648) 1.68 (183941/109246) 1.06 (135399/127721)

Deletion Het/Hom ratio 2.01 (267064/132779) 2.03 (211388/104249) 1.41 (170791/121259)

Insertion/Deletion ratio 0.94 (375878/399843) 0.93 (293187/315637) 0.90 (263120/292050)

Table 1.  Variant calling statistics computed using RTG Tools for the three different variant calling methods. 
Values were computed for the raw vcf files produced by the callers.
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Interestingly, DeepVariant proved to be the most precise caller, irrespectively of sequence coverage. As an 
example, the F-Scores obtained by DeepVariant at 15× were comparable to SpeedSeq at 30×. This suggests that 
the application of a high precision caller can markedly reduce the cost of sequencing consumables while keeping 
the same performance. Furthermore, at lower coverage, GATK and SpeedSeq would call more A > T, C > A G > T 
and T > A substitutions than expected from the distribution of variants in the human genome. At the same time, 
false positive and false negative calls by DeepVariant seemed to be independent with respect to the base change. 
Our statistics of such incorrectly called variants could improve the understanding the challenges of each caller 
and aid the development of new variant calling algorithms in future.

It is important to notice that local setup of the DeepVariant tool on an offline Unix machine was trivial when 
following the authors instructions: using a portable Docker container or building from source. With regards 
to the complexity of the computational resources for running all the tools, our experience showed that 8 core 
machines with 16GB RAM was the minimum hardware setting to run a WGS pipeline. In such a setting, the 
complete WGS analyses would usually take from 24 to 48 hours. However, it was possible to accelerate the com-
putations: For example, the SpeedSeq pipeline on a 72 core/100GB RAM machine was run in approximately 
3 hours per sample, while the DeepVariant variant calling time was reduced by more than 50% using GPU with 4 
GB VRAM and CUDA support.

In summary, we conclude that TensorFlow-based variant calling in human WGS data has great potential and 
usefulness for medical genetics. Algorithms used by Ryan Poplin, Marc DePristo and colleagues will most likely 
open new, fresh perspective in genomics and bioinformatics.

Methods
Whole genome sequencing, quality control and alignment of the NA12878 DNA reference 
sample.  For the purpose of this work, we purchased the NA12878 cell line (CEPH/UTAH PEDIGREE Live 
Culture) from Coriell Cell Repositories (http://ccr.coriell.org/). Whole genome sequencing of this sample was 
performed by the Genomics Core Facility (GCF) at the University of Bergen, Norway, using an Illumina HiSeq. 
4000 instrument and the Illumina 150 bp TruSeq DNA PCR-FREE paired-end sequencing protocol, aiming 
at 30× coverage. Obtained sequences were deposited in the NCBI SRA repository under the PRJNA436473 
BioSample record. We performed quality control of the raw reads with FastQC and used MultiQC to generate 
quality control reports for our samples. Reads were aligned to the human reference genome – Gencode GRCh38.
p1022 using bwa-mem23 in a secure SAFE computational infrastructure (https://it.uib.no/SAFE). Aligned 
sequences were deposited in the NCBI SRA repository. The quality of the obtained bam file was evaluated using 
Qualimap software24.

Variant calling and comparison of variant calling methods.  We performed and compared variant 
calling using three different analysis tools: DeepVariant 0.4.1 (winner of the FDA Challenge), GATK 4.0.0.0 (the 

SNV
True positive 
SNV calls

False negative 
SNV calls

False positive 
SNV calls

Genotype 
mismatch

Total number 
of SNV calls

SNV calling 
precision SNV recall F1 Score

SpeedSeq. 30× 2,942,217 100,572 38,107 11,869 3,802,913 0.987223 0.966947 0.97698

SpeedSeq. 15× 2,814,843 227,946 57,654 31,131 3,613,466 0.97994 0.925086 0.951724

SpeedSeq. 10× 2,589,184 453,605 84,123 53,955 3,334,440 0.968548 0.850925 0.905934

DeepVariant 0.4.1 30× 2,948,290 94,499 22,902 19,595 3,714,945 0.992294 0.968943 0.98048

DeepVariant 0.4.1 15× 2,903,519 139,270 55,261 41,999 3,674,970 0.981328 0.954229 0.967589

DeepVariant 0.4.1 10× 2,809,014 233,775 84,054 61,314 3,573,547 0.970952 0.923171 0.946459

GATK 4.0 – WDL 30× 2,952,605 90,184 41,684 12,579 3,814,443 0.986082 0.970361 0.978159

GATK 4.0 – WDL 15× 2,891,815 150,974 59,476 31,151 3,698,103 0.979851 0.950383 0.964892

GATK 4.0 – WDL 10× 2,763,913 278,876 82,452 57,639 3,526,795 0.971036 0.908349 0.938647

INDEL True positive 
INDEL calls

False negative 
INDEL calls

False positive 
INDEL calls

Genotype 
mismatch

Total number 
of INDEL calls

INDEL 
calling 
precision

INDEL recall F1 Score

SpeedSeq. 30× 383,930 115,767 32,263 13,310 619,159 0.923499 0.768326 0.838796

SpeedSeq. 15× 337,815 161,882 34,635 16,172 542,025 0.907915 0.67604 0.775005

SpeedSeq. 10× 290,678 209,019 35,029 18,179 466,079 0.893253 0.581709 0.704578

DeepVariant 0.4.1 30× 460,271 39,426 16,122 8,147 816,456 0.967406 0.9211 0.943685

DeepVariant 0.4.1 15× 428,557 71,140 29,651 15,010 748,972 0.937303 0.857634 0.8957

DeepVariant 0.4.1 10× 387,075 112,622 38,695 20,121 668,593 0.911332 0.774619 0.837433

GATK 4.0 – WDL 30× 429,859 69,838 24,191 9,251 764,422 0.948269 0.860239 0.902112

GATK 4.0 – WDL 15× 380,932 118,765 30,603 11,918 655,658 0.927084 0.762326 0.836671

GATK 4.0 – WDL 10× 335,446 164,251 34,626 14,030 569,141 0.90753 0.671299 0.771742

Table 2.  Comparison of variant calling pipelines. Variants were called from 30×, 15× and 10× coverage of the 
NA12878 sample (HiSeq4000, Genomics Core Facility, Bergen, Norway) and compared to GIAB NISTv3.3.2 
(ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/GRCh38/). The GIAB true 
variant set included 3,042,789 SNV variants and 499,697 indels. Variant counts and performance scores were 
estimated using hap.py – an Illumina haplotype comparison/benchmarking tool.

http://ccr.coriell.org/
https://it.uib.no/SAFE
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most recent standalone version of a gold standard pipeline, https://gatkforums.broadinstitute.org/wdl/categories/
wdl-documentation) and SpeedSeq. 0.1.0 (rapid analysis pipeline, recently developed by Chiang and colleagues18) 
to obtain SNV vcf files for our NA12878 sample. The DeepVariant analysis was performed in accordance with 
online instructions (https://github.com/google/deepvariant/blob/r0.5/docs/deepvariant-case-study.md). The 
GATK analysis was based on a best practices pipeline from The Broad Institute (https://github.com/oskarvid/
wdl_germline_pipeline/tree/4.0). SpeedSeq variant calling was conducted using the SpeedSeq var command, in 
accordance with the instructions from the authors website (https://github.com/hall-lab/SpeedSeq). The results of 
all three variant calling pipelines were compared to the GIAB NISTv3.3.2 true variant set: ftp://ftp-trace.ncbi.nlm.
nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/GRCh38/. Obtained results were summarized in Table 2 
and further evaluated using RTG-Tools (https://github.com/RealTimeGenomics/rtg-tools) and hap.py (https://
github.com/Illumina/hap.py/blob/master/doc/happy.md).

Variant filtering and annotation.  Variant filtering for coding sequences of the genome was performed 
using bedtools intersect25. As a reference file for the annotation of the genomic positions of the genes, we used 
Gencode gtf reference version 27. Additionally, the awk unix command was applied to extract records from the 
gtf file which represent exons of coding genes.

Data Access.  Raw and aligned whole genome sequencing data are available in the following NCBI SRA 
repository: https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP133725.

Variants called using three different algorithms and a filtered list of variants are available on GitHub pages: 
https://github.com/tstokowy/CoriellIndex_VCF_180306.

The GATK 4.0.0.0 pipeline used in this study is available on GitHub pages: https://github.com/oskarvid/
wdl_germline_pipeline/tree/4.0.

In this study we used the publically available GIAB NISTv3.3.2 true variant set to evaluate variant caller per-
formance: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv3.3.2/GRCh38/.
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