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Contemporary science has been characterized by an exponential
growth in publications and a rise of team science. At the same time,
there has been an increase in the number of awarded PhD degrees,
which has not been accompanied by a similar expansion in the
number of academic positions. In such a competitive environment,
an important measure of academic success is the ability to maintain
a long active career in science. In this paper, we study workforce
trends in three scientific disciplines over half a century. We find
dramatic shortening of careers of scientists across all three disci-
plines. The time over which half of the cohort has left the field has
shortened from 35 y in the 1960s to only 5 y in the 2010s. In
addition, we find a rapid rise (from 25 to 60% since the 1960s) of a
group of scientists who spend their entire career only as supporting
authors without having led a publication. Altogether, the fraction of
entering researchers who achieve full careers has diminished, while
the class of temporary scientists has escalated. We provide an
interpretation of our empirical results in terms of a survival model
from which we infer potential factors of success in scientific career
survivability. Cohort attrition can be successfully modeled by a
relatively simple hazard probability function. Although we find
statistically significant trends between survivability and an author’s
early productivity, neither productivity nor the citation impact of
early work or the level of initial collaboration can serve as a reliable
predictor of ultimate survivability.
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Contemporary science has been characterized by an expo-
nential growth in practitioners and publications (1) and a rise

of team science, both in terms of the increasing prevalence of
team-authored work and the growth of team sizes (2–4). The
gradual shift from individual to team science is driven by a variety
of factors, including increasing capital intensivity of science (5) and
the increased need for technicians and staff scientists (6). At the
same time, there has been a substantial growth in the number of
awarded PhD degrees in recent decades (7), which has not been
accompanied by a similar increase in the number of academic
positions (8), leading to concerns about the lack of opportunities
for new PhDs in science (9, 10) and even warnings regarding
possible scientific workforce bubbles (11, 12). In an environment
with substantial growth in PhDs granted and only modest growth in
the number of faculty positions, the idea of each professor regularly
reproducing himself or herself in each cohort of graduate students
becomes untenable. These and similar data have led to calls for
rethinking academic careers, and to discussions of the need for
policy interventions to address this growing problem (5, 9, 13).
How does the shifting landscape of science over the past half-

century affect the roles of new researchers and their overall ca-
reers? There is an abundance of studies that focus on the criteria
that may affect researchers’ success in terms of the impact of their
work, especially in terms of citations to publications. However,
another, and perhaps more fundamental, aspect of success is the
ability to perform research over the full extent of someone’s ca-
reer, rather than leaving the field prematurely. A smaller fraction
of literature focuses on understanding the factors leading to suc-
cessful academic careers in this broader sense and, more recently,

the factors contributing to abandoning scientific careers (14–16).
Prior work has identified productivity (14, 16–20), impact (20, 21),
number of collaborators (14, 17), gender (22), prestige of PhD
granting and hiring institutions (23, 24), prestige of the advisors (24,
25), gender of the advisors (16), and level of specialization (26) as
important factors correlated with career success. Some of these
studies have found that these factors are correlated. For example,
there is a correlation between the citation success of early papers and
later increase in productivity (27). There is also a reported correla-
tion between gender and productivity (19, 28, 29), gender and cita-
tions, and gender and collaboration. Finally, there is a correlation
between institutional prestige and productivity (30, 31), as well as
institutional prestige and impact (32). Directionality of these corre-
lations is difficult to establish and is not the focus of this paper.
On the other hand, there are relatively few studies that focus on

modeling scientific careers (30, 33–38) in the context of surviv-
ability. An early study of this type (35) used a sample of 500 au-
thors during the period 1964–1970 and has established a division of
all authors into transient and continuants and found that the levels
of productivity are correlated with career length. Two recent studies
(36, 37) used survival analysis and hazard models to examine gender
differences in retention of science and social science assistant pro-
fessors. These studies established that the chances of survival of
assistant professors in science and engineering are less than 50%;
that the “median time to departure is 10.9 y” (36); and that, in social
sciences, “half of all entering faculty have departed by year 9” (37).
Despite various efforts, there is a clear gap in our knowledge of

careers of the scientific workforce in general (and not only tenure-
track scientists). Furthermore, large-scale investigation of the trends
in careers of the scientific workforce across entire disciplines and
over long periods of time (many decades) is still in its infancy.
In this study, we analyze the changing careers of the scientific

workforce of entire disciplines without making assumptions re-
garding the positions individuals comprising the workforce have
in the scientific community (i.e., not limited to those who have
tenure track jobs, as was the case in many of the earlier studies).
We specifically focus on the role that different authors play in
knowledge production. Furthermore, we investigate whether one
can identify early factors (during a researcher’s apprenticeship
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phase) that would indicate a scientist’s ability to maintain a research-
active career over many years. Our big-data approach is facilitated by
an extensive longitudinal dataset containing millions of bibliographic
items covering the entire period of contemporary science.
To capture the above-stated changes in the demographics of the

scientific workforce, we created a survival model of authors based
both on the primary role they play in the production of knowledge
and their ultimate survival status in science. Each author is placed
in one of two categories based on his or her primary authorship
role: lead authors and supporting authors. Lead authors are all
authors who have led a publication at any time in their career,
whereas supporting authors are the ones who have never had that
role in their career. Furthermore, we place each author (whether
lead or supporting) into one of the five categories in terms of his or
her ultimate survival status: transients (authors with a single pub-
lication), junior dropouts (multipaper authors leaving after 0–10 y
after the first publication), early-career dropouts (multipaper au-
thors leaving after 11–15 y after the first publication), midcareer
dropouts (multipaper authors leaving after 16–20 y after the first
publication), and full-career scientists (multipaper authors who
have careers longer than 20 y). This classification is presented
schematically in Fig. 1. The balance between supporting and lead
authors in each of the survival categories is different, as indicated
by the tilted curve in Fig. 1. Most transient scientists belong to the
supporting author group, whereas as we move toward the full-
career status, the proportion shifts in favor of lead authors. To
study the changing landscape of scientific careers in terms of
knowledge production roles and survivability, we focus our analysis
on cohorts: a group of authors who first appear on the scientific
stage at the same time (in the same year). Our study is facilitated by
the availability of extensive longitudinal data allowing us to follow
up half a century of cohorts and to assess their eventual careers.
In this study, we focus on researcher cohorts in three scien-

tific disciplines covering different areas of science: astronomy
(physical sciences), ecology (life sciences), and robotics (engi-
neering and computer science). We focus on researchers who
have published in principal journals belonging to these fields
(listed in SI Appendix). These are the journals that are well
established, usually publish a large fraction of original research
in a particular field, and are considered to be good representa-
tives of those fields. We used a number of studies to identify the
core journals. For astronomy, we used the list of core journals
provided in ref. 39; for ecology, we used the lists provided in refs.
40, 41. We define authors and derive their metrics from principal
journals alone. Some of these authors may publish some fraction

of their work in other journals (either other journals in the same or
a related area or, in some cases, in multidisciplinary journals). This
incompleteness will reduce the metrics and, in some cases, may
affect the determination of career length or authorship role.
Quantifying the incompleteness and its effects is difficult, given the
lack of topical classification at the article level. However, since the
analyses in the paper are relative (i.e., one time period vs. another,
authors with one set of characteristics vs. another), the in-
completeness will not affect some time periods or authors more
than the others; thus, the relative trends should be unaffected. Our
choice is conservative because the alternative, including all works
that match some name, would greatly exacerbate the name disam-
biguation problem and potentially confound the results.
All of the analyses are derived from the bibliographic data

extracted from the full Clarivate Analytics Web of Science da-
tabase. We used the entire temporal span of the database (from
1900 to 2015) to establish the starting and ending years of activity
of each author, and thus to identify the cohorts. For astronomy
and ecology, we follow cohorts from 1961, and for robotics, we
follow cohorts since 1985 (none of the core robotics journals
published before 1983). The number of authors belonging to
these cohorts and included in the analysis is 71,164 in astronomy,
20,704 in ecology, and 17,646 in robotics.
To identify unique authors, we perform, for each field-specific

dataset separately, disambiguation of author names using the hy-
brid initials method. The scheme represents an improvement over
standard initials methods because it either ignores or takes into
account the middle initial depending on the name frequency (42),
minimizing the splitting of unique authors due to inconsistent use
of the middle initial while maximizing the author separation.
Percentages of authors whose identity has been compromised due
to either splitting or merging have been estimated by simulation
and are between 3% and 5% (42), which is below a level that
would significantly affect our results. Ambiguity is relatively low
because we focus on principal journals alone.
The roles that authors play in knowledge production (lead and

supporting) are established from author lists in the following way.
Authors on single-authored papers are given a lead author status. To
establish the roles in multiauthored papers, we have first verified that
the author lists are ordered by author contributions (with the first
author almost always matching the corresponding author) in all
three disciplines under study, except in rare cases when they are
ordered alphabetically. We find no evidence for a deliberate al-
phabetical listing in papers with fewer than approximately four au-
thors, and in such cases, we adopt the first author as a lead author.
For longer lists of authors, we check if the author list is alphabetical
(based on up to seven first-listed authors), and if it is not, we again
take the first listed author as a lead author. If the list is alphabetical,
we determine the lead author only if the corresponding author is not
the first author. The fraction of articles for which the lead author
could not be determined is relatively small (1.6%, 0.2%, and 0.3%
for astronomy, ecology, and robotics, respectively).
For each unique author, we establish the cohort year as the year

when he or she first appeared as an author in any role (lead author
or supporting author). Since our data extend to periods before the
starting time for the analysis, the cohort year, as well as the year of
the departure from the field, can be established reliably. An au-
thor is considered currently active if he or she has published (in
any role) in the last 3 y covered by database. Of the active authors,
some have achieved full-career status (defined as at least 20 y of
active publishing), whereas for others, their ultimate survival status
is currently unknown and they are excluded from those analyses
where such information is required.

Results
Growth of Supporting Author Scientists. Previous results on the
growth of team science and the changing structure of such teams
allow us to propose that one component of the changing career

Fig. 1. Model of scientific careers. For each cohort of authors entering the
field, we determine the knowledge production role as a “lead author” (re-
searcher who leads the production of a scientific publication at any time in
his or her career) or a “supporting author” (those who will never lead the
production of a scientific publication). Furthermore, each new author will
fall into one of five categories of ultimate career status: transients (authors
who only had one publication), dropouts (authors who leave the field pre-
maturely at different levels of their careers), and full-career scientists (au-
thors who ultimately survive in the field). In each survival category, there will
be some authors classified as lead and some as supporting (the repeated red
curve). We follow 50 cohorts starting from the 1960s.
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demographics of scientist is a differentiation into heterogeneous
career paths, with some scientists becoming lead authors and
others specializing as nonlead supporting team members. Here,
we establish the extent to which each of these groups has con-
tributed to the creation of knowledge over the past half-century.
Fig. 2 shows the fraction of authors from each cohort that, at any

point in their career, will contribute to the field as lead authors.
The fraction of lead authors has been experiencing a dramatic
downward trend in all three disciplines since the 1960s, leading to a
complementary increase in the share of supporting authors. Fur-
thermore, the proportion of lead authors has been similar in all
three fields, indicating that the shift of roles may follow a universal
pattern. While in the early cohorts, from the 1960s and 1970s, the
vast majority (∼75%) of entering authors had a lead author role,
this percentage has dropped to less than 40% in most recent co-
horts. The strong shift is unrelated to the presence of transient
authors. If those were excluded from the cohort, the drop in the
share of lead authors remains similar: from ∼85% in the 1960s to
∼50% in the current decade. Is the increasing fraction of sup-
porting authors an inevitable outcome of increasing team sizes? To
test this possibility, we performed modeling in which we went
through all of the papers in each dataset and tried to replace the
coauthors (all authors except the lead author) who are classified as
supporting authors with the authors who have the status of being
lead authors and were active at the time of paper publication. In
this modeling, the number of authors per paper remains the same,
as well as the individual (lead author) productivity (because we
only replace coauthors), yet we were able to populate mock author
lists solely with lead authors. This demonstrates that having large
team sizes does not automatically require the recruitment of sup-
porting scientists. It also signifies that large teams are not entirely
the product of collaboration among eventual full-role scientists
(which may be more prevalent in small teams) but rather involve
the recruitment of a special workforce of supporting scientists.

Survival Function and the Decreased Half-Life of Cohorts. The min-
imal level of contribution to scientific knowledge is the pro-
duction of a single paper. The existence of such authors was first
pointed to by Price and Gürsey in 1976 (35), who named this type

of author “transients” and established that they accounted for 25%
of the population of scientists in the late 1960s. In Fig. 3, we find
that the fraction of transients has remained relatively constant in
most cohorts, although this category of authors has started to in-
crease in recent cohorts across all three fields (since about the
1990s), especially in robotics and ecology. Notably, we also find
that, unlike the fraction of lead authors, which is universal, the
number of transients is field-dependent, with levels in astronomy
similar to the ones Price and Gürsey (35) found and much higher
rates (50–70%) in ecology and robotics. Interestingly, one-quarter
of recent transients in all three fields were lead authors. This
fraction was as high as one-half in the 1960s. This suggests that the
threshold for lead authorship is often crossed even in the pop-
ulation that never genuinely embarks on a research path in that
discipline. Comparing our astronomy results to similar findings
from astronomy by Yoachim (43), we can see that even making
different methodological choices about the population at risk, the
journal lists, and the disambiguation methods, the results are
robust. This gives us additional confidence in the findings.
For authors who persist after the initial publication, we employ

survival analysis to study their scientific career longevity. In Fig. 4,
we show the survival curves of select cohorts spanning the period
of the most recent four decades. Survival curves are calculated as
the fraction of a cohort remaining after x years. While the survival
curves of contemporaneous cohorts in different fields have dif-
ferent slopes, we see that the curves undergo a similar evolution in
each field: from relatively long survival times in the 1980s to very
rapid attrition of the scientific workforce in most recent times. We
observe that until the 1980s (1990s for astronomy), more than half
of each cohort had “full” (20+ y) careers. However, in recent
decades, this is no longer the case. The results correspond to a
continuous decline in the expected career length.
To expand the survival analysis to every cohort and to cover

the full period from 1961, we calculate, for each cohort, its “half-
life,” the time it takes to lose 50% of the cohort. Half-lives are
determined from a linear fit to the survival function, regardless
of whether the cohort has yet reached 50%. Half-lives for the
three fields as a function of cohort year are shown in Fig. 4D. In
astronomy, the half-life has dropped from about 37 y in 1960s to
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just 5 y in 2007. In ecology and robotics, the half-lives are even
shorter and have also been decreasing at similar rates. When we
analyze lead authors and supporting authors separately, we find
that in ecology and robotics, their half-lives are similar, whereas
in astronomy, the half-lives of supporting authors are shorter
than those of the lead authors by about 5 y. Most recently (2010
cohort) half-lives are 9 and 4 y, respectively.

Career Progression Model. To pave the way for a more funda-
mental understanding of the processes that lead to the attrition
of the workforce, we describe the career trajectory of an indi-
vidual researcher using a simplified version of the model shown in
Fig. 1. In the simplified version, we focus only on nontransient
authors. Further, we neglect the difference among types of
dropouts. During a career, a researcher can be in one of the fol-
lowing four states: B, the beginning of a career (defined with the
first paper); S, achievement of the supporting author role; L,
achievement of the lead author role; and X, cessation of the ca-
reer. An author can initially be in the S state and transition into

the L state. The S → L transition is considered irreversible (i.e.,
L→ S is not allowed in the model). Authors continue in their states
until reaching state X. We train the model using the data at our
disposal. We find that the S → L transformation takes place in the
first 5 y of a career: Authors who become leads achieve this status
quickly. For the survival model, we are interested in the likelihood
of observing the transition S → X or L → X (i.e., the hazard
probability). We show the hazard probability in Fig. 5 sepa-
rately for lead and supporting authors. For lead authors, the
hazard probability is relatively constant, at around 0.03. For
supporting authors, the exit probability is higher and shows a
two-mode behavior: a decrease in the first 8 y and reaching a
more stable value subsequently. We model the hazard function as
a piece-wise linear + constant function:

h= aðt− tbreakÞ+ b  for  t≤ tbreak,   and  h= b= const.   for  t> tbreak,

where a and b are constants and tbreak = 8 is the time where the
hazard function changes behavior. For astronomy, the model is
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tested against the data (Fig. 5C). The survival curves are now
based on all cohorts, so they represent time-averaged survival for
lead and supporting authors. The model reproduces the salient
features of the empirical curve. Remarkably, the analysis shows
that the hazard is relatively constant throughout the career (i.e.,
that there are no punctuated bottlenecks at which a large frac-
tion of a cohort would leave the field).

Early Indicators of Scientific Survivability. Given the increasing
uncertainty of achieving a full career in science, one wonders
whether there are any characteristics of scientists early in their
careers that could indicate their survival status (38). We define
“early” as the first 5 y of a researcher’s presence in the field
(what we might call his or her “apprenticeship” years). Given our
focus on the roles that scientists play in the production of
knowledge, we focus on the variables that are directly related to
this process: productivity, impact, and collaboration. These var-
iables have been identified in prior work as correlated with ca-
reer trajectories. We do not focus on some other variables that
have been identified as important for career longevity and suc-
cess, such as gender and the prestige of an institution a scientist
is affiliated with, which are more pertinent in the context of studies
that focus on career aspects that involve institutional and job roles
(hiring, tenure, and promotion). While our models do not explicitly
control for gender, two recent studies analyzing career longevity of
academic faculty found no differences in faculty attrition by gender
(except in the field of mathematics) since 1990 (36, 37).
In this analysis, we look at the total productivity in the first 5 y of

a career (in any authorship role) and examine two types of impact:
average impact of early work (the number of citations per paper
received in the first 5 y) and the peak impact (the maximum number
of citations received in a 5-y window to a single, early-career pub-
lication). Finally, for collaboration, we focus on the number of di-
rect collaborators in the first 5 y of the career. Direct collaborators
are defined as coauthors on a paper led by the author in question, as
well as all of the unique lead authors of papers on which the author
in question is a coauthor. If neither author is a lead author on some
publication, such authors do not constitute direct collaboration.
To aggregate the data from cohorts that span a long time

period, one needs to take into account that all three variables
have significantly increased over time. For example, a researcher
from the 1960 cohort who had 10 citations per paper may have
been the most impactful in that cohort (∼100 percentile),
whereas the same number of citations for a cohort from 2000 may
place the researcher in middle of the cohort (∼50 percentile).

Therefore, we establish normalized measures by determining the
percentiles for each variable and for each author in a given cohort.
Fig. 6 shows mean productivity, citation, and collaboration

levels for authors of different survival categories: junior dropouts
(J; leaving 6–10 y after the first publication); early-career drop-
outs (E; 11–15 y); midcareer dropouts (M; 16–20 y); and, finally,
the scientists who achieved full careers (F; >20 y). The values for
robotics, which contains fewer cohorts and a smaller sample size,
is noisier, and we omit it for clarity. The trends are shown sep-
arately for lead and supporting authors. The trends are fairly
consistent between astronomy and ecology (with the exception of
collaboration). Furthermore, we find that the trends involving
average number of citations per paper and maximum number of
citations are very similar, and we show only the ones involving
average number of citations. Fig. 6 reveals that lead and sup-
porting authors follow different trends. Overall, lead authors,
regardless of survival category, have significantly higher pro-
duction and collaboration levels than supporting authors,
whereas their impact levels are similar. Supporting authors, while
working on fewer papers and with fewer direct collaborators,
nevertheless contribute to projects of similar impact. For lead
authors, there is a slight positive trend between the early level of
all three metrics and eventual survival (except for ecology and
collaboration, where there is no significant trend). In particular,
based on the means comparisons, lead researchers who go on to
full careers (F) tend to have, on average, higher levels of pro-
ductivity, citation, and (for astronomy) collaboration.
The four-state career model, which provides an estimate of the

career termination hazard rate by career state, not only supports
the empirical survival functions well but shows that the hazard
rate is relatively constant throughout a career, thus also sup-
porting the model developed by Petersen et al. (34).
The above plots focused on individual variables. To quantify the

effect of the variables on survival taking into account internal cor-
relations, we use the Cox proportional hazard survival model. For this
analysis, we use career lengths in annual increments (rather than
grouping into only four categories) and the Efron method to correct
for ties. Although many of the cases include careers of greater than
20 y, we recode career length as maximizing at 20 y (hence, all careers
greater than 20 y, corresponding to full-career survival status, are
treated as right-truncated). In addition, because we are testing the
effects of the first 5 y of performance on subsequent exit, all our cases
in this analysis have career lengths of at least 6 y. We are then testing,
among the set of researchers who accumulate 5 y of background
experience, how career lengths differ by publications, citations, and
number of collaborators during their first 5 y (net of the effects of the

0

10

20

30

40

50

60

0 1 2 3 4 5

Pr
od

uc
�v

ity
(p

er
ce

n�
le

)

Survival category

Early produc�vity
and survival

AST lead authors
ECL lead authors
AST suppor�ng
ECL suppo�ng

0

10

20

30

40

50

60

0 1 2 3 4 5

Co
lla

bo
ra

to
rs

(p
er

ce
n�

le
)

Survival category

Early collabora�on
and survival

AST lead authors
ECL lead authors
AST suppor�ng
ECL suppor�ng0

10

20

30

40

50

60

0 1 2 3 4 5

Ci
ta

�o
n

(p
er

ce
n�

le
)

Survival category

Early impact
and survival

AST lead authors
ECL lead authors
AST suppor�ng
ECL suppor�ng

J E M F J E M FJ E M F

DROPOUTS

A B C

Fig. 6. Early predictors of survivability in astronomy (AST) and ecology (ECL). Normalized productivity (A), impact (B), and collaboration (C) metrics based on
the number of publications from the first 5 y of an author’s career are shown for lead (full lines) and supporting (dashed lines) authors in two disciplines for
authors of different survival status: junior dropouts (J; leaving after 6–10 y after the first publication), early-career dropouts (E; 11–15 y), midcareer dropouts
(M; 16–20 y), and, finally, the scientists who achieved full careers (F; >20 y).

12620 | www.pnas.org/cgi/doi/10.1073/pnas.1800478115 Milojevi�c et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1800478115


other variables). We use the untransformed publications and citations
data, as we will be focusing on comparisons within cohorts.
Given the very different survival curves for the lead and sup-

porting authors (Fig. 5), we estimate the effects separately for
each group. Tables 1 and 2 give the models. Column 1 in Tables 1
and 2 shows the effects of background characteristics (publi-
cations, citations, and number of collaborators) on hazards of
exit (with values greater than 1 increasing the rate of exit and
values less than 1 decreasing the rate of exit). Table 1 shows
the results for lead authors, and Table 2 shows the results for
supporting authors. Column 2 repeats this analysis using the
maximum number of citations among the researchers for the
first 5 y of publications. We see that when we control for the
net effects of the other indicators across the 50 y (1960–2010)
for lead authors, publications significantly reduce the hazard
of exit, while there is little effect of citations (either measure)
or number of collaborators. For supporting researchers,
publications also have a negative effect on exit, although the
effect is weaker than for lead authors. Citations (either
measure) also have an effect, although the effect is positive
(increasing exit). The number of collaborators has no effect.
A test of the proportional hazard assumption that the effects

of the predictors are constant over time rejects the null hy-
pothesis for publications (and is close to significant for citations).
Furthermore, the data above suggest that the career conditions
are changing over time and that publications, citations, and
collaborations rates have also been changing over time. Hence,
we estimate the effects across cohorts separately (Tables 1 and 2,
columns 3–7). For lead authors, we see that publications have

consistently been a significant predictor of career longevity. We
also see that citations reduced the hazard of exit in the early co-
horts; however, more recently, the model is dominated by publi-
cations, with citations having little independent effect. In contrast,
for supporting authors, publications have very weak effects until
the most recent cohort. Table 3 shows that these effects are largely
consistent across fields, although we find that the effect of publi-
cations is significant for supporting researchers in astronomy.
In Tables 1 and 2, we report the hazard ratios from a multi-

variate Cox proportional hazard model. We are estimating the
relative hazard to exiting, truncating at 20 y (so we are estimating
the relative hazard of leaving academic publishing before 20 y). The
table is reporting the change in the hazard ratio for exiting from a
one-unit change in each variable, controlling for the effects of all of
the other variables. These hazard ratios can be interpreted by esti-
mating how far they are from 1.0. For example, for lead authors
across all years, publications have a coefficient of 0.891 (Tables 1
and 2, column 1). This means that one publication reduces the
hazard of exit by about 11% (1.000–0.891 = 0.109). In terms of the
probability of achieving a full career, it grows gradually from 50%
for authors with one early publication to 85% for authors with 20
publications. In contrast, one citation reduces the hazard very little
(0.1%). Therefore, for lead investigators, each publication has
substantially more impact on survival than does each citation (about
100-fold greater). In contrast, for supporting authors, one publica-
tion reduces the hazard of exit by about 3% (1.000–0.966), while
citations again have very little effect. However, looking across the
cohorts, we see this effect for supporting authors is largely limited to
the most recent cohort (Tables 1 and 2, column 7). We can also see

Table 1. Cox proportional hazard regressions, for lead authors, by cohort

Lead authors

(1) (2) (3) (4) (5) (6) (7)

All All 1960s 1970s 1980s 1990s 2000s

No. of publications 0.891*** (0.004) 0.891*** (0.004) 0.945* (0.021) 0.950*** (0.013) 0.925*** (0.012) 0.886*** (0.008) 0.857*** (0.009)
Average citations

per paper
0.999 (0.001) 0.987** (0.004) 0.990*** (0.003) 0.994* (0.002) 0.998 (0.001) 1.000 (0.001)

Maximum citations
on a paper

1.000 (0.000)

No. of collaborators 1.001 (0.003) 1.001 (0.003) 1.042 (0.032) 0.975 (0.016) 0.963** (0.012) 0.996 (0.005) 0.997 (0.005)
Cases 34,037 34,037 1,862 4,764 6,195 9,511 11,705
Exits 9,034 9,034 617 1,227 1,843 3,531 1,816
LR χ2 1,111.49 1,110.52 22.14 82.20 160.91 557.17 508.79
P > χ2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Publication productivity, citations, and collaborators pertain to the first 5 y of an author’s career. Standard errors shown in parentheses. LR, likelihood
ratio. ***P < 0.001; **P < 0.01; *P < 0.05.

Table 2. Cox proportional hazard regressions, for supporting authors, by cohort

Supporting authors

(1) (2) (3) (4) (5) (6) (7)

All All 1960s 1970s 1980s 1990s 2000s

No. of publications 0.966*** (0.008) 0.966*** (0.008) 0.972 (0.099) 1.056 (0.066) 1.042 (0.046) 1.017 (0.015) 0.938*** (0.012)
Average citations

per paper
1.001** (0.000) 1.003 (0.007) 0.990* (0.005) 1.005* (0.002) 1.001* (0.000) 1.000 (0.000)

Maximum citation
on a paper

1.000* (0.000)

No. of collaborators 1.006 (0.015) 1.003 (0.016) 1.223 (0.244) 1.038 (0.093) 0.964 (0.061) 0.942* (0.023) 0.994 (0.024)
Cases 10,677 10,677 195 761 1,540 3,136 5,045
Exits 4,290 4,290 91 308 767 1,865 1,259
LR χ2 59.16 55.76 1.83 7.70 5.77 10.95 103.24
P > χ2 0.00 0.00 0.61 0.05 0.12 0.01 0.00

Publication productivity, citations, and collaborators pertain to the first 5 y of an author’s career. Standard errors shown in parentheses. LR, likelihood
ratio. ***P < 0.001; **P < 0.01; *P < 0.05.
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that for the full span of cohorts (Tables 1 and 2, column 1), the
effect of publications for lead authors is much greater than that for
supporting authors (11% vs. 3%), and that when we compare across
cohorts (Tables 1 and 2, columns 3–7), the effect of publications for
reducing exit is stronger (the hazard ratio is lower) for lead authors
than for supporting authors.

Discussion
Recent work on the organization of science has focused on the
internal structures of research teams and has argued that one
likely outcome of this shift in the nature of scientific work has
been the growth of supporting scientists, whose careers depend
on being members of such teams (6, 13). Less obviously, there
has also been a concomitant increase in high-stakes evaluation
and competition for funding, increasing the emphasis on pro-
ductivity (44–47). One solution to this new emphasis on pro-
ductivity is increasing the division of labor (48, 49). The growth
of scientific team sizes is being accompanied by a transition in
the organization of scientific work from craft to bureaucratic
industrial principles, with increased division of labor and
standardization of tasks (13, 50, 51). The result is a growth of
scientists whose function is to support the projects that others
are leading. Our results confirm this scenario, showing that an
increasing fraction of entering authors never transition from a
supporting author to lead author role. We also show that such a
trend is not an inevitable outcome of the increasing sizes of
teams, per se, but arises due to the different roles that some
authors now have in large teams compared with the roles that
members of smaller teams have (team members vs. collaborators).
In some fields, such as ecology and robotics, lead and supporting
authors have similar half-lives, while in others, such as astronomy,
the half-lives of supporting authors is significantly shorter.
Of course, there are well-known productivity advantages from

organizing teams with a division of labor, and with having some
team members specializing in supporting roles (48). Hence, it is
perhaps not surprising that science is shifting to larger teams,
with more specialization, and that, increasingly, some scientists
are specializing in supporting roles. Note that we are not as-
suming status or skill distinctions in our classification of lead and
supporting authors (50). We are arguing that such supporting
scientists are critical to the production of contemporary science
(6). However, it is also the case that institutions, such as uni-
versities and funding agencies, build around these traditional
status distinctions, for example, between postdoctoral scientists
and tenure track professors (6). However, our survival analyses
suggest that the criteria predicting longevity for supporting

scientists are quite distinct from those for lead researchers and it
may not be appropriate to impose similar criteria on both groups
when making decisions about who to hire or whose contract to
renew. We argue there is a need to reform career structures in
universities to account for the changing nature of the population
composition and reproduction cycles in team science, with social
insect colonies rather than parent-child reproduction as a more
appropriate model.
While we cannot address this with our current data, we point

to a tension between the research production and teaching
functions that academic laboratories provide (5, 12, 44, 50, 52).
These two trends are bringing fundamental changes to scientific
careers, with decreasing opportunities for lead researcher po-
sitions and increasing production of, and demand for, a scien-
tific workforce to fill positions as permanent supporting
scientists. Together, these trends suggest downward pressure on
career longevity (as more people exit the academic science la-
bor force) and the growth of dependent supporting scientist
positions to support the relatively shrinking share of lead re-
searchers. However, one concern is that such supporting sci-
entist positions do not fit well with the employment system in
most universities, which are structured around a graduate ap-
prenticeship, a short period of postdoctoral training, and then
movement into a tenure track (and eventually tenured) pro-
fessor position (5). Instead, these support workers may be
relegated to a series of short-term postdoctoral contracts or
other forms of contingent academic work. While the traditional
model implies an up-or-out academic pipeline (with significant
shares of the research workforce dropping out of research-
active academic positions at each stage), the growth of per-
manent supporting scientists may suggest an alternative career
path that, while perhaps with shorter survival than the tradi-
tional lead researcher path, may be a growing share of the
academic labor force. Furthermore, such careers may be pre-
mised on a different set of criteria than is typically predictive of
the career survival of lead researchers.
Our findings show that the shift in the mode of knowledge

production from solo authors and small core teams (2) has co-
incided with a differentiation in the scientific workforce in terms
of their roles. The increased need for both the specialization and
possession of specialized technical knowledge to manipulate
increasingly complex instrumentation and data has created an
essential group of supporting contributors to knowledge. Un-
fortunately, the existing job roles and educational structures may
not be responding to these changes. Our results suggest that,
while essential, these supporting researchers are suffering from

Table 3. Cox proportional hazard regressions, for lead and supporting authors, by field

Lead and
supporting
authors

(1) (2) (3) (4) (5) (6) (7) (8)

All (lead
authors)

AST (lead
authors)

ECL (lead
authors)

ROB (lead
authors)

All (supporting
authors)

AST (supporting
authors)

ECL (supporting
authors)

ROB (supporting
authors)

No. of
publications

0.891***
(0.004)

0.921***
(0.005)

0.867***
(0.012)

0.924***
(0.024)

0.966***
(0.008)

0.969***
(0.082)

1.012
(0.052)

1.105
(0.099)

Average
citations per
publication

0.999
(0.001)

1.001
(0.001)

0.999
(0.001)

0.996
(0.003)

1.001**
(0.000)

1.001**
(0.000)

1.009***
(0.001)

0.992
(0.005)

No. of
collaborators

1.001
(0.003)

1.001
(0.003)

1.018
(0.009)

0.979
(0.018)

1.006
(0.015)

1.019
(0.016)

0.937
(0.066)

0.822
(0.102)

Cases 34,037 22,178 9,499 2,360 10,677 6,791 2,988 898
Exits 9,034 4,613 3,488 933 4,290 2,476 1,409 405
LR χ2 1,111.49 417.21 129.20 27.42 59.16 39.73 26.73 6.33
P > χ2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

Publication productivity, citations, and collaborators pertain to the first 5 y of an author’s career. Standard errors shown in parentheses. AST, astronomy;
ECL, ecology; LR, likelihood ratio; ROB, robotics. ***P < 0.001; **P < 0.01; *P < 0.05.
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greater career instability and worse long-term career prospects in
some fields.
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